Effect of Grain Size and Mineral Mixing on Carbonate Absorption Features in the SWIR and TIR Wavelength Regions
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. FTIR Reflectance Spectra Measurement
2.3. Spectral Absorption Features Analysis
3. Results
3.1. SWIR Spectra of Pure Calcite and Dolomite with Varying Grain Size
3.2. TIR Spectra of Pure Calcite and Dolomite with Varying Grain Size
3.3. SWIR Spectra of Mixed Calcite and Dolomite with Varying Mineral Contents
3.4. TIR Spectra of Mixed Calcite and Dolomite with Varying Mineral Contents
4. Discussions
4.1. Effect of Grain Size
4.2. Effect of Mineral Mixing
4.3. Mineralogical Mapping Applications
5. Conclusions
Acknowledgments
References
- Pettijohn, F.J. Limestones and Dolomites. In Sedimentary Rocks, 3rd ed.; Harper & Row: New York, NY, USA, 1975; pp. 316–391. [Google Scholar]
- Blatt, H.; Middleton, G.; Murray, R. Origin of Limestones. In Origin of Sedimentary Rocks; Prentice-Hall: Englewood Cliffs, NJ, USA, 1972; pp. 409–455. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. Carbonates. In Introduction to the Rock: Forming Minerals; Longman: London, UK, 1966; pp. 473–503. [Google Scholar]
- Waltham, A.C. Sedimentary Processes and Rocks. In Foundations of Engineering Geology, 3rd ed.; Spon: London, UK, 2009; pp. 8–10. [Google Scholar]
- Harbaugh, J.W. Carbonate Oil Reservoir Rock. In Carbonate Rocks: Origin, Occurence and Classification; Chilingar, G.V., Bissell, H.J., Fairbridge, R.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1976; Volume 9A, pp. 349–398. [Google Scholar]
- Friedman, G.M.; Sanders, J.E. Origin and Occurrence of Dolostones. In Carbonate Rocks: Origin, Occurence and Classification; Chilingar, G.V., Bissell, H.J., Fairbridge, R.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1967; Volume 9A, pp. 266–348. [Google Scholar]
- Hatch, F.H.; Rastall, R.H. Carbonate Rocks: Magnesian Limestones and Dolomites. In Textbook of Petrology: Vol. 2. Petrology of the Sedimentary Rocks, 4th revised ed.; Allen & Unwin: London, UK, 1965; pp. 221–234. [Google Scholar]
- van der Meer, F.D. Spectral reflectance of carbonate mineral mixtures and bidirectional reflectance theory: Quantitative analysis techniques for application in remote sensing. Remote Sens. Rev 1995, 13, 67–94. [Google Scholar]
- van der Meer, F. Classification of remotely-sensed imagery using an indicator kriging approach: Application to the problem of calcite-dolomite mineral mapping. Int. J. Remote Sens 1996, 17, 1233–1249. [Google Scholar]
- van der Meer, F. Mapping dolomitization through a co-regionalization of simulated field and image-derived reflectance spectra: A proof-of-concept study. Int. J. Remote Sens 1998, 19, 1615–1620. [Google Scholar]
- Rockwell, B.W.; Hofstra, A.H. Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere 2008, 4, 218–246. [Google Scholar]
- Kozak, P.K.; Duke, E.F.; Roselle, G.T. Mineral distribution in contact-metamorphosed siliceous dolomite at Ubehebe Peak, California, based on airborne imaging spectrometer data. Am. Mineralogist 2004, 89, 701–713. [Google Scholar]
- Baker, A.C.; Glynn, P.W.; Riegl, B. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci 2008, 80, 435–471. [Google Scholar]
- Hochberg, E.J.; Atkinson, M.J. Spectral discrimination of coral reef benthic communities. Coral Reefs 2000, 19, 164–171. [Google Scholar]
- van der Meer, F. Spectral mixture modelling and spectral stratigraphy in carbonate lithofacies mapping. ISPRS J. Photogramm 1996, 51, 150–162. [Google Scholar]
- Gupta, R.P. Remote Sensing Geology, 2nd ed; Springer: Berlin, Germany, 2003; p. 655. [Google Scholar]
- Clark, R.N. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 3rd ed.; Rencz, A.N., Ed.; John Wiley and Sons: New York, NY, USA, 1999; Volume 3, pp. 3–58. [Google Scholar]
- Hunt, G.R.; Salisbury, J.W. Visible and near infrared spectra of minerals and rocks: II. Carbonates. Mod. Geol 1971, 2, 23–30. [Google Scholar]
- Salisbury, J.W.; Hapke, B.; Eastes, J.W. Usefulness of weak bands in mid infrared remote sensing of particulate planetary surface. J. Geophys. Res 1987, 92, 702–710. [Google Scholar]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res 1990, 95, 12653–12680. [Google Scholar]
- Gaffey, S.J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite. Am. Mineralogist 1986, 71, 151–162. [Google Scholar]
- Baissa, R.; Labbassi, K.; Launeau, P.; Gaudin, A.; Ouajhain, B. Using HySpex SWIR-320m hyperspectral data for the identification and mapping of minerals in hand specimens of carbonate rocks from the Ankloute Formation (Agadir Basin, Western Morocco). J. Afr. Earth Sci 2011, 61, 1–9. [Google Scholar]
- Huang, C.K.; Kerr, P.F. Infrared study of the carbonate minerals. Am. Mineralogist 1960, 45, 311–324. [Google Scholar]
- Lane, M.D.; Christensen, P.R. Thermal infrared emission spectroscopy of anhydrous carbonates. J. Geophys. Res.-Planet 1997, 102, 25581–25592. [Google Scholar]
- Ji, J.F.; Ge, Y.; Balsam, W.; Damuth, J.E.; Chen, J. Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR): A fast method for identifying Heinrich events in IODP Site U1308. Mar. Geol 2009, 258, 60–68. [Google Scholar]
- Reig, F.B.; Adelantado, J.V.G.; Moreno, M.C.M.M. FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta 2002, 58, 811–821. [Google Scholar]
- Gaffey, S.J. Reflectance spectroscopy in the visible and near infrared (0.35–2.55 microns): Applications in carbonate petrology. Geology 1985, 13, 270–273. [Google Scholar]
- Povarennykh, A.S. Use of infrared-spectra for determination of minerals. Am. Mineralogist 1978, 63, 956–959. [Google Scholar]
- Crowley, J.K. Visible and near-infrared spectra of carbonate rocks-reflectance variations related to petrographic texture and impurities. J. Geophys. Res.-Solid 1986, 91, 5001–5012. [Google Scholar]
- Hecker, C.; Hook, S.J.; van der Meijde, M.; Bakker, W.; van der Werff, H.; Wilbrink, H.; van Ruitenbeek, F.J.A.; de Smeth, B.; van der Meer, F.D. Thermal infrared spectrometer for earth science remote sensing applications—Instrument modifications and measurement procedures. Sensors 2011, 11, 10981–10999. [Google Scholar]
- van der Meer, F.D. Analysis of spectral absorption features in hyperspectral imagery. Int. J. Appl. Earth Obs 2004, 5, 55–68. [Google Scholar]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy-quantitative analysis techniques for remote sensing applications. J. Geophys. Res 1984, 89, 6329–6340. [Google Scholar]
- Kruse, F.A.; Lefkoff, A.B.; Dietz, J.B. Expert system-based mineral mapping in Northern Death-Valley, California Nevada, using the airborne visible infrared imaging spectrometer (AVIRIS). Remote Sens. Environ 1993, 44, 309–336. [Google Scholar]
- Kokaly, R.F.; Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens. Environ 1999, 67, 267–287. [Google Scholar]
- Smith, M.J.; Stevens, T.; MacArthur, A.; Malthus, T.J.; Lu, H.Y. Characterising Chinese loess stratigraphy and past monsoon variation using field spectroscopy. Quatern. Int 2011, 234, 146–158. [Google Scholar]
- Mutanga, O.; Skidmore, A.K.; Prins, H.H.T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens. Environ 2004, 89, 393–408. [Google Scholar]
- Yitagesu, F.A.; van der Meer, F.; van der Werff, H.; Hecker, C. Spectral characteristics of clay minerals in the 2.5–14 μm wavelength region. Appl. Clay Sci 2011, 53, 581–591. [Google Scholar]
- Luleva, M.I.; van der Werff, H.; Jetten, V.; van der Meer, F. Can infrared spectroscopy be used to measure change in potassium nitrate concentration as a proxy for soil particle movement? Sensors 2011, 11, 4188–4206. [Google Scholar]
- Youngentob, K.N.; Roberts, D.A.; Held, A.A.; Dennison, P.E.; Jia, X.P.; Lindenmayer, D.B. Mapping two Eucalyptus subgenera using multiple endmember spectral mixture analysis and continuum-removed imaging spectrometry data. Remote Sens. Environ 2011, 115, 1115–1128. [Google Scholar]
- Hecker, C.; van der Meijde, M.; van der Werff, H.; van der Meer, F.D. Assessing the influence of reference spectra on synthetic SAM classification results. IEEE Trans. Geosci. Remote Sens 2008, 46, 4162–4172. [Google Scholar]
- Hubbard, B.E.; Crowley, J.K.; Zimbelman, D.R. Comparative alteration mineral mapping using visible to shortwave infrared (0.4–2.4 μm) Hyperion, ALI, and ASTER imagery. IEEE Trans. Geosci. Remote Sens 2003, 41, 1401–1410. [Google Scholar]
- ITT. Visual Information Solutions. Available online: http://www.ittvis.com (accessed on 18 May 2010).
- Windeler, D.S.; Lyon, R.J.P. Discriminating dolomitization of marble in the Ludwig Skarn near Yerington, Nevada using high-resolution airborn infrared imagery. Photogramm. Eng. Remote Sensing 1991, 57, 1171–1177. [Google Scholar]
Share and Cite
Zaini, N.; Van der Meer, F.; Van der Werff, H. Effect of Grain Size and Mineral Mixing on Carbonate Absorption Features in the SWIR and TIR Wavelength Regions. Remote Sens. 2012, 4, 987-1003. https://doi.org/10.3390/rs4040987
Zaini N, Van der Meer F, Van der Werff H. Effect of Grain Size and Mineral Mixing on Carbonate Absorption Features in the SWIR and TIR Wavelength Regions. Remote Sensing. 2012; 4(4):987-1003. https://doi.org/10.3390/rs4040987
Chicago/Turabian StyleZaini, Nasrullah, Freek Van der Meer, and Harald Van der Werff. 2012. "Effect of Grain Size and Mineral Mixing on Carbonate Absorption Features in the SWIR and TIR Wavelength Regions" Remote Sensing 4, no. 4: 987-1003. https://doi.org/10.3390/rs4040987
APA StyleZaini, N., Van der Meer, F., & Van der Werff, H. (2012). Effect of Grain Size and Mineral Mixing on Carbonate Absorption Features in the SWIR and TIR Wavelength Regions. Remote Sensing, 4(4), 987-1003. https://doi.org/10.3390/rs4040987