Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Datasets
2.2. Methods
3. Results and Discussion
3.1. NDVI Trends
3.1.1. Trends at Country Scale
3.1.2. NDVI Trends in Each Month
3.1.3. Spatial Pattern of NDVI Trends
3.2. Relationship between NDVI and Climatic Factors
3.2.1. Relationship with Climatic Factors at a Country Scale
3.2.2. Spatial Pattern of NDVI-Climate Relationships
3.2.3. Spatial Pattern of Time Lags
4. Conclusions and Implications
- (1)
- The overall annual NDVI in China showed a significant positive trend from 1982 to 2011 (≈0.0006 yr−1 or 0.14% yr−1, p = 0.002).
- (2)
- The monthly mean NDVI in June, July and August had a significant TP in1984, 1988 and 2007, respectively. The monthly mean NDVI increased rapidly in June and July prior to the TPs and decreased for June and mostly stalled in July after the TPs; while in August the annual mean NDVI stabilized prior to the TP and rapidly increased after the TP at a rate of 0.011 NDVI·yr−1 (1.71% yr−1).
- (3)
- Of the vegetated area in China, about 33% showed a significant positive trend in annual mean NDVI, being mostly located in central to southern China; about 21% showed a significant positive trend in seasonality (s.d. NDVI), being most located in northern China (>35°N); a small proportion (<9%) had a significant trend in minimum vegetation coverage, with about half positive (in Jiangxi, Hunan and Hubei provinces, mainly caused by tree plantations) and half negative (in southwestern China, mainly caused by drought in the 2000s).
- (4)
- At the vegetation region scales, changes in vegetation growth dynamics were significantly correlated with air temperature (p < 0.001); at the country scale, changes in NDVI was significantly and positively correlated with annual air temperature (r = 0.52, p < 0.01) and insignificantly correlated with annual precipitation (p > 0.1).
- (5)
- In about 24% of the vegetated area, annual mean NDVI was correlated significantly with air temperature (93% positive and remainder negative); and in 12% of the vegetated area, annual mean NDVI was correlated significantly with annual precipitation (65% positive and 35% negative).The spatiotemporal variations in vegetation growth dynamics were controlled primarily by temperature and secondly by precipitation. Vegetation growth was also affected by human activities, such as plantations, urbanization and agricultural practices in some regions.
- (6)
- Monthly NDVI was significantly correlated with the preceding month’s temperature and precipitation in western, central and northern China. The effects of a climate lag of more than two months in southern China may mainly be caused by the abundance of precipitation.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar]
- Peylin, P.; Bousquet, P.; Le Quéré, C.; Sitch, S.; Friedlingstein, P.; McKinley, G.; Gruber, N.; Rayner, P.; Ciais, P. Multiple constraints on regional CO2 flux variations over land and oceans. Glob. Biogeochem. Cy 2005, 19. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Williams, C.A.; Schaefer, K.; Arneth, A.; Bonal, D.; Buchmann, N.; Chen, J.; Law, B.E.; Lindroth, A.; Luyssaert, S. Assimilation exceeds respiration sensitivity to drought: A fluxnet synthesis. Glob. Chang. Biol 2010, 16, 657–670. [Google Scholar]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar]
- Anderson, R.G.; Canadell, J.G.; Randerson, J.T.; Jackson, R.B.; Hungate, B.A.; Baldocchi, D.D.; Ban-Weiss, G.A.; Bonan, G.B.; Caldeira, K.; Cao, L.; et al. Biophysical considerations in forestry for climate protection. Front. Ecol. Environ 2011, 9, 174–182. [Google Scholar]
- Jackson, R.B.; Randerson, J.T.; Canadell, J.G.; Anderson, R.G.; Avissar, R.; Baldocchi, D.D.; Bonan, G.B.; Caldeira, K.; Diffenbaugh, N.S.; Field, C.B. Protecting climate with forests. Environ. Res. Lett 2008, 3. [Google Scholar] [CrossRef]
- Goetz, S.J.; Bunn, A.G.; Fiske, G.J.; Houghton, R. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl. Acad. Sci. USA 2005, 102, 13521–13525. [Google Scholar]
- Myneni, R.B.; Keeling, C.; Tucker, C.; Asrar, G.; Nemani, R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar]
- Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophy. Res 2001, 106, 20069–20083. [Google Scholar]
- Hall-Beyer, M. Comparison of single-year and multiyear NDVI time series principal components in cold temperate biomes. IEEE Trans. Geosci. Remote Sens 2003, 41, 2568–2574. [Google Scholar]
- Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. Int. J. Remote Sens 2001, 22, 1377–1382. [Google Scholar]
- Park, H.S.; Sohn, B. Recent trends in changes of vegetation over east asia coupled with temperature and rainfall variations. J. Geophy. Res 2010, 115. [Google Scholar] [CrossRef]
- Piao, S.; Cui, M.; Chen, A.; Wang, X.; Ciais, P.; Liu, J.; Tang, Y. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang plateau. Agric. For. Meteorol 2011, 151, 1599–1608. [Google Scholar]
- Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Chang. Biol 2006, 12, 672–685. [Google Scholar]
- Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol 2011, 17, 3228–3239. [Google Scholar]
- Wang, X.; Piao, S.; Ciais, P.; Li, J.; Friedlingstein, P.; Koven, C.; Chen, A. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. USA 2011, 108, 1240–1245. [Google Scholar]
- Li, X.; Jia, X.; Dong, G. Influence of desertification on vegetation pattern variations in the cold semi-arid grasslands of Qinghai-Tibet plateau, north-west China. J. Arid Environ 2006, 64, 505–522. [Google Scholar]
- Xiao, X.; Wang, Y.; Jiang, S.; Ojima, D.S.; Bonham, C.D. Interannual variation in the climate and above-ground biomass of leymus chinense steppe and stipa grandis steppe in the Xilin river basin, inner Mongolia, China. J. Arid Environ 1995, 31, 283–299. [Google Scholar]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A. A review of vegetation indices. Remote Sens. Rev 1995, 13, 95–120. [Google Scholar]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ 1979, 8, 127–150. [Google Scholar]
- Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Peñuelas, J.; Valentini, R. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl 1995, 28–41. [Google Scholar]
- Goetz, S.; Prince, S.D. Modelling terrestrial carbon exchange and storage: Evidence and implications of functional convergence in light-use efficiency. Adv. Ecol. Res 1999, 28, 57–92. [Google Scholar]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens 1995, 33, 481–486. [Google Scholar]
- Eastman, J.R.; Sangermano, F.; Machado, E.A.; Rogan, J.; Anyamba, A. Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011. Remote Sens 2013, 5, 4799–4818. [Google Scholar]
- Jong, R.; Verbesselt, J.; Schaepman, M.E.; Bruin, S. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Glob.Chang. Biol 2012, 18, 642–655. [Google Scholar]
- Julien, Y.; Sobrino, J. Global land surface phenology trends from GIMMS database. Int. J. Remote Sens 2009, 30, 3495–3513. [Google Scholar]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar]
- Sobrino, J.; Julien, Y. Global trends in NDVI-derived parameters obtained from GIMMS data. Int. J. Remote Sens 2011, 32, 4267–4279. [Google Scholar]
- Tucker, C.J.; Slayback, D.A.; Pinzon, J.E.; Los, S.O.; Myneni, R.B.; Taylor, M.G. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int. J. Biometeorol 2001, 45, 184–190. [Google Scholar]
- Panday, P.K.; Ghimire, B. Time-series analysis of NDVI from AVHRR data over the Hindu Kush-Himalayan region for the period 1982–2006. Int. J. Remote Sens 2012, 33, 6710–6721. [Google Scholar]
- Kaspersen, P.S.; Fensholt, R.; Huber, S. A spatiotemporal analysis of climatic drivers for observed changes in Sahelian vegetation productivity (1982–2007). Int. J. Geophys 2011, 2011, 715321. [Google Scholar]
- Fensholt, R.; Rasmussen, K.; Kaspersen, P.; Huber, S.; Horion, S.; Swinnen, E. Assessing land degradation/recovery in the African Sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens 2013, 5, 664–686. [Google Scholar]
- Peng, S.; Chen, A.; Xu, L.; Cao, C.; Fang, J.; Myneni, R.B.; Pinzon, J.E.; Tucker, C.J.; Piao, S. Recent change of vegetation growth trend in China. Environ. Res. Lett 2011, 6, 044027. [Google Scholar]
- Piao, S.; Fang, J.; Liu, H.; Zhu, B. NDVI-indicated decline in desertification in china in the past two decades. Geophys. Res. Lett 2005, 32. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Guo, Q.; Henderson, M.; Ji, W.; Li, Y.; Tao, S. Interannual variations of monthly and seasonal Normalized Difference Vegetation Index (NDVI) in China from 1982 to 1999. J. Geophys. Res 2003, 108. [Google Scholar] [CrossRef]
- Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang 2006, 16, 340–348. [Google Scholar]
- Slayback, D.A.; Pinzon, J.E.; Los, S.O.; Tucker, C.J. Northern hemisphere photosynthetic trends 1982–99. Glob. Chang. Biol 2003, 9, 1–15. [Google Scholar]
- Xu, X.; Piao, S.; Wang, X.; Chen, A.; Ciais, P.; Myneni, R.B. Spatio-temporal patterns of the area experiencing negative vegetation growth anomalies in China over the last three decades. Environ. Res. Lett 2012, 7. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Z.; Liu, Y.; Wu, J.; Han, Y. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst exponent. Ecol. Indic 2012, 14, 28–39. [Google Scholar]
- Hou, G.; Zhang, H.; Wang, Y. Vegetation dynamics and its relationship with climatic factors in the Changbai mountain natural reserve. J. Mt. Sci 2011, 8, 865–875. [Google Scholar]
- Coops, N.; Wulder, M.; Duro, D.; Han, T.; Berry, S. The development of a Canadian dynamic habitat index using multi-temporal satellite estimates of canopy light absorbance. Ecol. Indic 2008, 8, 754–766. [Google Scholar]
- Coops, N.C.; Wulder, M.A.; Iwanicka, D. Demonstration of a satellite-based index to monitor habitat at continental-scales. Ecol. Indic 2009, 9, 948–958. [Google Scholar]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Chang 2005, 15, 394–404. [Google Scholar]
- Song, Y.; Ma, M. A statistical analysis of the relationship between climatic factors and the Normalized Difference Vegetation Index in China. Int. J. Remote Sens 2011, 32, 3947–3965. [Google Scholar]
- Nezlin, N.; Kostianoy, A.; Li, B.-L. Inter-annual variability and interaction of remote-sensed vegetation index and atmospheric precipitation in the Aral Sea region. J. Arid Environ 2005, 62, 677–700. [Google Scholar]
- Wang, J.; Rich, P.; Price, K. Temporal responses of NDVI to precipitation and temperature in the central great plains, USA. Int. J. Remote Sens 2003, 24, 2345–2364. [Google Scholar]
- Sterling, S.; Ducharne, A. Comprehensive data set of global land cover change for land surface model applications. Glob. Biogeochem. Cycle 2008, 22. [Google Scholar] [CrossRef]
- Chen, B.; Xu, G.; Coops, N.C.; Ciais, P.; Innes, J.L.; Wang, G.; Myneni, R.B.; Wang, T.; Krzyzanowski, J.; Li, Q. Changes in vegetation photosynthetic activity trends across the Asia-Pacific region over the last three decades. Remote Sens. Environ 2014, 144, 28–41. [Google Scholar]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens 1986, 7, 1417–1434. [Google Scholar]
- Liu, S.; Wang, T.; Guo, J.; Qu, J.; An, P. Vegetation change based on SPOT-VGT data from 1998 to 2007, northern China. Environ. Earth Sci 2010, 60, 1459–1466. [Google Scholar]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Pan, H.-L.; Behringer, D.; Hou, Y.-T.; Chuang, H.-y. The NECP climate forecast system version 2. J. Clim 2012, 27, 2185–2208. [Google Scholar]
- Saha, S.; Nadiga, S.; Thiaw, C.; Wang, J.; Wang, W.; Zhang, Q.; van den Dool, H.; Pan, H.-L.; Moorthi, S.; Behringer, D. The NCEP climate forecast system. J. Clim 2006, 19, 3483–3517. [Google Scholar]
- Zhang, X.; Sun, S.; Yong, S.; Zhou, Z.; Wang, R. Vegetation Map of the People’s Republic of China (1: 1000000); Geological Publishing House: Beijing, China, 2007. [Google Scholar]
- Toms, J.D.; Lesperance, M.L. Piecewise regression: A tool for identifying ecological thresholds. Ecology 2003, 84, 2034–2041. [Google Scholar]
- Francesco Ficetola, G.; Denoël, M. Ecological thresholds: An assessment of methods to identify abrupt changes in species-habitat relationships. Ecography 2009, 32, 1075–1084. [Google Scholar]
- Sun, J.; Wang, X.; Chen, A.; Ma, Y.; Cui, M.; Piao, S. NDVI indicated characteristics of vegetation cover change in China’s metropolises over the last three decades. Environ. Monit. Assess 2011, 179, 1–14. [Google Scholar]
- Swift, T.L.; Hannon, S.J. Critical thresholds associated with habitat loss: A review of the concepts, evidence, and applications. Biol. Rev 2010, 85, 35–53. [Google Scholar]
- Wang, S.; Wang, Z.; Piao, S.; Fang, J. Regional differences in the timing of recent air warming during the past four decades in China. Chin. Sci. Bull 2010, 55, 1968–1973. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model. Selection and Multi-Model Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Ren, J.; Liu, H.; Yin, Y.; He, S. Drivers of greening trend across vertically distributed biomes in temperate arid Asia. Geophy. Res. Lett 2007, 34, L07707. [Google Scholar]
- Games, P.A.; Howell, J.F. Pairwise multiple comparison procedures with unequal n’s and/or variances: A Monte Carlo study. J. Educ. Behav. Statist 1976, 1, 113–125. [Google Scholar]
- Liu, S.; Gong, P. Change of surface cover greenness in China between 2000 and 2010. Chin. Sci. Bull 2012, 57, 2835–2845. [Google Scholar]
- Mao, D.; Wang, Z.; Luo, L.; Ren, C. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in northeast China. Int. J. Appl. Earth Obs. Geoinf 2012, 18, 528–536. [Google Scholar]
- Yan, J.; Chen, B.; Fang, S.; Zhang, H.; Fu, D.; Xue, Y. The response of vegetation index to drought: Taking the extreme drought disaster between 2009 and 2010 in southwest China as an example. J. Remote Sens 2012, 16, 720–737. [Google Scholar]
- Hintze, J.L.; Nelson, R.D. Violin plots: A box plot-density trace synergism. Am. Statist 1998, 52, 181–184. [Google Scholar]
- Zhou, H.; Zhao, X.; Tang, Y.; Gu, S.; Zhou, L. Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassl. Sci 2005, 51, 191–203. [Google Scholar]
- Cui, X.; Graf, H.-F. Recent land cover changes on the Tibetan Plateau: A review. Clim. Chang 2009, 94, 47–61. [Google Scholar]
- Wang, J.; Price, K.; Rich, P. Spatial patterns of NDVI in response to precipitation and temperature in the central great plains. Int. J. Remote Sens 2001, 22, 3827–3844. [Google Scholar]
Month | Mean NDVI | Overall Trend (×10−5 NDVI·yr−1) | TP | Trend Before TP (×10−5 NDVI·yr−1) | Trend After TP (×10−5 NDVI·yr−1) | AIC |
---|---|---|---|---|---|---|
1 | 0.27 | −24.0 | 1999 | 65 | −172 | −0.95 |
2 | 0.26 | 14.4 | 1987 | 531 | −35 | 0.19 |
3 | 0.28 | 40.0 | 2001 | 119 | −162 | 0.25 |
4 | 0.34 | 166.9 * | 1998 | 246 | 61 | 1.87 |
5 | 0.50 | 134.7 * | 1990 | 400 | 71 * | −1.36 |
6 | 0.56 | 15.1 | 1984 | 2201 | −27 | −8.59 * |
7 | 0.63 | 53.3 * | 1988 | 399 | 6 | −4.08 * |
8 | 0.64 | 62.3 * | 2007 | −3 | 1088 | −13.1 * |
9 | 0.59 | 105.6 * | 2003 | 82 | 203 | 2.02 |
10 | 0.43 | 85.8 | 2000 | 28 | 204 | 2.21 |
11 | 0.33 | 61.8 | 2009 | 93 | −1566 | −1.24 |
12 | 0.29 | −16.4 | 2008 | 0.8 | −466 | 2.01 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xu, G.; Zhang, H.; Chen, B.; Zhang, H.; Innes, J.L.; Wang, G.; Yan, J.; Zheng, Y.; Zhu, Z.; Myneni, R.B. Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011. Remote Sens. 2014, 6, 3263-3283. https://doi.org/10.3390/rs6043263
Xu G, Zhang H, Chen B, Zhang H, Innes JL, Wang G, Yan J, Zheng Y, Zhu Z, Myneni RB. Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011. Remote Sensing. 2014; 6(4):3263-3283. https://doi.org/10.3390/rs6043263
Chicago/Turabian StyleXu, Guang, Huifang Zhang, Baozhang Chen, Hairong Zhang, John L. Innes, Guangyu Wang, Jianwu Yan, Yonghong Zheng, Zaichun Zhu, and Ranga B. Myneni. 2014. "Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011" Remote Sensing 6, no. 4: 3263-3283. https://doi.org/10.3390/rs6043263
APA StyleXu, G., Zhang, H., Chen, B., Zhang, H., Innes, J. L., Wang, G., Yan, J., Zheng, Y., Zhu, Z., & Myneni, R. B. (2014). Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011. Remote Sensing, 6(4), 3263-3283. https://doi.org/10.3390/rs6043263