Vegetation Greenness in Northeastern Brazil and Its Relation to ENSO Warm Events
Abstract
:1. Introduction
2. Methods
2.1. Study Area: Northeastern Brazil (NEB)
2.2. Data and Pre-Processing
2.3. Inter-Annual Trend Analysis of Annually Summed NDVI3g Data
2.4. Modelling Relations between NDVI3g Time Series and Meteorological Variables
3. Results and Discussion
3.1. Trends in Vegetation Greenness
3.2. Relationships between NDVI Trends and Precipitation
3.3. Impact of El Nino Southern Oscillation Warm Phases on NDVI Trends
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Barbosa, H.A.; Huete, A.R.; Baethgen, W.E. A 20-year study of NDVI variability over the Northeast Region of Brazil. J. Arid Environ 2006, 67, 288–307. [Google Scholar]
- Schucknecht, A.; Erasmi, S.; Niemeyer, I.; Matschullat, J. Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series. Eur. J. Remote Sens 2013, 46, 40–59. [Google Scholar]
- Nimer, E. Climatologia. do Brasil; Fundacao Instituto Brasileiro de Geografia e Estatistica: Rio de Janeiro, Brazil, 1989. [Google Scholar]
- Rao, V.B.; Hada, K.; Herdies, D.L. On the severe drought of 1993 in northeast Brazil. Int. J. Climatol 1995, 15, 697–704. [Google Scholar]
- United Nations Conference on Environment and Development (UNCED). Agenda 21: Programme of Action for Sustainable Development: Rio Declaration on Environment and Development; UNCED: New York, NY, USA, 1992. [Google Scholar]
- Petta, R.; Ohara, T.; Medeiros, C. Desertification Studies in the Brazilian Northeastern Areas with GIS Database. In Anais XII Simposio Brasileiro de Sensoriamento Remoto, Goiania; Instituto Nacional de Pesquisas Espaciais: São José dos Campos, Brazil, 2005; pp. 1053–1061. [Google Scholar]
- De Oliveira, G.; Araujo, M.B.; Rangel, T.F.; Alagador, D.; Felizola Diniz-Filho, J.A. Conserving the Brazilian semiarid (Caatinga) biome under climate change. Biodivers. Conserv 2012, 21, 2913–2926. [Google Scholar]
- Dong, W. The Atlas of Climate Change: Based on SEAP-CMIP5: Super-Ensemble Projection and Attribution (SEAP) of Climate Change; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Salazar, L.F.; Nobre, C.A.; Oyama, M.D. Climate change consequences on the biome distribution in tropical South America. Geophys. Res. Lett 2007, 34. 1029/2007GL029695. [Google Scholar]
- Anyamba, A.; Tucker, C. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid Environ 2005, 63, 596–614. [Google Scholar]
- De Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ 2011, 115, 692–702. [Google Scholar] [Green Version]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An earth observing satellite based analysis of trends and drivers. Remote Sens. Environ 2012, 121, 144–158. [Google Scholar]
- Hellden, U.; Tottrup, C. Regional desertification: A global synthesis. Glob. Planet. Change 2008, 64, 169–176. [Google Scholar]
- Dardel, C.; Kergoat, L.; Hiernaux, P.; Mougin, E.; Grippa, M.; Tucker, C. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sens. Environ 2014, 140, 350–364. [Google Scholar]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Global Environ. Change 2005, 15, 394–404. [Google Scholar]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indices. IEEE Trans. Geosci. Remote Sens 1995, 33, 481–486. [Google Scholar]
- Bastin, G.N.; Pickup, G.; Pearce, G. Utility of AVHRR data for land degradation assessment: A case study. Int. J. Remote Sens 1995, 16, 651–672. [Google Scholar]
- Mbow, C.; Fensholt, R.; Rasmussen, K.; Diop, D. Can vegetation productivity be derived from greenness in a semi-arid environment? Evidence from ground-based measurements. J. Arid Environ 2013, 97, 56–65. [Google Scholar]
- Hastenrath, S. Circulation and teleconnection mechanisms of Northeast Brazil droughts. Prog. Oceanogr 2006, 70, 407–415. [Google Scholar]
- Haylock, M.R.; Peterson, T.C.; Alves, L.M.; Ambrizzi, T.; Anunciacao, Y.M.; Baez, J.; Barros, V.R.; Berlato, M.A.; Bidegain, M.; Coronel, G.; et al. Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J. Climate 2006, 19, 1490–1512. [Google Scholar]
- Kane, R.P. Prediction of droughts in north-east Brazil: Role of ENSO and use of periodicities. Int. J. Climatol 1997, 17, 655–665. [Google Scholar]
- Erasmi, S.; Maurer, F.; Petta, R.A.; Gerold, G.; Barbosa, M.P. Inter-annual variability of the normalized difference vegetation index over Northeast Brazil and its relation to rainfall and El Nino Southern Oscillation. Geo. Oko 2009, 30, 185–206. [Google Scholar]
- Trenberth, K.E. The definition of El Nino. B. Am. Meteorol. Soc 1997, 78, 2771–2777. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Censo. Demografico 2010: Características. da Populacao e dos Domicilios: Resultados do Universo; IBGE: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- Lau, K.M.; Zhou, J.Y. Anomalies of the South American summer monsoon associated with the 1997–99 El Nino southern oscillation. Int. J. Climatol 2003, 23, 529–539. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the worlds: A new map of life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar]
- Tucker, C.; Pinzon, J.; Brown, M.; Slayback, D.; Pak, E.; Mahoney, R.; Vermote, E.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. of Remote Sens 2005, 26, 4485–4498. [Google Scholar]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.; Myneni, R. Global data sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sens 2013, 5, 927–948. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ 1979, 8, 127–150. [Google Scholar]
- Full Data Reanalysis Version 6.0 at 0.5: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data. Available online: ftp://ftp-anon.dwd.de/pub/data/gpcc/html/fulldata_v6_doi_download.html (accessed on 25 February 2014).
- Gomes, L.; Azevedo, P. Avaliação do processo de semidesertificação no Estado da Paraíba, Brasil: Trabalho de Conclusão do Curso de Meteorologia; Universidade Federal de Campina Grande: Campina Grande, Brazil, 2008. [Google Scholar]
- Climate Prediction Center. Monitoring and Data: Current Monthly Atmospheric and Sea Surface Temperatures Index Values; Climate Prediction Center: Maryland, MD, 2012. Available online: http://www.cpc.ncep.noaa.gov/data/indices/ (accessed on 25 February 2014).
- Trenberth, K.E.; Stepaniak, D.P. Indices of El Nino evolution. J. Climate 2001, 14, 1697–1701. [Google Scholar]
- Vrieling, A.; de Leeuw, J.; Said, M. Length of growing period over Africa: Variability and trends from 30 years of NDVI time series. Remote Sens 2013, 5, 982–1000. [Google Scholar]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.; Neigh, C.; Reichstein, M. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens 2013, 5, 2113–2144. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar]
- Yue, S.; Wang, C.Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res 2002, 38. [Google Scholar] [CrossRef]
- Wang, X.L.; Swail, V.R. Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J. Climate 2001, 14, 2204–2221. [Google Scholar]
- Bayazit, M.; Onoz, B. To prewhiten or not to prewhiten in trend analysis? Hydrolog. Sci. J 2007, 52, 611–624. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc 1968, 63, 1379–1389. [Google Scholar]
- Jiang, N.; Zhu, W.; Zheng, Z.; Chen, G.; Fan, D. A comparative analysis between GIMSS NDVIg and NDVI3g for monitoring vegetation activity change in the northern hemisphere during 1982–2008. Remote Sens 2013, 5, 4031–4044. [Google Scholar]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ 2010, 114, 106–115. [Google Scholar]
- Liu, G.; Liu, H.; Yin, Y. Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes. Environ. Res. Lett 2013, 8. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Schaepman, M.E.; de Bruin, S. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Glob. Chang. Biol 2012, 18, 642–655. [Google Scholar]
- Rodrigues, R.R.; Haarsma, R.J.; Campos, E.J.D.; Ambrizzi, T. The Impacts of Inter-El Nino variability on the tropical Atlantic and Northeast Brazil climate. J. Climate 2011, 24, 3402–3422. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Erasmi, S.; Schucknecht, A.; Barbosa, M.P.; Matschullat, J. Vegetation Greenness in Northeastern Brazil and Its Relation to ENSO Warm Events. Remote Sens. 2014, 6, 3041-3058. https://doi.org/10.3390/rs6043041
Erasmi S, Schucknecht A, Barbosa MP, Matschullat J. Vegetation Greenness in Northeastern Brazil and Its Relation to ENSO Warm Events. Remote Sensing. 2014; 6(4):3041-3058. https://doi.org/10.3390/rs6043041
Chicago/Turabian StyleErasmi, Stefan, Anne Schucknecht, Marx P. Barbosa, and Joerg Matschullat. 2014. "Vegetation Greenness in Northeastern Brazil and Its Relation to ENSO Warm Events" Remote Sensing 6, no. 4: 3041-3058. https://doi.org/10.3390/rs6043041
APA StyleErasmi, S., Schucknecht, A., Barbosa, M. P., & Matschullat, J. (2014). Vegetation Greenness in Northeastern Brazil and Its Relation to ENSO Warm Events. Remote Sensing, 6(4), 3041-3058. https://doi.org/10.3390/rs6043041