Improving Estimates of Grassland Fractional Vegetation Cover Based on a Pixel Dichotomy Model: A Case Study in Inner Mongolia, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Field Data
2.3. Remote Sensing Data
2.4. Pixel Dichotomy Model
3. Results
3.1. Evaluating the Pixel Dichotomy Model at the Quadrat Scale
3.2. Evaluating Pixel Dichotomy Model at the Pixel Scale
4. Discussions
4.1. Sensitivity of NDVI and RVI to FVC
4.2. Model Comparisons
4.3. Grassland FVC Changes in Inner Mongolia
5. Conclusions
Acknowledgments
Conflicts of Interest
- Author ContributionsFei Li was responsible for the data analysis and wrote the majority of the paper. Bingfang Wu supervised the research and contributed to manuscript organization. Wei Chen collected the field data and preprocessed remote sensing data. Yuan Zeng and Qianjun Zhao provided assistances in writing, editing and data analysis.
References
- Jiapaer, G.; Chen, X.; Bao, A. A comparison of methods for estimating fractional vegetation cover in arid regions. Agric. For. Meteorol 2011, 151, 1698–1710. [Google Scholar]
- Adams, J.B.; Sabol, D.E.; Kapos, V.; Almeida, R.; Roberts, D.A.; Smith, M.O.; Gillespie, A.R. Classification of multispectral images based on fractions of endmembers-application to land-cover change in the brazilian amazon. Remote Sens. Environ 1995, 52, 137–154. [Google Scholar]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling: A new analysis of rock and soil types at the viking lander 1 site. J. Geophys. Res 1986, 91, 8098–8112. [Google Scholar]
- Smith, M.O.; Ustin, S.L.; Adams, J.B.; Gillespie, A.R. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens. Environ 1990, 31, 1–26. [Google Scholar]
- Atkinson, P.; Cutler, M.; Lewis, H. Mapping sub-pixel proportional land cover with avhrr imagery. Int. J. Remote Sens 1997, 18, 917–935. [Google Scholar]
- Pu, R.; Xu, B.; Gong, P. Oakwood crown closure estimation by unmixing landsat tm data. Int. J. Remote Sens 2003, 24, 4422–4445. [Google Scholar]
- Atzberger, C.; Rembold, F. Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and neural nets. Remote Sens 2013, 5, 1335–1354. [Google Scholar]
- Foody, G. Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data. Int. J. Remote Sens 1996, 17, 1317–1340. [Google Scholar]
- Foody, G.M.; Campbell, N.; Trodd, N.; Wood, T. Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogramm. Eng. Remote Sens 1992, 58, 1335–1341. [Google Scholar]
- DeFries, R.; Hansen, M.; Steininger, M.; Dubayah, R.; Sohlberg, R.; Townshend, J. Subpixel forest cover in central africa from multisensor, multitemporal data. Remote Sens. Environ 1997, 60, 228–246. [Google Scholar]
- Yang, L.; Huang, C.; Wylie, B.K.; Coan, M.J. An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery. Can. J. Remote Sens 2003, 29, 230–240. [Google Scholar]
- Tottrup, C.; Rasmussen, M.; Eklundh, L.; Jönsson, P. Mapping fractional forest cover across the highlands of mainland southeast Asia using MODIS data and regression tree modelling. Int. J. Remote Sens 2007, 28, 23–46. [Google Scholar]
- Elmore, A.J.; Mustard, J.F.; Manning, S.J.; Lobell, D.B. Quantifying vegetation change in semiarid environments: Precision and accuracy of spectral mixture analysis and the Normalized Difference Vegetation Index. Remote Sens. Environ 2000, 73, 87–102. [Google Scholar]
- Rashed, T.; Weeks, J.R.; Roberts, D.; Rogan, J.; Powell, R. Measuring the physical composition of urban morphology using multiple endmember spectral mixture models. Photogramm. Eng. Remote Sens 2003, 69, 1011–1020. [Google Scholar]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ 1998, 65, 267–279. [Google Scholar]
- Small, C. Estimation of urban vegetation abundance by spectral mixture analysis. Int. J. Remote Sens 2001, 22, 1305–1334. [Google Scholar]
- Small, C. High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens. Environ 2003, 88, 170–186. [Google Scholar]
- Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ 2003, 84, 493–505. [Google Scholar]
- Montandon, L.; Small, E. The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sens. Environ 2008, 112, 1835–1845. [Google Scholar]
- Zhou, X.; Guan, H.; Xie, H.; Wilson, J. Analysis and optimization of NDVI definitions and areal fraction models in remote sensing of vegetation. Int. J. Remote Sens 2009, 30, 721–751. [Google Scholar]
- Asner, G.P.; Heidebrecht, K.B. Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: Comparing multispectral and hyperspectral observations. Int. J. Remote Sens 2002, 23, 3939–3958. [Google Scholar]
- Borel, C.C.; Gerstl, S.A. Nonlinear spectral mixing models for vegetative and soil surfaces. Remote Sens. Environ 1994, 47, 403–416. [Google Scholar]
- Huete, A.; Jackson, R.; Post, D. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ 1985, 17, 37–53. [Google Scholar]
- Huete, A.R. Separation of soil-plant spectral mixtures by factor analysis. Remote Sens. Environ 1986, 19, 237–251. [Google Scholar]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens 1998, 19, 1533–1543. [Google Scholar]
- Qi, J.; Marsett, R.; Moran, M.; Goodrich, D.; Heilman, P.; Kerr, Y.; Dedieu, G.; Chehbouni, A.; Zhang, X. Spatial and temporal dynamics of vegetation in the San Pedro River basin area. Agric. For. Meteorol 2000, 105, 55–68. [Google Scholar]
- Wittich, K.; Hansing, O. Area-averaged vegetative cover fraction estimated from satellite data. Int. J. Biometeorol 1995, 38, 209–215. [Google Scholar]
- Zeng, X.; Dickinson, R.E.; Walker, A.; Shaikh, M.; DeFries, R.S.; Qi, J. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteorol 2000, 39, 826–839. [Google Scholar]
- Theseira, M.; Thomas, G.; Sannier, C. An evaluation of spectral mixture modelling applied to a semi-arid environment. Int. J. Remote Sens 2002, 23, 687–700. [Google Scholar]
- Xiao, J.; Moody, A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sens. Environ 2005, 98, 237–250. [Google Scholar]
- Peterson, S.; Stow, D. Using multiple image endmember spectral mixture analysis to study chaparral regrowth in southern California. Int. J. Remote Sens 2003, 24, 4481–4504. [Google Scholar]
- Shoshany, M.; Svoray, T. Multidate adaptive unmixing and its application to analysis of ecosystem transitions along a climatic gradient. Remote Sens. Environ 2002, 82, 5–20. [Google Scholar]
- Leprieur, C.; Kerr, Y.; Mastorchio, S.; Meunier, J. Monitoring vegetation cover across semi-arid regions: Comparison of remote observations from various scales. Int. J. Remote Sens 2000, 21, 281–300. [Google Scholar]
- Messina, J.; Delamater, P. Defoliation and the war on drugs in Putumayo, Colombia. Int. J. Remote Sens 2006, 27, 121–128. [Google Scholar]
- Zhang, X.; Liao, C.; Li, J.; Sun, Q. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. Int. J. Appl. Earth Observ. Geoinf 2012, 21, 506–512. [Google Scholar]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ 1997, 62, 241–252. [Google Scholar]
- Delamater, P.L.; Messina, J.P.; Qi, J.; Cochrane, M.A. A hybrid visual estimation method for the collection of ground truth fractional coverage data in a humid tropical environment. Int. J. Appl. Earth Observ. Geoinf 2012, 18, 504–514. [Google Scholar]
- Kawamura, K.; Akiyama, T.; Yokota, H.-O.; Tsutsumi, M.; Yasuda, T.; Watanabe, O.; Wang, S. Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China. Agric. Ecosyst. Environ 2005, 107, 83–93. [Google Scholar]
- Li, S.G.; Harazono, Y.; Oikawa, T.; Zhao, H.L.; He, Y.Z.; Chang, X.L. Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agric. For. Meteorol 2000, 102, 125–137. [Google Scholar]
- Sun, X.F.; Yue, T.X.; Wang, Q. High accuracy surface modeling of grassland aboveground biomass. J. Remote Sens 2013, 17, 1060–1076. [Google Scholar]
- Purevdorj, T.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation cover and vegetation indices. Int. J. Remote Sens 1998, 19, 3519–3535. [Google Scholar]
- LAADS. Available online: http://ladsweb.nascom.nasa.gov/ (accessed on 16 May 2014).
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ 2012, 122, 11–21. [Google Scholar]
- USGS. Available online: http://landsat.usgs.gov/ (accessed on 16 May 2014).
- Huete, A.R.; Liu, H.Q. An error and sensitivity analysis of the atmospheric-and soil-correcting variants of the NDVI for the MODIS-EOS. IEEE Trans. Geosci. Remote Sens 1994, 32, 897–905. [Google Scholar]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ 1991, 35, 161–173. [Google Scholar]
- Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol 2004, 161, 165–173. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ 2004, 90, 337–352. [Google Scholar]
- Vescovo, L.; Gianelle, D. Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino (Italy). Adv. Space Res 2008, 41, 1764–1772. [Google Scholar]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ 2006, 101, 366–378. [Google Scholar]
- Colwell, J.E. Vegetation canopy reflectance. Remote Sens. Environ 1974, 3, 175–183. [Google Scholar]
- Obata, K.; Wada, T.; Miura, T.; Yoshioka, H. Scaling effect of area-averaged NDVI: Monotonicity along the spatial resolution. Remote Sens 2012, 4, 160–179. [Google Scholar]
- Zou, C.; Wang, K.; Wang, T.; Xu, W. Overgrazing and soil carbon dynamics in eastern Inner Mongolia of China. Ecol. Res 2007, 22, 135–142. [Google Scholar]
VIs | NDVI | RVI |
---|---|---|
Endmembers | ||
VIsoil | 0.203 | 1.508 |
VIveg | 0.891 | 17.347 |
VIs | NDVI | RVI |
---|---|---|
Endmembers | ||
VIsoil | 0.118 | 1.268 |
VIveg | 0.806 | 9.309 |
VIs | NDVI | RVI |
---|---|---|
Endmembers | ||
VIsoil | 0.119 | 1.27 |
VIveg | 0.807 | 9.363 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, F.; Chen, W.; Zeng, Y.; Zhao, Q.; Wu, B. Improving Estimates of Grassland Fractional Vegetation Cover Based on a Pixel Dichotomy Model: A Case Study in Inner Mongolia, China. Remote Sens. 2014, 6, 4705-4722. https://doi.org/10.3390/rs6064705
Li F, Chen W, Zeng Y, Zhao Q, Wu B. Improving Estimates of Grassland Fractional Vegetation Cover Based on a Pixel Dichotomy Model: A Case Study in Inner Mongolia, China. Remote Sensing. 2014; 6(6):4705-4722. https://doi.org/10.3390/rs6064705
Chicago/Turabian StyleLi, Fei, Wei Chen, Yuan Zeng, Qianjun Zhao, and Bingfang Wu. 2014. "Improving Estimates of Grassland Fractional Vegetation Cover Based on a Pixel Dichotomy Model: A Case Study in Inner Mongolia, China" Remote Sensing 6, no. 6: 4705-4722. https://doi.org/10.3390/rs6064705