Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon
Abstract
:1. Background and Rationale
2. Objectives
3. Methods and Study Region
3.1 Image Processing
3.1.1. Pre-Processing
3.2. Spectral Mixture Analysis (SMA)
3.2.1. Building the Endmember Spectral Library
3.2.2. Normalized Difference Fraction Index (NDFI)
3.3. Image Classification
3.4. Post-Classification
3.5. Accuracy Assessment
3.6. Estimating the Annual Rate of Forest Changes
4. Results
4.1. Accuracy Assessment
4.2. Annual Rates of Deforestation and Degradation
5. Discussion
6. Conclusions
Acknowledgments
Conflict of Interest
References
- Rosa, I.M.D.; Souza, C.; Ewers, R.M. Changes in size of deforested patches in the Brazilian Amazon. Conserv. Biol 2012, 26, 932–937. [Google Scholar]
- Shimabukuro, Y.E.; dos Santos, J.R.; Formaggio, A.R.; Duarte, V.; Rudorff, B.F.T. The Brazilian Amazon Monitoring Program. In Global Forest Monitoring from Earth Observation; Achard, F., Hansen, M.C., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 167–184. [Google Scholar]
- Souza, C., Jr. Monitoring of Forest Degradation. In Global Forest Monitoring from Earth Observation; Achard, F., Hansen, M.C., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 185–208. [Google Scholar]
- Numata, I.; Cochrane, M.A.; Roberts, D.A.; Soares, J.V.; Souza, C.M.; Sales, M.H. Biomass collapse and carbon emissions from forest fragmentation in the Brazilian Amazon. J. Geophys. Res.: Biogeosci 2010, 115, G03027. [Google Scholar]
- Nepstad, D.C.; Varissimo, A.; Alencar, A.; Nobre, C.; Lima, E.; Lefebvre, P.; Schlesinger, P.; Potter, C.; Moutinho, P.; Mendoza, E.; Cochrane, M.; Brooks, V. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 1999, 398, 505–508. [Google Scholar]
- Asner, G.P.; Knapp, D.E.; Broadbent, E.N.; Oliveira, P.J.C.; Keller, M.; Silva, J.N. Selective logging in the Brazilian Amazon. Science 2005, 310, 480–482. [Google Scholar]
- Chen, Y.; Randerson, J T.; Morton, D.C.; DeFries, R.S.; Collatz, G.J.; Kasibhatla, P.S.; Giglio, L.; Jin, Y.; Marlier, M.E. Forecasting fire season severity in South America using sea surface temperature anomalies. Science 2011, 334, 787–791. [Google Scholar]
- Skole, D.; Tucker, C. Tropical deforestation and habitat fragmentation in the Amazon—Satellite data from 1978 to 1988. Science 1993, 260, 1905–1910. [Google Scholar]
- Asner, G.P.; Broadbent, E.N.; Oliveira, P.J.C.; Keller, M.; Knapp, D.E.; Silva, J.N.M. Condition and fate of logged forests in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 12947–12950. [Google Scholar]
- Matricardi, E.; Skole, D.; Cochrane, M.A.; Pedlowski, M.; Chomentowski, W. Multi-temporal assessment of selective logging in the Brazilian Amazon using Landsat data. Int. J. Remote Sens 2007, 28, 63–82. [Google Scholar]
- Numata, I.; Mark, A.C.; Carlos, M.S., Jr.; Marcio, H.S. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon. Environ. Res. Lett 2011, 6, 044003. [Google Scholar]
- Cochrane, M.A.; Laurance, W.F. Fire as a large-scale edge effect in Amazonian forests. J. Trop. Ecol 2002, 18, 311–325. [Google Scholar]
- Souza, C.M., Jr.; Roberts, D.A.; Cochrane, M.A. Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sens. Environ 2005, 98, 329–343. [Google Scholar]
- Alencar, A.; Asner, G.P.; Knapp, D.; Zarin, D. Temporal variability of forest fires in eastern Amazonia. Ecol. Appl 2011, 21, 2397–2412. [Google Scholar]
- Morton, D.C.; DeFries, R.S.; Nagol, J.; Souza, C.M., Jr.; Kasischke, E.S.; Hurtt, G.C.; Dubayah, R. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sens. Environ 2011, 115, 1706–1720. [Google Scholar]
- Roberts, D.A.; Numata, I.; Holmes, K.; Batista, G.; Krug, T.; Monteiro, A.; Powell, B.; Chadwick, O.A. Large area mapping of land-cover change in Rondonia using multitemporal spectral mixture analysis and decision tree classifiers. J. Geophys. Res.: Atmos 2002, 107, 8073. [Google Scholar]
- Cochrane, M.A.; Souza, C.M., Jr. Linear mixture model classification of burned forests in the Eastern Amazon. Int. J. Remote Sens 1998, 19, 3433–3440. [Google Scholar]
- Laurance, W.F.; Camargo, J.L.C.; Luizao, R.C.C.; Laurance, S.G.; Pimm, S.L.; Bruna, E.M.; Stouffer, P.C.; Williamson, G.B.; Benitez-Malvido, J.; Vasconcelos, H.L.; Van Houtan, K.S.; Zartman, C.E.; Boyle, S.A.; Didham, R.K.; Andrade, A.; Lovejoy, T.E. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv 2011, 144, 56–67. [Google Scholar]
- Johns, J.S.; Barreto, P.; Uhl, C. Logging damage during planned and unplanned logging operations in the eastern Amazon. Forest Ecol. Manage 1996, 89, 59–77. [Google Scholar]
- Nepstad, D.C.; Verissimo, A.; Alencar, A.; Nobre, C.; Lima, E.; Lefebvre, P.; Schlesinger, P.; Potter, C.; Moutinho, P.; Mendoza, E.; Cochrane, M.; Brooks, V. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 1999, 398, 505–508. [Google Scholar]
- Souza, C.M.; Roberts, D.A.; Cochrane, M.A. Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sens. Environ 2005, 98, 329–343. [Google Scholar]
- Souza, C., Jr.; Siqueira, J.V. ImgTools: A Software for Optical Remotely Sensed Data Analysis. Proceeding of Anais XVI Simpósio Brasileiro de Sensoriamento Remoto, Foz do Iguaçu, PR, Brazil, 13–18 April 2013; pp. 1571–1578.
- Verbyla, D.L.; Boles, S.H. Bias in land cover change estimates due to misregistration. Int. J. Remote Sens 2000, 21, 3553–3560. [Google Scholar]
- Carlotto, M.J. Reducing the effects of space-varying, wavelength-dependent scattering in multispectral imagery. Int. J. Remote Sens 1999, 20, 3333–3344. [Google Scholar]
- Roberts, D.A.; Adams, J.B.; Sabol, D.E. Remote sensing of vegetation in Amazonia, ecological implications of spectral mixtures. Bull. Ecol. Soc. Amer 1993, 74, 412. [Google Scholar]
- Adams, J.B.; Sabol, D.E.; Kapos, V.; Filho, R.A.; Roberts, D.A.; Smith, M.O.; Gillespie, A.R. Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon. Remote Sens. Environ 1995, 52, 137–154. [Google Scholar]
- Roberts, D.A.; Numata, I.; Holmes, K.; Batista, G.; Krug, T.; Monteiro, A.; Powell, B.; Chadwick, O.A. Large area mapping of land-cover change in Rondônia using multitemporal spectral mixture analysis and decision tree classifiers. J. Geophys. Res.: Atmos 2002, 107, 8073. [Google Scholar]
- Asner, G.P.; Bustamante, M.M.C.; Townsend, A.R. Scale dependence of biophysical structure in deforested areas bordering the Tapajo’s National Forest, Central Amazon. Remote Sens. Environ 2003, 87, 507–520. [Google Scholar]
- Numata, I.; Soares, J.V.; Roberts, D.A.; Leonidas, F.C.; Chadwick, O.A.; Batista, G.T. Relationships among soil fertility dynamics and remotely sensed measures across pasture chronosequences in Rondonia, Brazil. Remote Sens. Environ 2003, 87, 446–455. [Google Scholar]
- Souza, C.M., Jr.; Firestone, L.; Silva, L.M.; Roberts, D. Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models. Remote Sens. Environ 2003, 87, 494–506. [Google Scholar]
- Small, C. The Landsat ETM+ spectral mixing space. Remote Sens. Environ 2004, 93, 1–17. [Google Scholar]
- Asner, G.P.; Keller, M.; Pereira, R.; Zweede, J.C. Remote sensing of selective logging in Amazonia—Assessing limitations based on detailed field observations, Landsat ETM+, and textural analysis. Remote Sens. Environ 2002, 80, 483–496. [Google Scholar]
- Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping Target Signatures via Partial Unmixing of AVIRIS Data. Proceedings of Annual JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 23–26 January 1995; pp. 23–26.
- Powell, R.L.; Matzke, N.; de Souza, C.; Clark, M.; Numata, I.; Hess, L.L.; Roberts, D.A.; Clark, M.; Numata, I.; Hess, L.L.; Roberts, D.A. Sources of error in accuracy assessment of thematic land-cover maps in the Brazilian Amazon. Remote Sens. Environ 2004, 90, 221–234. [Google Scholar]
- Souza, C.M., Jr.; Cochrane, M.A.; Sales, M.H.; Monteiro, A.L.; Millicone, D. Integrating Forest Transects and Remote Sensing Data to Quantify Carbon Loss due to Forest Degradatin in the Brazilian Amazon; Forest Resource Assessment Working Paper 161; FAO: Rome, Italy, 2009; pp. 1–17. [Google Scholar]
- Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens 2001, 22, 3855–3862. [Google Scholar]
- FAO. On Definitions of Forest and Forest Change. In Food and Agriculture Administration, Forest Resource Assessment; Working Paper 33; FAO: Rome, Italy, 2000; p. 13. [Google Scholar]
- Puyravaud, J.P. Standardizing the calculation of the annual rate of deforestation. Forest Ecol. Manage 2003, 177, 593–596. [Google Scholar]
- Cochrane, M.A.; Alencar, A.; Schulze, M.D.; Souza, C.M.; Nepstad, D.C.; Lefebvre, P.; Davidson, E.A. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 1999, 284, 1832–1835. [Google Scholar]
- Davidson, E.A.; de Araujo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; C. Bustamante, M.M.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M.; et al. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar]
- Soares-Filho, B.S.; Nepstad, D.C.; Curran, L.M.; Cerqueira, G.C.; Garcia, R.A.; Ramos, C.A.; Voll, E.; McDonald, A.; Lefebvre, P.; Schlesinger, P. Modelling conservation in the Amazon basin. Nature 2006, 440, 520–523. [Google Scholar]
- INPE. Prodes, Monitoramento da Floresta Amazônica por Satélite. Available online: http://www.obt.inpe.br/prodes/index.php (accessed on 6 May 2013).
- Barlow, J.; Peres, C.A.; Henriques, L.M.P.; Stouffer, P.C.; Wunderle, J.M. The responses of understorey birds to forest fragmentation, logging and wildfires: An Amazonian synthesis. Biol. Conserv 2006, 128, 182–192. [Google Scholar]
- Barlow, J.; Parry, L.; Gardner, T.A.; Ferreira, J.; Aragao, L.E.O.C.; Carmenta, R.; Berenguer, E.; Vieira, I.C.G.; Souza, C.; Cochrane, M.A. The critical importance of considering fire in REDD+ programs. Biol. Conserv 2012, 154, 1–8. [Google Scholar]
- Barber, C.P.; Cochrane, M.A.; Souza, C.; Verissimo, A. Dynamic performance assessment of protected areas. Biol. Conserv 2012, 149, 6–14. [Google Scholar]
(a) | ||||||
---|---|---|---|---|---|---|
Reference Data (SPOT) | ||||||
Land Cover Class | Forest | Degradation | Deforestation | Row Total | User’s Accuracy | User’s Standard Deviation |
Forest | 884 | 2 | 22 | 908 | 0.97 | 0.006 |
Degradation | 6 | 20 | 14 | 40 | 0.50 | 0.080 |
Deforestation | 60 | 14 | 432 | 506 | 0.85 | 0.016 |
Column Total | 950 | 36 | 468 | 1,454 | - | - |
Producer's Accuracy | 0.93 | 0.56 | 0.92 | - | - | - |
Producer's Standard Deviation | 0.008 | 0.084 | 0.013 | - | - | - |
Overall Accuracy = 0.92 (0.007) |
(b) | ||||||
---|---|---|---|---|---|---|
Reference Data (SPOT + Transects) | ||||||
Land Cover Class | Forest | Degradation | Deforestation | Row Total | User’s Accuracy | User’s Standard Deviation |
Forest | 942 | 11 | 22 | 975 | 0.97 | 0.005 |
Degradation | 8 | 102 | 14 | 124 | 0.82 | 0.035 |
Deforestation | 60 | 14 | 432 | 506 | 0.85 | 0.016 |
Column Total | 1,010 | 127 | 468 | 1,605 | - | - |
Producer’s Accuracy | 0.93 | 0.80 | 0.92 | - | - | - |
Producer’s Standard Deviation | 0.008 | 0.036 | 0.013 | - | - | - |
Overall Accuracy = 0.92 (0.007) |
(c) | |||
---|---|---|---|
Influence of Reference Data (SPOT) “Corrections” on Map Accuracy | |||
Version | Correction to Reference Data Set | Number of Samples | % Overall Agreement |
1 | None | 1,725 | 0.79 |
2 | Geocorrection | 1,644 | 0.83 |
3 | Geocorrection; Map edge | 1,600 | 0.86 |
4 | Geocorrection; Mixed pixel; Map edge | 1,594 | 0.86 |
5 | Geocorrection; Change pixel | 1,502 | 0.89 |
6 | Geocorrection; Change pixel; Mixed pixel | 1,498 | 0.89 |
7 | Geocorrection; Change pixel; Mixed pixel; Map edge | 1,454 | 0.92 |
Excluded Samples | |
---|---|
Reason for Exclusion | Number of Samples |
No Data | 3 |
Geocorrection | 81 |
Change pixel | 142 |
Mixed pixel | 4 |
Map edge | 44 |
Cloud | 21 |
Water | 231 |
(a) Annual rates of deforestation (km2/yr) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
States | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | Total |
Acre | 487 | 948 | 640 | 819 | 851 | 521 | 545 | 256 | 495 | 203 | 5,765 |
Amapá* | - | - | - | - | - | - | - | - | - | - | - |
Amazonas | 1,482 | 2,475 | 1,682 | 2,010 | 2,031 | 1,673 | 1,306 | 1,115 | 1,535 | 917 | 16,227 |
Maranhão | 676 | 371 | 402 | 329 | 524 | 389 | 433 | 588 | 918 | 236 | 4,866 |
Mato Grosso | 5,905 | 7,527 | 8,735 | 10,463 | 6,959 | 4,142 | 3,026 | 3,055 | 1,215 | 1,221 | 52,249 |
Pará | 4,516 | 8,139 | 6,194 | 6,664 | 7,625 | 6,184 | 5,888 | 5,284 | 6,693 | 2,480 | 59,668 |
Rondônia | 3,525 | 2,983 | 3,752 | 3,665 | 3,973 | 2,820 | 2,316 | 1,835 | 1,025 | 346 | 26,241 |
Roraima | 507 | 749 | 752 | 431 | 170 | 176 | 194 | 189 | 40 | 0 | 3,209 |
Tocantins | 104 | 150 | 71 | 65 | 109 | 80 | 43 | 81 | 54 | 93 | 849 |
Amazon | 17,203 | 23,342 | 22,229 | 24,446 | 22,242 | 15,986 | 13,751 | 12,403 | 11,976 | 5,496 | 169,074 |
(b) Annual rates of forest degradation (km2/yr) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
States | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | Total |
Acre | 157 | 441 | 185 | 65 | 48 | 731 | 549 | 282 | 133 | 71 | 2,663 |
Amapá * | - | - | - | - | - | - | - | - | - | - | - |
Amazonas | 94 | 118 | 146 | 232 | 224 | 206 | 208 | 236 | 151 | 41 | 1,656 |
Maranhão | 58 | 171 | 25 | 20 | 154 | 382 | 51 | 677 | 145 | 122 | 1,806 |
Mato Grosso | 3,033 | 2,198 | 2,208 | 2,459 | 2,359 | 1,878 | 1,516 | 4,956 | 2,331 | 1,625 | 24,562 |
Pará | 1,007 | 1,382 | 1,114 | 1,707 | 1,509 | 2,659 | 1,566 | 1,829 | 1,654 | 1,785 | 16,212 |
Rondônia | 293 | 408 | 179 | 541 | 380 | 601 | 453 | 378 | 269 | 70 | 3,573 |
Roraima | 58 | 10 | 8 | 15 | 8 | 7 | 7 | 6 | 0 | 0 | 118 |
Tocantins | 27 | 24 | 23 | 29 | 19 | 20 | 17 | 33 | 19 | 16 | 226 |
Amazon | 4,726 | 4,754 | 3,887 | 5,068 | 4,700 | 6,483 | 4,367 | 8,396 | 4,703 | 3,731 | 50,815 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Souza, Jr, C.M.; Siqueira, J.V.; Sales, M.H.; Fonseca, A.V.; Ribeiro, J.G.; Numata, I.; Cochrane, M.A.; Barber, C.P.; Roberts, D.A.; Barlow, J. Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon. Remote Sens. 2013, 5, 5493-5513. https://doi.org/10.3390/rs5115493
Souza, Jr CM, Siqueira JV, Sales MH, Fonseca AV, Ribeiro JG, Numata I, Cochrane MA, Barber CP, Roberts DA, Barlow J. Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon. Remote Sensing. 2013; 5(11):5493-5513. https://doi.org/10.3390/rs5115493
Chicago/Turabian StyleSouza, Jr, Carlos M., João V. Siqueira, Marcio H. Sales, Antônio V. Fonseca, Júlia G. Ribeiro, Izaya Numata, Mark A. Cochrane, Christopher P. Barber, Dar A. Roberts, and Jos Barlow. 2013. "Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon" Remote Sensing 5, no. 11: 5493-5513. https://doi.org/10.3390/rs5115493
APA StyleSouza, Jr, C. M., Siqueira, J. V., Sales, M. H., Fonseca, A. V., Ribeiro, J. G., Numata, I., Cochrane, M. A., Barber, C. P., Roberts, D. A., & Barlow, J. (2013). Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon. Remote Sensing, 5(11), 5493-5513. https://doi.org/10.3390/rs5115493