Soil Moisture & Snow Properties Determination with GNSS in Alpine Environments: Challenges, Status, and Perspectives
Abstract
:1. Introduction
2. The Alpine Environment Context
2.1. The Alpine Environments
2.2. Related Measurement Challenges
2.3. Required Accuracy of Measurements
3. Current Measurement Techniques
3.1. Soil Moisture Measurement Techniques
3.1.1. Estimation from Fluxes
3.1.2. Inference from Thermal Properties
3.2. Snow Property Determination Techniques
3.2.1. In-Situ Snow Stations
3.2.2. Terrestrial and Airborne Laser Scanning
3.2.3. Radar Measurements
3.2.4. Photogrammetry
3.2.5. Snowpack Models
3.3. Other Techniques Applicable to Both Soil Moisture and Snow Property Determination
3.3.1. Neutron Probes
3.3.2. Time Domain Reflectometry
3.3.3. Satellite Products
Active Microwave Sensing
Passive Microwave Sensing
3.3.4. Gamma Logger
3.3.5. Short Summary
4. Future Perspectives
4.1. GNSS-Reflectometry (GNSS-R)
4.1.1. GNSS-R for Soil Moisture Recovery
4.1.2. GNSS-R for Snow Cover Estimation
4.1.3. Future Options for the GNSS-R
4.2. Wireless Sensor Networks
4.3. Airborne Laser Scanning
5. Conclusions
Conflict of Interest
References
- Timmons, D.R.; Dylla, A.S. Nitrogen leaching as influenced by nitrogen management and supplemental irrigation level. J. Environ. Qual 1981, 10, 421–426. [Google Scholar]
- Hergert, G.W. Nitrate leaching through sandy soil as affected by sprinkler irrigation management. J. Environ. Qual 1986, 15, 272–278. [Google Scholar]
- Trought, M.C.T.; Drew, M.C. The development of waterlogging damage in wheat seedlings (Triticum aestivum L.). Plant Soil 1980, 54, 77–94. [Google Scholar]
- Lehning, M.; Fierz, C. Assessment of snow transport in avalanche terrain. Cold Reg. Sci. Technol 2008, 51, 240–252. [Google Scholar]
- Schirmer, M.; Lehning, M.; Schweizer, J. Statistical forecasting of regional avalanche danger using simulated snow-cover data. J. Glaciol 2009, 55, 761–768. [Google Scholar]
- Grünewald, T.; Schirmer, M.; Mott, R.; Lehning, M. Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment. Cryosphere 2010, 4, 215–225. [Google Scholar]
- Wirz, V.; Schirmer, M.; Gruber, S.; Lehning, M. Spatio-temporal measurements and analysis of snow depth in a rock face. Cryosphere 2011, 5, 893–905. [Google Scholar] [Green Version]
- Blanchet, J.; Marty, C.; Lehning, M. Extreme value statistics of snowfall in the Swiss Alpine region. Water Resour. Res 2009, 45, W05424:1–W05424:12. [Google Scholar]
- Blanchet, J.; Lehning, M. Mapping snow depth return levels: Smooth spatial modeling versus station interpolation. Hydrol. Earth Syst. Sci 2010, 14, 2527–2544. [Google Scholar]
- Vachaud, G.; Passerat de Silans, A.; Balabanis, P.; Vauclin, M. Temporal stability of spatially measured soil water probability density function. Soil Sci. Soc. Am. J 1985, 49, 822–828. [Google Scholar]
- Blöschl, G. Scaling in hydrology. Hydrol. Process 2001, 15, 709–711. [Google Scholar]
- Albertson, J.; Montaldo, N. Temporal dynamics of soil moisture variability: 1. Theoretical basis. Water Resour. Res 2003, 39, 1274:1–1274:14. [Google Scholar]
- Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R. Spatial-temporal variability of soil moisture and its estimation across scales. Water Resour. Res 2010, 46, W02516:1–W02516:14. [Google Scholar]
- Schmugge, T.; Jackson, T.; McKim, H. Survey of methods for soil moisture determination. Water Resour. Res 1980, 16, 961–979. [Google Scholar]
- Robinson, D.; Campbell, C.; Hopmans, J.; Hornbuckle, B.; Jones, S.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J 2008, 7, 358–389. [Google Scholar]
- Cardellach, E.; Fabra, F.; Nogués-Correig, O.; Oliveras, S.; Ribó, S.; Rius, A. GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques: Application to the GOLD-RTR data sets. Radio Sci. 2011, 46, RS0C04:1–RS0C04:16. [Google Scholar]
- Rodriguez-Alvarez, N.; Bosch-Lluis, X.; Camps, A.; Aguasca, A.; Vall-llossera, M.; Valencia, E.; Ramos-Perez, I.; Park, H. Review of crop growth and soil moisture monitoring from a ground-based instrument implementing the interference pattern GNSS-R technique. Radio Sci. 2011, 46, RS0C03:1–RS0C03:11. [Google Scholar]
- Egido, A.; Caparrini, M.; Ruffini, G.; Paloscia, S.; Santi, E.; Guerriero, L.; Pierdicca, N.; Floury, N. Global navigation satellite systems reflectometry as a remote sensing tool for agriculture. Remote Sens 2012, 4, 2356–2372. [Google Scholar]
- Larson, K.M.; Nievinski, F.G. GPS snow sensing: Results from the Earth scope plate boundary observatory. GPS Sol 2013, 1, 41–52. [Google Scholar]
- Gerrits, A.; Pfister, L.; Savenije, H. Spatial and temporal variability of canopy and forest floor interception in a beech forest. Hydrol. Process 2010, 24, 3011–3025. [Google Scholar]
- Mott, R.; Schirmer, M.; Bavay, M.; Grünewald, T.; Lehning, M. Understanding snow-transport processes shaping the mountain snow-cover. Cryosphere 2010, 4, 545–559. [Google Scholar]
- Helbig, N.; Loewe, H.; Mayer, B.; Lehning, M. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain. J. Geophys. Res 2010, 115, D18113:1–D18113:12. [Google Scholar]
- Merz, B.; Plate, E.J. An analysis of the effects of spatial variability of soil and soil moisture on runoff. Water Resour. Res 1997, 33, 2909–2922. [Google Scholar]
- Rodriguez-Iturbe, I.; Vogel, G.K.; Rigon, R.; Entekhabi, D.; Castelli, F.; Rinaldo, A. On the spatial organization of soil moisture fields. Geophys. Res. Lett 1995, 22, 2757–2760. [Google Scholar]
- Schirmer, M.; Lehning, M. Persistence in intra-annual snow depth distribution part II: Fractal analysis of snow depth development. Water Resour. Res 2011, 47, W09517:1–W09517:14. [Google Scholar]
- Clark, M.P.; Hendrikx, J.; Slater, A.G.; Kavetski, D.; Anderson, B.; Cullen, N.J.; Kerr, T.; Hreinsson, E.O.; Woods, R.A. Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review. Water Resour. Res 2011, 47, W07539:1–W07539:23. [Google Scholar]
- Mott, R.; Lehning, M. Meteorological modeling of very high resolution wind fields and snow deposition for mountains. J. Hydrometeorol 2010, 11, 934–949. [Google Scholar]
- Kite, G.W.; Kouwen, N. Watershed modeling using land classifications. Water Resour. Res 1992, 28, 3193–3200. [Google Scholar]
- Rinaldo, A.; Botter, G.; Bertuzzo, E.; Uccelli, A.; Settin, T.; Marani, M. Transport at basin scales: 1. Theoretical framework. Hydrol. Earth Syst. Sci 2006, 10, 19–29. [Google Scholar]
- Schweizer, J.; Kronholm, K.; Jamieson, J.B.; Birkeland, K.W. Review of spatial variability of snowpack properties and its importance for avalanche formation. Cold Reg. Sci. Technol 2008, 51, 253–272. [Google Scholar]
- Egli, L.; Jonas, T.; Meister, R. Comparison of different automatic methods for estimating snow water equivalent. Cold Reg. Sci. Technol 2009, 57, 107–115. [Google Scholar]
- Mori, Y.; Hopmans, J.; Mortensen, A.; Kluitenberg, G. Multi-functional heat pulse probe for the simultaneous measurement of soil water content, solute concentration, and heat transport parameters. Vadose Zone J 2003, 2, 561–571. [Google Scholar]
- Steele Dunne, S.C.; Rutten, M.M.; Krzeminska, D.M.; Hausner, M.; Tyler, S.W.; Selker, J.; Bogaard, T.A.; van de Giesen, N.C. Feasibility of soil moisture estimation using passive distributed temperature sensing. Water Resour. Res 2010, 46, W03534:1–W03534:12. [Google Scholar]
- Rutten, M.M.; Steele-Dunne, S.C.; Judge, J.; van de Giesen, N.C. Understanding heat transfer in the shallow subsurface using temperature observations. Vadose Zone J 2010, 9, 1034–1045. [Google Scholar]
- Ciocca, F.; Lunati, I.; van de Giesen, N.C.; Parlange, M.B. Heated optical fiber for distributed soil-moisture measurements: A lysimeter experiment. Vadose Zone J 2012, 11, 1–10. [Google Scholar]
- Alliance Technologies. Available online: http://alliance-technologies.eu/JENOPTIK/Jenoptik/SHM30_Manual_Rev1_1.pdf (accessed on 10 July 2013).
- Prokop, A.; Schirmer, M.; Rub, M.; Lehning, M.; Stocker, M. A comparison of measurement methods: Terrestrial laser scanning, tachymetry and snow probing for the determination of the spatial snow depth distribution on slopes. Ann. Glaciol 2008, 49, 210–216. [Google Scholar]
- Hyyppä, J. State of the art in laser scanning. Photogramm. Week 2011, 1, 203–216. [Google Scholar]
- Schirmer, M.; Wirz, V.; Clifton, A.; Lehning, M. Persistence in intra-annual snow depth distribution part I: Measurements and topographic control. Water Resour. Res 2011, 47, W09516:1–W09516:16. [Google Scholar]
- Lehning, M.; Grünewald, T.; Schirmer, M. Mountain snow distribution governed by an altitudinal gradient and terrain roughness. Geophys. Res. Lett 2011, 38, L19504:1–L19504:5. [Google Scholar]
- Sturm, M.; Taras, B.; Liston, G.E.; Derkson, C.; Jonas, T.; Lea, J. Estimating snow water equivalent using snow depth data and climate classes. J. Hydrometeorol 2010, 11, 1380–1394. [Google Scholar]
- Sundtröm, N.; Kruglyak, A.; Friborg, J. Modeling and simulation of GPR wave propagation through wet snowpacks: Testing the sensitivity of a method for snow water equivalent estimation. Cold Reg. Sci. Technol. 2012, 74–75, 11–20. [Google Scholar]
- Vallet, J.; Skaloud, J.; Koelbl, O.; Merminod, B. Development of a helicopter-based integrated system for avalanche mapping and hazard management. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2000, 33, 565–572. [Google Scholar]
- Etchevers, P.; Martin, E.; Brown, R.; Fierz, C.; Lejeune, Y.; Bazile, E.; Boone, A.; Dai, Y.-J.; Essery, R.; Fernandez, A.; et al. SnowMIP, an Intercomparison of Snow Models: First Results. Proceedings of the International Snow Science Workshop, Pendicton, BC, Canada, 29 September–4 October 2002; 1, pp. 353–360.
- Etchevers, P.; Martin, E.; Brown, R.; Fierz, C.; Lejeune, Y.; Bazile, E.; Boone, A.; Dai, Y.-J.; Essery, R.; Fernandez, A.; et al. Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project). Ann. Glaciol 2004, 38, 150–158. [Google Scholar]
- Lehning, M.; Völksch, I.; Gustafsson, D.; Nguyen, T.A.; Stähli, M.; Zappa, M. ALPINE3D: A detailed model of mountain surface processes and its application to snow hydrology. Hydrol. Process 2006, 20, 2111–2128. [Google Scholar]
- Bavay, M.; Lehning, M.; Jonas, T.; Löwe, H. Simulations of future snow cover and discharge in alpine headwater catchments. Hydrol. Process 2009, 22, 95–108. [Google Scholar]
- Lehning, M.; Bartelt, P.; Brown, R.L.; Russi, T.; Stöckli, U.; Zimmerli, M. Snowpack model calculations for avalanche warning based upon a new network of weather and snow stations. Cold Reg. Sci. Technol 1999, 30, 145–157. [Google Scholar]
- Bell, J. Neutron Probe Practice; Report 19; Institute of Hydrology: Wallingford, UK, 1987; pp. 1–51. [Google Scholar]
- Zreda, M.; Desilets, D.; Ferré, T.; Scott, R. Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett 2008, 35, L21402:1–L21402:5. [Google Scholar]
- Desilets, D.; Zreda, M.; Ferré, T. Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res 2010, 46, W11505:1–W11505:7. [Google Scholar]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res 1980, 16, 574–582. [Google Scholar]
- Kim, D.; Choi, S.; Ryszard, O.; Feyen, J.; Kim, H. Determination of moisture content in a deformable soil using time-domain reflectometry (TDR). Eur. J. Soil Sci 2000, 51, 119–127. [Google Scholar]
- Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J 2003, 2, 444–475. [Google Scholar]
- Noborio, K. Measurement of soil water content and electrical conductivity by time domain reflectometry: A review. Comput. Electron. Agric 2001, 31, 213–237. [Google Scholar]
- Heimovaara, T.J. Frequency domain analysis of time domain reflectometry waveforms: 1. Measurement of the complex dielectric permittivity of soils. Water Resour. Res 1994, 30, 189–199. [Google Scholar]
- Minet, J.; Lambot, S.; Delaide, G.; Huisman, J.A.; Vereecken, H.; Vanclooster, M. A generalized frequency domain reflectometry modeling technique for soil electrical properties determination. Vadose Zone J 2010, 9, 1063–1072. [Google Scholar]
- Gaskin, G.J.; Miller, J.D. Measurement of soil water content using a simplified impedance measuring technique. J. Agr. Eng. Res 1996, 63, 153–159. [Google Scholar]
- Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ 1999, 70, 191–207. [Google Scholar]
- Bastiaanssen, W.; Menenti, M.; Feddes, R.; Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1999, 212–213, 198–212. [Google Scholar]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.-J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar]
- Camps, A.; Font, J.; Corbella, I.; Vall-Llossera, M.; Portabella, M.; Ballabrera-Poy, J.; González, V.; Piles, M.; Aguasca, A.; Acevo, R.; et al. Review of the CALIMAS team contributions to European space agency’s soil moisture and ocean salinity mission calibration and validation. Remote Sens 2012, 4, 1272–1309. [Google Scholar]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar]
- Winsemius, H.; Savenije, H.; van de Giesen, N.; van den Hurk, B.; Zapreeva, E.; Klees, R. Assessment of gravity recovery and climate experiment (grace) temporal signature over the upper zambezi. Water Resour. Res 2006, 42, W12201:1–W12201:8. [Google Scholar]
- Frei, A.; Tedesco, M.; Lee, S.; Foster, J.; Hall, D.K.; Kelly, R.; Robinson, D.A. A review of global satellite-derived snow products. Adv. Space Res 2012, 50, 1007–1029. [Google Scholar]
- Nolin, A. Recent advances in remote sensing of seasonal snow. J. Glaciol 2010, 56, 1141–1150. [Google Scholar]
- König, M.; Winther, J.G.; Isaksson, E. Measuring snow and glacier ice properties from satellite. Rev. Geophys 2001, 39, 1–28. [Google Scholar]
- Foppa, N.; Stoffel, A.; Meister, R. Synergy of in situ and space borne observation for snow depth mapping in the Swiss Alps. Int. J. Appl. Earth Obs. Geoinf 2007, 9, 294–310. [Google Scholar]
- Molotch, N.P.; Margulis, S.A. Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: a multi-resolution, multi-sensor comparison. Adv. Water Resour 2008, 31, 1503–1514. [Google Scholar]
- Durand, M.; Molotch, N.P.; Margulis, S.A. Merging complementary remote sensing datasets in the context of snow water equivalent reconstruction. Remote Sens. Environ 2008, 112, 1212–1225. [Google Scholar]
- Thirel, G.; Salamon, P.; Burek, P.; Kalas, M. Assimilation of MODIS snow cover area data in a distributed hydrological model. Hydrol. Earth Syst. Sci 2011, 8, 1329–1364. [Google Scholar]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ 2002, 83, 181–194. [Google Scholar]
- Guneriussen, T.; Hogda, K.A.; Johnson, H.; Lauknes, I. InSAR for estimation of changes in snow water equivalent of dry snow. IEEE Trans. Geosci. Remote Sens 2001, 39, 2101–2108. [Google Scholar]
- Song, Y.S.; Sohn, H.G.; Park, C.H. Efficient water area classification using Radarsat-1 SAR imagery in a high relief mountainous environment. Photogramm. Eng. Remote Sensing 2007, 73, 285–296. [Google Scholar]
- Chang, A.T.C.; Foster, J.L.; Hall, D.K. Nimbus-7 SMMR derived global snow cover parameters. Ann. Glaciol 1987, 9, 39–44. [Google Scholar]
- Tedesco, M.; Narvekar, P.S. Assessment of the NASA AMSR-E SWE product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2010, 3, 141–159. [Google Scholar]
- Clifford, D. Global estimates of snow water equivalent from passive microwave instruments: History, challenges and future developments. Int. J. Remote Sens 2010, 31, 3707–3726. [Google Scholar]
- Kelly, R.E.J.; Chang, A.T.C.; Tsang, L.; Foster, J.L. Development of a prototype AMSR-E global snow area and depth algorithm. IEEE Trans. Geosci. Remote Sens 2003, 41, 230–242. [Google Scholar]
- Kelly, R.E.J. The AMSR-E snow depth algorithm: Description and initial results. J. Remote Sens. Soc. Jpn 2009, 29, 307–317. [Google Scholar]
- Walker, A.E.; Goodison, B.E. Discrimination of a wet snowcover using passive microwave satellite data. Ann. Glaciol 1993, 17, 307–311. [Google Scholar]
- Foster, J.L.; Sun, C.; Walker, J.P.; Kelly, R.; Chang, A.; Dong, J.; Powell, H. Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens. Environ 2005, 94, 187–203. [Google Scholar]
- Matzler, C. Passive microwave signatures of landscapes in winter. Meteorol. Atmos. Phys 1994, 54, 241–260. [Google Scholar]
- Hancock, S.; Baxter, R.; Evans, J.; Huntley, B. Evaluating global snow water equivalent products for testing land surface models. Remote Sens. Environ 2013, 128, 107–117. [Google Scholar] [Green Version]
- Grasty, R. Direct snow-water equivalent measurement by air-borne gamma-ray spectrometry. J. Hydrol 1982, 55, 213–235. [Google Scholar]
- Martin, J.-P.; Houdayer, A.; Lebel, C.; Choquette, Y.; Lavigne, P.; Ducharme, P. An Unattended Gamma Monitor for the Determination of Snow Water Equivalent (SWE) Using the Natural Ground Gamma radiation. Proceedings of IEEE Nuclear Science Symposium (NSS), Dresden, Germany, 19–25 October 2008; pp. 983–988.
- Reginato, R.J.; van Bavel, C.H.M. Soil water measurement with gamma attenuation. Soil Sci. Soc. Am. J 1964, 28, 721–724. [Google Scholar]
- Gardner, W.H.; Campbell, G.S.; Calissendorff, C. Systematic and random errors in dual gamma energy soil bulk density and water content measurements. Soil Sci. Soc. Am. J 1972, 36, 393–398. [Google Scholar]
- Davidson, J.M.; Biggar, J.W.; Nielsen, D.R. Gamma-radiation attenuation for measuring bulk density and transient water flow in porous materials. J. Geophys. Res 1963, 68, 4777–4783. [Google Scholar]
- Martin-Neira, M. A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA J 1993, 17, 331–355. [Google Scholar]
- Troller, M.; Geiger, A.; Kahle, H.-G. Swiss Geodetic Commission, Determination of the Spatial Distribution of Water Vapor above Switzerland Using GPS Tomography. Proceedings of XXIV International Union of Geodesy and Geophysics (IUGG) General Assembly, Perugia, Italy, 2–13 July 2007; pp. 137–138.
- Katzberg, S.J.; Torres, O.; Grant, M.S.; Masters, D. Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: Results from SMEX02. Remote Sens. Environ 2006, 100, 17–28. [Google Scholar]
- Larson, K.M.; Braun, J.J.; Small, E.E.; Zavorotny, V.U.; Gutmann, E.; Bilich, A.L. GPS multipath and its relation to near-surface soil moisture content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2010, 3, 91–99. [Google Scholar]
- Gleason, S. Remote Sensing of Ocean, Ice and Land Surfaces Using Bistatically Scattered GNSS Signals from Low Earth Orbit. 2006. [Google Scholar]
- Gleason, S. Towards sea ice remote sensing with space detected GPS signals: Demonstration of technical feasibility and initial consistency check using low resolution sea ice information. Remote Sens 2010, 2, 2017–2039. [Google Scholar]
- Gleason, S.; Gebre-Egziabher, D. GNSS Applications and Methods; Artech House: Norwood, MA, USA, 2009. [Google Scholar]
- Pierdicca, N.; Guerriero, L.; Brogioni, M.; Egido, A. On the Coherent and Non Coherent Components of Bare and Vegetated Terrain Bistatic Scattering: Modelling the GNSS-R Signal over Land. Proceedings of IEEE International Geosciences and Remote Sensing Symposium (IGARSS’12), Munich, Germany, 22–27 July 2012; pp. 3407–3410.
- Masters, D.; Axelrad, P.; Katzberg, S. Initial results of land-reflected GPS bistatic radar measurements in SMEX02. Remote Sens. Environ 2004, 92, 507–520. [Google Scholar]
- Grant, M.S.; Acton, S.T.; Katzberg, S.J. Terrain moisture classification using GPS surface-reflected signals. IEEE Geosci. Remote Sens. Lett 2007, 4, 41–45. [Google Scholar]
- Valencia, E.; Camps, A.; Vall-llossera, M.; Monerris, A.; Bosch-Lluis, X.; Rodriguez-Alvarez, N.; Ramos-Perez, I.; Marchan-Hernandez, J.F.; Martinez-Fernandez, J.; Sanchez-Martin, N.; et al. GNSS-R Delay-Doppler Maps over Land: Preliminary Results of the GRAJO Field Experiment. Proceedings of IEEE International Geosciences and Remote Sensing Symposium (IGARSS’10), Honolulu, HI, USA, 25–30 July 2010; pp. 3805–3808.
- Camps, A.; Forte, G.; Ramos, I.; Alonso, A.; Martinez, P.; Crespo, L.; Alcayde, A. Recent Advances in Land Monitoring Using GNSS-R Techniques. Proceedings of Workshop Reflectometry Using GNSS and Other Signals of Opportunity (GNSS+R), West Lafayette, IN, USA, 10–11 October 2012; pp. 1–4.
- Li, Q.; Reboul, S.; Boutoille, S.; Choquel, J.-B.; Benjelloun, M.; Gardel, A. Beach soil moisture measurement with a land reflected GPS bistatic radar technique. Proceedings of New Trends for Environmental Monitoring Using Passive Systems, French Riviera, 14–17 October 2008; pp. 1–6.
- Bourkane, A.; Reboul, S.; Azmani, M.; Choquel, J.-B.; Amami, B.; Benjelloun, M. C/N0 Inversion for Soil Moisture Estimation Using Land-Reflected Bi-Static Radar Measurements. Proceedings of Workshop on Reflectometry Using GNSS and Other Signals of Opportunity (GNSS+R), West Lafayette, IN, USA, 10–11 October 2012; pp. 1–5.
- Rodriguez-Alvarez, N.; Bosch-Lluis, X.; Camps, A.; Vall-Llossera, M.; Valencia, E.; Marchan, J.F.; Ramos-Perez, I. Soil moisture retrieval using GNSS-R techniques: Experimental results over a bare soil field. IEEE Trans. Geosci. Remote Sens 2009, 47, 3616–3624. [Google Scholar]
- Rodriguez-Alvarez, N.; Camps, A.; Vall-llossera, M.; Bosch-Lluis, X.; Monerris, A.; Ramos-Perez, I.; Valencia, E.; Marchan-Hernandez, J.F.; Martinez-Fernandez, J.; Baroncini-Turricchia, G.; et al. Land geophysical parameters retrieval using the interference pattern GNSS-R Technique. IEEE Trans. Geosci. Remote Sens 2011, 49, 71–84. [Google Scholar]
- Balanis, C.A. Advanced Engineering Electromagnetics; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Larson, K.M.; Small, E.E.; Gutmann, E.; Bilich, A.; Axelrad, P.; Braun, J. Using GPS multipath to measure soil moisture fluctuations: Initial results. GPS Sol 2008, 12, 173–177. [Google Scholar]
- Larson, K.M.; Small, E.E.; Gutmann, E.; Bilich, A.; Axelrad, P.; Braun, J.; Zavorotny, V.U. Use of GPS receivers as a soil moisture network for water cycle studies. Geophys. Res. Lett 2008, 32, L24405:1–L24405:5. [Google Scholar]
- Rodriguez-Alvarez, N.; Aguasca, A.; Valencia, E.; Bosch-Lluis, X.; Camps, A.; Ramos-Perez, I.; Park, H.; Vall-llossera, M. Snow thickness monitoring using GNSS measurements. IEEE Geosci. Remote Sens. Lett 2012, 9, 1109–1113. [Google Scholar]
- Larson, K.M.; Gutmann, E.; Zavorotny, V.U.; Braun, J.; Williams, M.W. Can we measure snow depth with GPS receivers? Geophys. Res. Lett 2009, 36, L17502:1–L17502:5. [Google Scholar]
- Gutmann, E.D.; Larson, K.M.; Williams, M.W.; Nievinski, F.G.; Zavorotny, V. Snow measurement by GPS interferometric reflectometry: An evaluation at Niwot Ridge, Colorado. Hydrol. Process 2011, 26, 2951–2961. [Google Scholar]
- Ozeki, M.; Heki, K. GPS snow depth meter with geometry-free linear combinations of carrier phases. J. Geod 2012, 86, 209–219. [Google Scholar]
- Jacobson, M.D. Dielectric-covered ground reflectors in GPS multipath reception—Theory and measurement. IEEE Geosci. Remote Sens. Lett 2008, 5, 396–399. [Google Scholar]
- Jacobson, M.D. Inferring snow water equivalent for a snow-covered ground reflector using GPS multipath signals. Remote Sens 2010, 2, 2426–2441. [Google Scholar]
- Fabra, F.; Cardellach, E.; Nogues-Correig, O.; Oliveras, S.; Ribo, S.; Rius, A.; Macelloni, G.; Pettinato, S.; D’Addio, S. An Empirical Approach towards Characterization of Dry Snow Layers Using GNSS-R. Proceedings of IEEE International Geosciences and Remote Sensing Symposium (IGARSS’11), Vancouver, BC, Canada, 24–29 July 2011; pp. 4379–4382.
- Yang, D.; Zhou, Y.; Wang, Y. Remote sensing with reflected signals. Inside GNSS 2009, 6, 40–45. [Google Scholar]
- Borio, D.; O’Driscoll, C.; Lachapelle, G. Coherent, noncoherent, and differentially coherent combining techniques for acquisition of new composite GNSS signals. IEEE Trans. Aerosp. Electron. Syst 2009, 45, 1227–1240. [Google Scholar]
- Church, C.M.; O’Brien, A.J.; Gupta, I.J. A novel method to measure array manifolds of GNSS adaptive antennas. J. Inst. Navig 2011, 59, 345–356. [Google Scholar]
- Keshvadi, M.H.; Broumandan, A.; Lachapelle, G. Analysis of GNSS Beamforming and Angle of Arrival Estimation in Multipath Environments. Proceedings of the Institute of Navigation’s 2011 International Technical Meeting (ION ITM), San Diego, CA, USA, 24–26 January 2011; pp. 427–435.
- Lin, T.; Broumandan, A.; Nielsen, J.; O’Driscoll, C.; Lachapelle, G. Robust Beamforming for GNSS Synthetic Antenna Arrays. Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009), Savannah, GA, USA, 22–25 September 2009; pp. 387–401.
- Simoni, S.; Padoan, S.; Nadeau, D.; Diebold, M.; Porporato, A.; Barrenetxea, G.; Ingelrest, F.; Vetterli, M.; Parlange, M. Hydrologic response of an alpine watershed: Application of a meteorological wireless sensor network to understand streamflow generation. Water Resour. Res 2001, 47, W10524:1–W10524:16. [Google Scholar]
- Glennie, C. Rigorous 3D error analysis of kinematic scanning LIDAR systems. J. Appl. Geod 2007, 1, 147–157. [Google Scholar]
- Skaloud, J.; Schaer, P.; Stebler, Y.; Tomé, P. Real-time registration of airborne laser data with sub-decimeter accuracy. ISPRS J. Photogramm 2010, 65, 208–217. [Google Scholar]
- Skaloud, J.; Schaer, P. Optimizing computational performance for real-time mapping with airborne laser scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2010, 38, 1–5. [Google Scholar]
- Schaer, P.; Skaloud, J.; Landtwig, S.; Legat, K. Accuracy estimation for laser point cloud including scanning geometry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2007, 36, 1–8. [Google Scholar]
- Schaer, P.; Skaloud, J.; Tomé, P. Towards in-flight quality assessment of airborne laser scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2008, 37, 1–6. [Google Scholar]
- Skaloud, J.; Schaer, P. Automated assessment of digital terrain models derived from airborne laser scanning. Photogramm. Fernerkund. Geoinf 2012, 2, 105–114. [Google Scholar]
Soil Moisture (SM) Measurement Methods | Manual (M) Semi-Auto (S-A) Auto (A) | Output Parameters | Time Interval | Spatial Range Resolution | Accuracy | Remarks | Represented Depth | |
---|---|---|---|---|---|---|---|---|
In-situ stations | estimation from fluxes | A | top layer SM | as required | typ: 10 × 10 m | limited | Includes model; errors accumulate over time | depends |
inference from thermal properties | A | SM | 10 cm or along a line 1–5 km | moderate | Includes model | depends | ||
neutron probes | A | vertically integrated SM | m possible (10’s of km usual) | high | depends | |||
TDR | A | SM in a small volume | high | 1 cm–1 m (typ. 10 cm) | ||||
Satellite-based | ERS-scatterometer | A | top layer SM | 0.5 day | 50 × 50 km | large-scale missions | 5 cm | |
SMOS | A | top layer SM | 1–3 days | 35–50 km | 4% | 5 cm | ||
GRACE | A | mass changes in large areas | depends on spatiotempora l averaging | 1,000 × 1,000 km | ±cm water column | large |
Snow Measurement Methods | Manual (M) Semi-Auto (S-A) Auto (A) | Output Parameters | Time Interval | Spatial Range Resolution | Accuracy | Destructive (D)/Non-Destructive (N-D) | Operation in Snowstorms | Remarks | |
---|---|---|---|---|---|---|---|---|---|
Manual | M | HS, SWE, and more (i) | ∼hours (e.g., weekly) | 5–10 m | SWE: ±5% HS: ±1 cm | D | possible (dangerous) | Reliable and accurate. Laborious, point-based and destructive. | |
In-situ stations | sonic snow height | A | HS | as required | meter level possible (10’s of km usual) | ±2 cm | N-D (influence depending on installation) | yes (with processing) | |
laser snow height | HS | < ±1 cm | no | Very accurate. Not effective in snowstorms | |||||
snow scale/snow pillow | SWE | 10 m possible (10’s of km usual) | 5%–10% | yes | Must be installed before the winter. Costly for a fixed instrument | ||||
neutron probes | water content | m possible (10’s of km usual) | 1%–5% | yes | |||||
TDR | water content | SWE: ±5% | yes | ||||||
Laser-based | TLS | S-A | range, angle ≥ HS | possibly short | 0.05–2 km | ±2 cm + 100 ppm | N-D | limited | Accurate (incident angle dependent) |
ALS | A | range, angle, PVA (see remarks) | long | flight mission dependent | 5–10 cm homogenous | N-D | no | Airborne technique, carrier required. PVA: Position, Velocity & Attitude. | |
Radar-based | GPR | S-A | SWE | possibly short | mission dependent | dependent on snow conditions | N-D | limited | Airborne or terrestrial technique. Able to measure the internal vertical variation in snow density |
Photogrammetry | S-A | image - x,y/PVA | short/long | as TLS/ALS | 5 cm + 100 ppm | N-D | no | Airborne or terrestrial technique, baseline dependent. Provides better determination of boundaries than ALS. | |
Model-based | Alpine3D/Snow pack | N/A | HS, snow density and more (ii) | as required | as required | modeled | N-D | yes, if input data available | Parameters are mostly modeled per layer. Provides the best estimate of spatially distributed SWE currently available. |
Satellite-based* | Visible/IR | A | snow covered area | 3–18 d | 30–1,000 m | N/A | N-D | no/yes | Used operationally in CH. Possible to combine measurement types to provide SWE/HS estimates and improve resolution |
Passive Microwave | A | SWE, HS | <1 d or <6 d | >25 km | 25–35 mm when <150 mm SWE in flat terrain | N-D | yes | Possible to combine measurement types to improve accuracy | |
Active Microwave | A | SWE, HS | >24 d | 30 m (18 m for satellite Jers1) | Unknown | N-D | yes |
Technique | Measured Quantity | References | Spatial Range Resolution | Accuracy | Remarks |
---|---|---|---|---|---|
Extraction of modulation parameters of the SNR | snow depth | [19,109,110] | 10’s m | 9–13 cm | Use of geodetic RHCP antennas. Limitations for GNSS signals with high chipping rate. |
Extraction of modulation parameters of the SNR | soil moisture | [92,106,107] | 10’s m | N/A (good agreement) | Use of geodetic RHCP antennas. Limitations for GNSS signals with high chipping rate. |
Geometry-free linear combination (L4) | snow depth | [111] | 10’s m | cm scale | Technique useful for stations that do not record the SNR. |
Simple ray model | snow depth, snow density | [112,113] | 10’s m | cm scale | Lack of validation to better estimate the precision of the technique. |
Fast Fourier Transform of cross-correlation results (waveforms) | depth of snow layers | [114] | 10’s–100’s m | very low (∼10 m) | Results in agreement with real data, despite the low resolution. Measurement performed in Antarctic. |
Measure of reflected signals only | soil moisture | [91,97,98] | 10’s–100’s m | N/A | Good correlation between GPS reflectivity and soil moisture of the top 1 cm of the soil. |
Measure of direct and reflected signals separately | soil moisture | [100–102] | 10’s–100’s m | N/A | Promising method, but not yet exploited enough to have quantitative results. |
Measure of direct and reflected signals simultaneously (Interference Pattern Technique) | soil moisture | [14,103,104] | 10’s m | 5% over bare/wheat fields | Use of vertical and horizontal polarization antennas instead of RHCP. Limitations for GNSS signals with high chipping rate. |
Measure of direct and reflected signals simultaneously (Interference Pattern Technique) | Snow | [108] | 10’s m | N/A (very good agreement) | Use of vertical and horizontal polarization antennas instead of RHCP. Limitations for GNSS signals with high chipping rate. |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Botteron, C.; Dawes, N.; Leclère, J.; Skaloud, J.; Weijs, S.V.; Farine, P.-A. Soil Moisture & Snow Properties Determination with GNSS in Alpine Environments: Challenges, Status, and Perspectives. Remote Sens. 2013, 5, 3516-3543. https://doi.org/10.3390/rs5073516
Botteron C, Dawes N, Leclère J, Skaloud J, Weijs SV, Farine P-A. Soil Moisture & Snow Properties Determination with GNSS in Alpine Environments: Challenges, Status, and Perspectives. Remote Sensing. 2013; 5(7):3516-3543. https://doi.org/10.3390/rs5073516
Chicago/Turabian StyleBotteron, Cyril, Nicholas Dawes, Jérôme Leclère, Jan Skaloud, Steven V. Weijs, and Pierre-André Farine. 2013. "Soil Moisture & Snow Properties Determination with GNSS in Alpine Environments: Challenges, Status, and Perspectives" Remote Sensing 5, no. 7: 3516-3543. https://doi.org/10.3390/rs5073516
APA StyleBotteron, C., Dawes, N., Leclère, J., Skaloud, J., Weijs, S. V., & Farine, P. -A. (2013). Soil Moisture & Snow Properties Determination with GNSS in Alpine Environments: Challenges, Status, and Perspectives. Remote Sensing, 5(7), 3516-3543. https://doi.org/10.3390/rs5073516