Hyperspectral Distinction of Two Caribbean Shallow-Water Corals Based on Their Pigments and Corresponding Reflectance
Abstract
:1. Introduction
2. Experimental Section
2.1. Collection Site
2.2. Coral Colonies Sampling
2.3. Spectral Analysis
2.4. Pigment Extraction and Analysis
2.5. Relationship between Reflectance and Pigment Concentration
2.6. Statistical Analysis
3. Results and Discussion
3.1. Influence of Coral Symbionts and Endolithic Algae on the Pigment Composition of Corals
3.2. Reflectance Spectra and Derivative Analysis
3.3. Reflectance and Total Pigment Concentration
4. Conclusions
Acknowledgments
References
- Holden, H.; LeDrew, E. Hyperspectral identification of coral reef features. Int. J. Remote Sens. 1999, 20, 2545–2563. [Google Scholar]
- Lubin, D.; Li, W.; Dustan, P.; Mazel, C.H.; Stamnes, K. Spectral signatures of coral reefs: features from space. Remote Sens. Environ. 2001, 75, 127–137. [Google Scholar]
- Hedley, J.D.; Mumby, P.J. Biological and remote sensing perspectives of pigmentation in coral reef organisms. Adv. Mar. Biol. 2002, 43, 277–317. [Google Scholar]
- Hochberg, E.J.; Atkinson, M.J. Capabilities of remote sensors to classify coral, algae and sand as pure and mixed spectra. Remote Sens. Environ. 2003, 85, 174–189. [Google Scholar]
- Hochberg, E.J.; Atkinson, M.J.; Apprill, A.; Andréfouët, S. Spectral reflectance of coral. Coral Reefs 2004, 23, 84–95. [Google Scholar]
- Hedley, J.D.; Mumby, P.J.; Joyce, K.E.; Phinn, S.R. Spectral unmixing of coral reef benthos under ideal conditions. Coral Reefs 2004, 23, 60–73. [Google Scholar]
- Hedley, J.D.; Roelfsema, C.M.; Phinn, S.R.; Mumby, P.J. Environmental and sensor limitations in optical remote sensing of coral reefs: implications for monitoring and sensor design. Remote Sens. 2012, 4, 271–302. [Google Scholar]
- Hochberg, E.J.; Atkinson, M.J.; Andréfouët, S. Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sen. Environ. 2003, 85, 159–173. [Google Scholar]
- Johansen, J.E.; Svec, W.A.; Liaaen-Jensen, S. Carotenes of the Dinophyceae. Phytochemistry 1974, 13, 2261–2271. [Google Scholar]
- Gil-Turnes, S.; Corredor, J. Studies of Photosynthetic Pigments of Zooxanthellae in Caribbean Hermatypic Corals. Proceedings of the 4th International Coral Reef Symposium, Manila, Philippines, 18–22 May 1981; pp. 51–54.
- Jeffrey, S.W.; Mantoura, R.F.C.; Wright, S.W. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods; UNESCO Publishing; Paris, France, 1997. [Google Scholar]
- Rowan, R.; Knowlton, N. Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc. Natl Acad. Sci. USA 1995, 92, 2850–2853. [Google Scholar]
- La Jeunesse, T.C.; Loh, W.K.W.; van Woesick, R.; Hoegh-Guldberg, O.; Schmidt, G.W.; Fitt, W.K. Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol. Oceanogr. 2003, 48, 2046–2054. [Google Scholar]
- Baker, A.C.; Rowan, R. Diversity of Symbiotic Dinoflagellates (Zooxanthellae) in Scleractinian Corals of the Caribbean and the Eastern Pacific. Proceedings of the 8th International Coral Reef Symposium, Panama, 24–29 June 1997; pp. 1301–1306.
- Baker, A.C.; Rowan, R.; Knowlton, N. Symbiosis Ecology of two Caribbean Acroporid Corals. Proceedings of the 8th International Coral Reef Symposium, Panama, 24–29 June 1997; pp. 1295–1300.
- LaJeunesse, T.C. Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar. Biol. 2002, 141, 378–400. [Google Scholar]
- Banaszak, A.T.; Iglesias-Prieto, R.; Trench, R.K. Scrippsiella velellae sp. nov. (Peridiniales) and Gloedinium viscum sp. nov. (Phytodiniales), dinoflagellate symbionts of two hydrozoans (Cnidaria). J. Phycol. 1993, 29, 517–528. [Google Scholar]
- Blank, R.J.; Trench, R.K. Nomenclature of endosymbiotic dinoflagellates. Taxon 1986, 35, 286–294. [Google Scholar]
- Rowan, R. Diversity and ecology of zooxanthellae on coral reefs. J. Phycol. 1998, 34, 407–417. [Google Scholar]
- Rowan, R.; Powers, D.A. Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar. Ecol. Prog. Ser. 1991, 71, 65–73. [Google Scholar]
- Bidigare, R.R.; Morrow, J.H.; Kiefer, D.A. Derivative analysis of spectral absorption by photosynthetic pigments in the Western Sargasso Sea. J. Mar. Res. 1989, 47, 323–341. [Google Scholar]
- Andréfouët, S.; Payri, C.; Hochberg, E.J.; Che, L.M.; Atkinson, M.J. Airbornes hyperspectral detection of microbial mat pigmentation in Rangiroa atoll (French Polynesia). Limnol. Oceanogr. 2003, 48, 426–430. [Google Scholar]
- Polerecky, L.; Bissett, A.; Al-Najjar, M.; Faerber, P.; Osmers, H.; Suci, P.A.; Stoodley, P.; de Beer, D. Modular spectral imaging system for discrimination of pigments in cells and microbial communities. Appl. Environ. Microbiol. 2009, 75, 758–771. [Google Scholar]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar]
- Butler, W.L.; Hopkins, D.W. Higher derivative analysis of complex absorption spectra. Photochem. Photobiol 1970, 12, 439–450. [Google Scholar]
- Tsai, F.; Philpot, W. Derivative analysis of hyperspectral data. Remote Sens. Environ. 1998, 66, 41–51. [Google Scholar]
- Smith, C.M.; Alberte, R.S. Characterization of in vivo absorption features of chlorophyte, phaeophyte and rhodophyte algal species. Mar. Biol. 1994, 118, 511–521. [Google Scholar]
- Hochberg, E.J.; Apprill, A.; Atkinson, M.J.; Bidigare, R.R. Bio-optical modeling of photosynthetic pigments in corals. Coral Reefs 2006, 25, 99–109. [Google Scholar]
- Torres-Pérez, J.L.; Armstrong, R.A. Effects of UV radiation on the growth, photosynthetic and photoprotective components, and reproduction of the Caribbean shallow-water coral Porites furcata. Coral Reefs 2012, 31, 1077–1091. [Google Scholar]
- Torres, J.L.; Armstrong, R.A.; Corredor, J.E.; Gilbes, F. Physiological responses of Acropora cervicornis to increased solar irradiance. Photochem. Photobiol. 2007, 83, 839–851. [Google Scholar]
- Shick, J.M.; Lesser, M.P.; Dunlap, W.C.; Stochaj, W.R.; Chalker, B.E.; Wu Won, J. Depth-dependent responses to solar ultraviolet radiation and oxidative stress in the zooxanthellate coral Acropora microphthalma. Mar. Biol. 1995, 122, 41–51. [Google Scholar]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants and natural phytoplankton. Biochem. Physiol. Pfl. 1975, 167, 191–194. [Google Scholar]
- Chalker, B.E.; Dunlap, W.C. Extraction and Quantification of Endosymbiotic Algal Pigments from Reef-Building Corals. Proceedings of the 4th International Coral Reef Symposium, Manila, Philippines, 18–22 May 1981; pp. 45–50.
- Wright, S.W.; Shearer, J.D. Rapid extraction and high-performance liquid chromatography of chlorophylls and carotenes from marine phytoplankton. J. Chromatogr. 1984, 294, 281–295. [Google Scholar]
- Wright, S.W.; Jeffrey, S.W.; Mantoura, R.F.C.; Llewellyn, C.A.; Bjþrnland, T.; Repeta, D.; Welschmeyer, N. Improved HPLC method for the analysis of chlorophylls and carotenes from marine phytoplankton. Mar. Ecol. Prog. Ser. 1991, 77, 183–196. [Google Scholar]
- Bidigare, R.R. Analysis of Algal Chlorophylls and Carotenes. In Marine Particles: Analysis and Characterization; Hurd, D.C., Spencer, D.W., Eds.; American Geophysical Union: Washington DC, USA, 1991; pp. 119–123. [Google Scholar]
- Bidigare, R.R.; van Heukelem, L.; Trees, C.C. Analysis of Algal Pigments by High Performance Liquid Chromatography. In Culturing Methods and Growth Measurements; Andersen, R.A., Ed.; Academic Press: New York, NY, USA, 2005; pp. 327–345. [Google Scholar]
- Egeland, E.S.; Garrido, J.L.; Clementson, L.; Andresen, K.; Thomas, C.S.; Zapata, M.; Airs, R.; Llewellyn, C.A.; Newman, G.L.; Rodríguez, F.; et al. Data Sheets Aiding Identification of Phytoplankton Carotenes and Chlorophylls. In Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography; Roy, S., Llewelyn, C.A., Egeland, E.S., Johnsen, G., Eds.; Cambridge University Press: New York, NY, USA, 2011; pp. 665–811. [Google Scholar]
- Jeffrey, S.W.; Wright, S.W.; Zapata, M. Microalgal Classes and their Signature Pigments. In Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography; Roy, S., Llewelyn, C.A., Egeland, E.S., Johnsen, G., Eds.; Cambridge University Press: New York, NY, USA, 2011; pp. 3–77. [Google Scholar]
- Marsh, J.A. Primary productivity of reef building calcareous red algae. Ecology. 1970, 51, 255–263. [Google Scholar]
- Fung, T.; LeDrew, E. Application of principal components analysis to change detection. Photogramm. Eng. Rem. S. 1987, 53, 1649–1658. [Google Scholar]
- Apprill, A.; Bidigare, R.R.; Gates, R.D. Visibly healthy corals exhibit variable pigment concentrations and symbiont phenotypes. Coral Reefs 2007, 26, 387–397. [Google Scholar]
- Warner, M.E.; Berry-Lowe, S. Differential xanthophyll cycling and photochemical activity in symbiotic dinoflagellates in multiple locations of three species of Caribbean coral. J. Exp. Mar. Biol. Ecol. 2006, 339, 86–95. [Google Scholar]
- Ugalde, J.A.; Chang, B.S.; Matz, M.V. Evolution of coral pigments recreated. Science 2004, 305, 1433. [Google Scholar]
- Corredor, J.E.; Bruckner, A.W.; Muszynski, F.Z.; Armstrong, R.A.; García, R.; Morell, J.M. UV-absorbing compounds in three species of Caribbean zooxanthellate corals: depth distribution and spectral response. Bull. Mar. Sci. 2000, 67, 821–830. [Google Scholar]
- Enríquez, S.; Méndez, E.R.; Iglesias-Prieto, R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol. Oceanogr. 2005, 50, 1025–1032. [Google Scholar]
- Mazel, C.H. Spectral measurements of fluorescence emission in Caribbean cnidarians. Mar. Ecol. Prog. Ser. 1995, 120, 185–191. [Google Scholar]
- Mazel, C.H.; Lesser, M.P.; Gorbunov, M.Y.; Barry, T.M.; Farell, J.H.; Wyman, K.D.; Falkowski, P.G. Green-fluorescent proteins in Caribbean corals. Limnol. Oceanogr. 2003, 48, 402–411. [Google Scholar]
- Oswald, F.; Schmitt, F.; Leutenegger, A.; Ivanchenko, S.; D’Angelo, C.; Salih, A.; Maslakova, S.; Bulina, M.; Schirmbeck, R.; Nienhaus, G.U.; et al. Contributions of host and symbiont pigments to the coloration of reef corals. FEBS J. 2007, 274, 1102–1109. [Google Scholar]
- D’Angelo, C.; Smith, E.G.; Oswald, F.; Burt, J.; Tchernov, D.; Wiedenmann, J. Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs 2012, 31, 1045–1056. [Google Scholar]
Pigments/Compounds | Acropora cervicornis | Porites porites | Abs. Peaks* | ||||
---|---|---|---|---|---|---|---|
Presence | [Pigm] | % | Presence | [Pigm] | % | ||
MV-Chl c3 | + | 0.38 ± 0.13 | 0.9 | − | -- | -- | 447, 626 |
Mg-DVP | + | 0.60 ± 0.26 | 1.4 | − | -- | -- | 437, 624 |
Chl c2 | + | 2.82 ± 0.11 | 6.5 | + | 1.64 ± 0.70 | 9.5 | 452, 635 |
Chl a allo | + | 0.29 ± 0.03 | 0.7 | − | -- | -- | 432, 665 |
Chl a | + | 13.60 ± 1.92 | 31.4 | + | 9.46 ± 0.86 | 58.7 | 432, 665 |
Chl a epi | + | 2.79 ± 0.27 | 6.4 | + | 0.41 ± 0.04 | 2.5 | 432, 665 |
Per | + | 7.34 ± 0.21 | 16.9 | + | 2.38 ± 0.14 | 14.4 | 475 |
β,β–car | + | 0.61 ± 0.05 | 1.4 | + | 0.28 ± 0.05 | 1.7 | 449, 475 |
Nc | + | 1.72 ± 0.20 | 4.0 | + | 0.04 ± 0.01 | 0.3 | 424, 451 |
P-457 | + | 1.43 ± 0.50 | 3.3 | + | 0.31 ± 0.18 | 2.0 | 457 |
Dn | + | 0.22 ± 0.04 | 0.5 | − | -- | -- | 438, 467 |
Dd | + | 6.50 ± 1.15 | 15.0 | − | -- | -- | 445, 476 |
Dc I | + | 0.68 ± 0.06 | 1.6 | + | 0.81 ± 0.54 | 4.9 | 430, 457 |
Dc II | + | 0.73 ± 0.12 | 1.7 | + | 0.25 ± 0.02 | 1.5 | 430, 457 |
Fc | + | 0.69 ± 0.06 | 1.6 | − | -- | -- | 446, 475 |
Zea | + | 1.34 ± 0.09 | 3.1 | − | -- | -- | 449, 475 |
An | + | 0.50 ± 0.15 | 1.2 | − | -- | -- | 444, 472 |
Lu** | + | 0.34 | 0.8 | − | -- | -- | 443, 470 |
Gy** | + | 0.45 | 1.0 | − | -- | -- | 442, 470 |
Dt | − | -- | -- | + | 0.23 ± 0.03 | 1.5 | 452, 478 |
PC 1 | PC 2 | PC 3 | |
---|---|---|---|
Eigenvalues | 267 | 66.3 | 38.6 |
% variation | 69.4 | 17.3 | 10.0 |
Variables analyzed: | Eigenvectors | ||
[Chl a] | −0.188 | −0.412 | −0.028 |
[Chl c2] | −0.025 | −0.003 | −0.043 |
[Per] | −0.027 | 0.057 | −0.037 |
% Chl a | 0.547 | −0.540 | 0.324 |
% Chl c2 | 0.189 | 0.088 | −0.326 |
% Per | −0.043 | −0.083 | −0.730 |
[total chlorophylls] | −0.442 | −0.684 | −0.256 |
[total carotenes] | −0.020 | 0.063 | −0.034 |
[total xanthophylls] | −0.169 | −0.057 | −0.002 |
% chlorophylls | 0.514 | −0.120 | −0.333 |
% carotenes | −0.201 | −0.051 | 0.068 |
% xanthophylls | −0.313 | 0.171 | 0.265 |
Share and Cite
Torres-Pérez, J.L.; Guild, L.S.; Armstrong, R.A. Hyperspectral Distinction of Two Caribbean Shallow-Water Corals Based on Their Pigments and Corresponding Reflectance. Remote Sens. 2012, 4, 3813-3832. https://doi.org/10.3390/rs4123813
Torres-Pérez JL, Guild LS, Armstrong RA. Hyperspectral Distinction of Two Caribbean Shallow-Water Corals Based on Their Pigments and Corresponding Reflectance. Remote Sensing. 2012; 4(12):3813-3832. https://doi.org/10.3390/rs4123813
Chicago/Turabian StyleTorres-Pérez, Juan L., Liane S. Guild, and Roy A. Armstrong. 2012. "Hyperspectral Distinction of Two Caribbean Shallow-Water Corals Based on Their Pigments and Corresponding Reflectance" Remote Sensing 4, no. 12: 3813-3832. https://doi.org/10.3390/rs4123813