Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1
Abstract
:1. Introduction
1.1. Why Rapid Damage Assessment Is Crucial after a Disaster
1.2. Brief Description of SAR and Its Advantages Compared to Optical Sensors
1.3. SAR Interferometry
2. Methods
2.1. SAR Interferometric Coherence
- Thermal de-correlation γthermal is caused by uncorrelated noise inside the radar sensor itself [80].
- Miss-registration de-correlation γmissreg is due to inaccurate registration of the two SAR images [29].
- Spatial de-correlation γspat occurs for too large baselines [74]. For B⊥ > Bcritical the difference of the incidence angle θ (see Figure 2) at both acquisitions becomes too large. This leads to a de-correlation of the SAR echoes from both SAR sensors, i.e., the coherence strongly reduces (Equation (7) [81]). Furthermore, γspat also depends on the topography of the area of interest (AoI). Especially slopes facing the SAR sensor show strong de-correlation with increasing slope angle (foreshortening and layover effect). At flat terrain, common band filtering (usage of overlapping parts of the spectrums) corrects for the effect of γspat. However, this correction reduces the range resolution [74].with r representing the SAR sensor’s spatial range resolution. For instance, Bcritical of the European Remote Sensing (ERS) satellite is ca. 1100 m [82]. Therefore, shorter baselines are preferable for SAR interferometric applications [8], e.g., [83,84] suggest B⊥ < 300 m when using ERS data. Modern SAR sensors such as TerraSAR-X have a larger bandwidth and the effect of γspat is therefore nowadays less important compared to the early SAR missions [85].
- Doppler centroid de-correlation γdopp, which is similar to spatial de-correlation, is caused by too large differences of the squint angle between both radar acquisitions. According to Franceschetti and Lanari [29], this effect can be avoided by a proper antenna steering. Moreover, range adaptive azimuth common band filtering mitigates the effect of γdopp.
- Temporal de-correlation γtemp is caused by changes on the ground in the time between the SAR acquisition dates [22,62,74]. The Earth’s surface changes by frost and dew cycles, snow and ice cover or melting, respectively. Areas bare of vegetation such as urban areas and rocks have high coherence values even between SAR image pairs separated by three to four years [56,60,80,83], whereas areas covered by vegetation, especially forests [33,79,81], lose coherence within a few days, especially due to wind and in the long-term also due to plant growth [36,86–90]. Therefore, coherence is also a very good indicator for separating urban and non-urban areas in land cover mapping [79,83,84] (regarding the temporal baseline: cf. also Section 4).
2.2. SAR Intensity Correlation
2.3. Change Detection—Damage Assessment
3. Literature Review and Comparison of Interferometric Coherence and Intensity Correlation
3.1. Interferometric Coherence
3.2. SAR Amplitude Data with Focus on Intensity Correlation
3.3. Combination of Interferometric Coherence and Intensity Correlation and Comparison of Both
3.4. Improvement of SAR Data Based Damage Assessment Techniques by Additional Data
3.5. Summary of Achieved Accuracies of the Methods Reviewed in Sections 3.1–3.4
3.6. Post-Event Methods for SAR Data Based Damage Assessment
3.7. Other Applications for SAR Interferometric Coherence
4. Preconditions and Current Limitations of Multi-Temporal SAR Methods
- At least three SAR images, more precisely two pre- and one post-disaster image(s), are required (see also Section 2, Figure 3).
- All three images have to be acquired at the same imaging geometry (i.e., same pass direction (ascending/descending), incidence angle, relative orbit, imaging mode and SAR wavelength).
- As most natural disasters are not predictable (especially earthquakes), a continuous monitoring of the affected AoI is required.
- The pre-disaster image pair should be recorded shortly before the event and the post-disaster image shortly after the event. The temporal baseline between all acquisitions should be as small as possible to decrease the influence of temporal de-correlation not caused by the natural disaster. The repeat cycle of the SAR mission is the controlling key factor of the temporal baseline (cf. Table 2, Section 1.2). The repeat cycle ranges from 4 to 6 days for modern constellations of 2–4 satellites (e.g., Sentinel-1 and COSMO-SkyMed) to 35–46 days for older SAR missions (e.g., ERS-1/2, ENVISAT, JERS and ALOS PALSAR). To analyze which repeat cycle is useful for the presented damage assessment methods (see Section 2), we also have to consider the wavelength of the SAR sensors. At shorter wavelength, such as X-band (λ = 3.1 cm; e.g., TerraSAR-X and COSMO-SkyMed) or C-band (λ = 5.6 cm), the coherence is more affected by temporal de-correlation than at the longer L-band (λ = 23.6 cm) [79,81,118]. Fortunately, this effect was also considered in the design of the SAR missions, as the X-band missions are characterized by shorter repeat cycles (e.g., TerraSAR-X: 11 days, COSMO-SkyMed constellation: 4 days) compared to the L-band missions (e.g., ALOS PALSAR and JERS), which compensate their longer repeat orbit of 44 or 46 days, respectively, with in general a higher coherence over a longer time period. The repeat cycle of the C-band SAR missions (e.g., Radarsat-1/2, ERS-1/2, and ENVISAT ASAR) is with 24–35 days in-between the aforementioned values. As urban area is characterized by long-term high coherence values (e.g., over several months [79,81]), data from all reported SAR missions is usable for the damage assessment methods presented in Section 2. In general one can recommend to use SAR image pairs of less than 3–5 repeat cycles between the single acquisitions (especially valid for single satellite missions). However, there exists no critical value for a maximum number of repeat cycles. The number of repeat cycles between the pre-disaster and the pre-post-disaster image pair, respectively, should be as low as possible to avoid influences of temporal changes which were not caused by the natural disaster (e.g., clearing of the debris after the event, or construction activities, etc.). Sentinel-1 with its two-satellite-constellation will image every part of the global landmass every 6 days, providing a solution to the temporal baseline problem—especially for damage assessment at the block level (see Section 5).
- The destruction caused by the natural disaster should dominate the temporal de-correlation effect of the AoI. Urban area and especially continuous urban fabric is characterized by long temporal coherence values [79,81] and therefore very well suited for the application of the damage assessment methods based on the interferometric coherence and the SAR intensity correlation. However, at discontinuous urban fabric with its higher percentage of green spaces (covered with vegetation), the applicability of the aforementioned methods is less suited, as vegetated areas lose correlation within several days.
- Flat areas are best suited for the application of the interferometric damage assessment methodologies as rough topographic relief has strong negative influences or even prohibits the use of the SAR images for InSAR applications (keywords: spatial de-correlation (cf. Section 2.1) and layover and shadow effects [27,74]).
- According to Hoffmann [74], a useful damage assessment requires pre-defined regions to assess the damage level.
- For each important area of interest exposed to natural hazards, a geodatabase containing useful GIS data (e.g., boundaries of city parcels, water bodies, parks, and important infrastructure such as hospitals or shelters) should be set up and continuously updated.
5. Possible Solutions of Current Limitations—The Sentinel-1 Mission
- -
- Europe & French oversea territories.
- -
- Volcanoes at global level.
- -
- Major tectonic areas and geo-hazard supersites worldwide (concentrating on the major subduction and continental collision zones, e.g., the “Pacific Ring of Fire”, the Himalaya, but also important rifting zones, such as the Afar Region).
- -
- Worldwide collection of reference data to support flood monitoring.
6. Conclusions
- (I)
- The requirement of fast, easy-to-use, worldwide applicable damage assessment procedures with high accuracy.
- (II)
- The availability of at least two pre-disaster SAR images acquired shortly before the event at the same imaging geometry as the post-event SAR acquisition (see Figure 3).
Acknowledgments
Conflicts of Interest
References
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in Climate Extremes and their Impacts on the Natural Physical Environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Trianni, G.; Gamba, P. Damage detection from SAR imagery: Application to the 2003 Algeria and 2007 Peru earthquakes. Int. J. Navig. Obs 2008, 2008, 762378:1–762378:8. [Google Scholar]
- Dong, L.; Shan, J. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J. Photogramm. Remote Sens 2013, 84, 85–99. [Google Scholar]
- COSMO-SkyMed. Available online: http://www.cosmo-skymed.it/en/index.htm (accessed on 30 April 2014).
- RADARSAT Constellation. Available online: http://www.asc-csa.gc.ca/eng/satellites/radarsat/ (accessed on 30 April 2014).
- TerraSAR-X. Available online: http://www.dlr.de/eo/en/desktopdefault.aspx/tabid-5725/9296_read-15979/ (accessed on 30 April 2014).
- Bignami, C.; Chini, M.; Pierdicca, N.; Stramondo, S. Comparing and Combining the Capability of Detecting Earthquake Damages in Urban Areas Using SAR and Optical Data. Proceedings of the IEEE IGARSS, Anchorage, AK, USA, 20–24 September 2004; pp. 55–58.
- Arciniegas, G.A.; Bijker, W.; Kerle, N.; Tolpekin, V.A. Coherence- and amplitude-based analysis of seismogenic damage in Bam, Iran, using ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens 2007, 45, 1571–1581. [Google Scholar]
- Chini, M.; Bignami, C.; Stramondo, S.; Pierdicca, N. Uplift and subsidence due to the 26 December 2004 Indonesian earthquake detected by SAR data. Int. J. Remote Sens 2008, 29, 3891–3910. [Google Scholar]
- Uprety, P.; Yamazaki, F. Use of High-Resolution SAR Intensity Images for Damage Detection from the 2010 Haiti Earthquake. Proceedings of the IEEE IGARSS, Munich, Germany, 22–27 July 2012; pp. 6829–6832.
- The International Charter of Space and Major Disasters. Available online: http://www.disasterscharter.org/ (accessed on 25 March 2014).
- Voigt, S.; Kemper, T.; Riedlinger, T.; Kiefl, R.; Scholte, K.; Mehl, H. Satellite image analysis for disaster and crisis-management support. IEEE Trans. Geosci. Remote Sens 2007, 45, 1520–1528. [Google Scholar]
- Copernicus. Available online: http://www.copernicus.eu (accessed on 30 April 2014).
- GIO Emergency Management Service. Available online: http://emergency.copernicus.eu/mapping/ems/emergency-management-service (accessed on 30 April 2014).
- Services and Applications for Emergency Response (SAFER). Available online: http://www.zki.dlr.de/project/162 (accessed on 1 May 2014).
- United Nations Institute for Training and Research (UNITAR) Operational Satellite Applications Programme (UNOSAT). Available online: http://www.unitar.org/unosat/ (accessed on 1 May 2014).
- Sentinel Asia. Available online: http://global.jaxa.jp/article/special/sentinel_asia/index_e.html (accessed on 30 April 2014).
- Center for Satellite Based Crisis Information (ZKI). Available online: http://www.zki.dlr.de/ (accessed on 2 May 2014).
- Service Régional de Traitement d’Image et de Télédétection (SERTIT). Available online: http://sertit.u-strasbg.fr/index_en.htm (accessed on 1 May 2014).
- Munich Re Significant Natural Catastrophes 1980–2012. Available online: http://www.munichre.com/de/reinsurance/business/non-life/georisks/natcatservice/signifycant_natural_catastrophes.aspx (accessed on 31 January 2014).
- Christophe, E.; Chai, A.S.; Yin, T.; Kwoh, L.K. Earthquakes in Sumatra: The Use of L-band Interferometry in a SAR-Hostile Environment. Proceedings of the IEEE IGARSS, Honolulu, HI, USA, 25–30 July 2010; 2009; pp. 1202–1205. [Google Scholar]
- Gupta, R.P. Remote Sensing Geology; Springer: Heidelberg, Germany, 2003. [Google Scholar]
- ITC Database of Satellites and Sensors. Available online: http://www.itc.nl/research/products/sensordb/AllSatellites.aspx (accessed on 5 May 2014).
- Dell’Acqua, F.; Gamba, P. Remote sensing and earthquake damage assessment: Experiences, limits and perspectives. Proc. IEEE 2012, 100, 2876–2890. [Google Scholar]
- Voigt, S.; Schneiderhan, T.; Twele, A.; Gähler, M.; Stein, E.; Mehl, H. Rapid damage assessment and situation mapping: Learning from the 2010 Haiti earthquake. Photogramm. Eng. Remote Sens 2011, 77, 923–931. [Google Scholar]
- Gerke, M.; Kerle, N. Automatic structural seismic damage assessment with airborne oblique Pictometry® imagery. Photogramm. Eng. Remote Sens 2011, 77, 885–898. [Google Scholar]
- Plank, S.; Singer, J.; Minet, C.; Thuro, K. Pre-survey suitability evaluation of the differential synthetic aperture radar interferometry method for landslide monitoring. Int. J. Remote Sens 2012, 33, 6623–6637. [Google Scholar]
- Schwäbisch, M. Die SAR-Interferometrie zur Erzeugung Digitaler Geländemodelle; Forschungsbericht 1995–25; Deutsches Zentrum für Luft- und Raumfahrt: Köln, Germany, 1995. (In German) [Google Scholar]
- Franceschetti, G.; Lanari, R. Synthetic Aperture Radar Processing; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens 2003, 57, 241–261. [Google Scholar]
- Ferretti, A.; Massonnet, D.; Monti-Guarnieri, A.; Prati, C.; Rocca, F. Guidelines for SAR Interferometry—Processing and Interpretation. InSAR Principles; Fletcher, K., Ed.; ESA Publications Division: Noordwijk, The Netherlands, 2007. Available online: http://www.esa.int/About_Us/ESA_Publications/InSAR_Principles_Guidelines_for_SAR_Interferometry_Processing_and_Interpretation_br_ESA_TM-19 (accessed on 26 May 2014).
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl 1998, 14, 1–54. [Google Scholar]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res 1989, 94, 9183–9191. [Google Scholar]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the earth’s surface. Rev. Geophys 1998, 36, 441–500. [Google Scholar]
- Chen, Y.; Zhang, G.; Ding, X.; Li, Z. Monitoring earth surface deformation with InSAR technology: Principle and some critical issues. J. Geospatial Eng 2002, 2, 3–21. [Google Scholar]
- Zhou, X.; Chang, N.B.; Li, S. Applications of SAR interferometry in earth and environmental science research. Sensors 2009, 9, 1876–1912. [Google Scholar]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peitzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar]
- Meyer, B.; Armijo, R.; Massey, C.I.; de Chablier, J.B.; Delacourt, C.; Rügg, J.C.; Achache, J.; Papatastassiou, D. Results from combining tectonic observations and SAR interferometry for the 1995 Greneva earthquake: A summary. J. Geodyn 1998, 26, 255–259. [Google Scholar]
- Raucoules, D.; Ristori, B.; de Michele, M.; Briole, P. Surface displacement of the Mw 7 Machaze earthquake (Mozambique): Complementary use of multiband InSAR and radar amplitude image correlation with elastic modelling. Remote Sens. Environ 2010, 114, 2211–2218. [Google Scholar] [Green Version]
- Tronin, A.A. Satellite remote sensing in seismology. A review. Remote Sens 2010, 2, 124–150. [Google Scholar]
- Manzo, M.; Ricciardi, G.P.; Casu, F.; Ventura, G.; Zeni, G.; Borgström, S.; Berardino, P.; del Gaudio, C.; Lanari, R. Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry. J. Volcanol. Geotherm. Res 2006, 151, 399–416. [Google Scholar]
- Cong, X.; Eineder, M.; Gernhardt, S.; Minet, C. Diverse Methods to Monitoring Volcanic Deformation Based on SAR Interferometry. Proceedings of the IEEE IGARSS, Honolulu, HI, USA, 25–30 July 2010; pp. 661–664.
- Hooper, A.; Prata, F.; Sigmundsson, F. Remote sensing of volcanic hazards and their precursors. Proc. IEEE 2012, 100, 2908–2930. [Google Scholar]
- Carnec, C.; Delacourt, C. Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France. J. Appl. Geophys 2000, 43, 43–54. [Google Scholar]
- Chatterjee, R.S.; Fruneau, B.; Rudant, J.P.; Roy, P.S.; Frison, P.-L.; Lakhera, R.C.; Dadhwal, V.K.; Saha, R. Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by Differential Synthetic Aperture Radar Interferometry (D-InSAR) technique. Remote Sens. Environ 2003, 102, 176–185. [Google Scholar]
- Kirchner, M. Analyse Flächenhafter Senkungserscheinungen in Sedimentären Gebieten mit den Neuen Techniken der Radarfernerkundung; Forschungsbericht DLR 2005-01; Deutsches Zentrum für Luft- und Raumfahrt: Köln, Germany, 2005. (In German) [Google Scholar]
- Worawattanamateekul, J. The Application of Advanced Interferometric Radar Analysis for Monitoring Ground Subsidence: A Case Study in Bangkok. Ph.D. Dissertation, Technische Universität München, Munich, Germany, 2006. [Google Scholar]
- Ketelaar, V.B.H. Satellite Radar Interferometry—Subsidence Monitoring Techniques; Springer: New York, NY, USA, 2009. [Google Scholar]
- Tosi, L.; Teatini, P.; Carbognin, L.; Brancolini, G. Using high resolution data to reveal depth-dependent mechanism that drive land subsidence: The Venice coast, Italy. Tectonophysics 2009, 474, 271–284. [Google Scholar]
- Hung, W.-C.; Hwang, C.; Chen, Y.-A.; Chang, C.-P.; Yen, J.-Y.; Hooper, A.; Yang, C.-Y. Surface deformation from persistent scatterers SAR interferometry and fusion with levelling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sens. Environ 2011, 115, 957–967. [Google Scholar]
- Heleno, S.I.N.; Oliveira, L.G.S.; Henriques, M.J.; Falcão, A.P.; Lima, J.N.P.; Cooksley, G.; Ferretti, A.; Fonseca, A.M.; Lobo-Ferreira, J.P.; Fonseca, J.F.B.D. Persistent Scatterers Interferometry detects and measures ground subsidence in Lisbon. Remote Sens. Environ 2011, 115, 2152–2167. [Google Scholar]
- Cigna, F.; Osmanğlu, B.; Cabral-Cano, E.; Dixon, T.H.; Aacute;vila-Olivera, J.A.; Garduño-Monroy, V.H.; Demets, C.; Wdowinski, S. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar interferometry: A case study in Morelia, Mexico. Remote Sens. Environ 2012, 117, 146–161. [Google Scholar]
- Chen, J.; Wu, J.; Zhang, L.; Zou, J.; Liu, G.; Zhang, R.; You, B. Deformation trend extraction based on multi-temporal InSAR in Shanghai. A review. Remote Sens 2013, 5, 1774–1786. [Google Scholar]
- Del Ventisette, C.; Ciampalini, A.; Manunta, M.; Calò, F.; Paglia, L.; Ardizzone, F.; Mondini, A.C.; Reichenbach, P.; Mateos, R.M.; Bianchini, S.; et al. Exploitation of large archives of ERS and ENVISAT C-band SAR data to characterize ground deformations. Remote Sens 2013, 5, 3896–3917. [Google Scholar]
- Fruneau, B.; Achache, J.; Delacourt, C. Observation and modelling of the Saint-Etienne-de-Tinée landslide using SAR interferometry. Tectonophysics 1996, 265, 181–190. [Google Scholar]
- Colesanti, C.; Ferretti, A.; Novali, F.; Prati, C.; Rocca, F. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans. Geosci. Remote Sens 2003, 41, 1685–1701. [Google Scholar]
- Squarzoni, C.; Delacourt, C.; Allemand, P. Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry. Eng. Geol 2003, 68, 53–66. [Google Scholar]
- Catani, F.; Farina, P.; Moretti, S.; Nico, G.; Strozzi, T. On the application of SAR interferometry to geomorphological studies: Estimation of landform attributes and mass movements. Geomorphology 2005, 66, 119–131. [Google Scholar]
- Metternicht, G.; Hurni, L.; Gogu, R. Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens. Environ 2005, 98, 284–303. [Google Scholar]
- Bovenga, F.; Nutricato, R.; Refice, A.; Waswoski, J. Application of multitemporal differential interferometry to slope instability detection in urban/peri-urban areas. Eng. Geol 2006, 88, 218–239. [Google Scholar]
- Colesanti, C.; Wasowski, J. Investigation landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol 2006, 88, 173–199. [Google Scholar]
- Cascini, L.; Peduto, D.; Fornano, G.; Lanari, R.; Zeni, G.; Guzzetti, F. Spaceborne Radar Interferometry for Landslide Monitoring. Proceedings of the 1st Italian Workshop on Landslides, Naples, Italy, 2009; pp. 138–144.
- Lauknes, T.R.; Piyush Shanker, A.; Dehlis, J.F.; Zebker, H.A.; Henderson, I.H.C.; Larsen, Y. Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sens. Environ 2010, 114, 2097–2109. [Google Scholar]
- Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens 2013, 5, 1045–1065. [Google Scholar]
- Tantianuparp, P.; Shi, X.; Zhang, L.; Balz, T.; Liao, M. Characterization of landslide deformations in three gorges area using multiple InSAR data stacks. Remote Sens 2013, 5, 2704–2719. [Google Scholar]
- Bianchini, S.; Herrera, G.; Mateos, R.M.; Notti, D.; Garcia, I.; Mora, O.; Moretti, S. Landslide activity maps generation by means of persistent scatterer interferometry. Remote Sens 2013, 5, 6198–6222. [Google Scholar]
- Chen, F.; Lin, H.; Hu, X. Slope superficial displacement monitoring by small baseline SAR interferometry using data from L-band ALOS PALSAR and X-band TerraSAR: A case study of Hong Kong, China. Remote Sens 2014, 6, 1564–1586. [Google Scholar]
- Wasowski, J.; Bovenga, F.; Nitti, D.O.; Nutricato, R. Investigating Landslides with Persistent Scatterers Interferometry (PSI): Current Issues and Challenges. In Landslides and Engineered Slopes, Protecting Society through Improved Understanding; Eberhardt, E., Froese, C., Turner, A.K., Leroueil, S., Eds.; Taylor & Francis Group: London, UK, 2012; pp. 1295–1301. [Google Scholar]
- Tosi, L.; Teatini, P.; Bincoletto, P.; Simonini, P.; Strozzi, T. Integrating geotechnical and interferometric SAR measurements for secondary compressibility characterization of coastal soils. Surv. Geophys 2012, 33, 907–926. [Google Scholar]
- Massironi, M.; Zampieri, D.; Bianchi, M.; Schiavo, A.; Francheschetti, A. Use of PSInSAR™ data to infer active tectonics: Clues on the differential uplift across the Giudicarie belt (Central-Eastern Alps, Italy). Tectonophysics 2009, 476, 297–303. [Google Scholar]
- Vilardo, G.; Ventura, G.; Terranova, C.; Matano, F.; Nardò, S. Ground deformation due to tectonic, hydrothermal, gravity, hydrogeological, and anthropic processes in the Campania Region (Southern Italy) from Permanent Scatterers Synthetic Aperture Radar Interferometry. Remote Sens. Environ 2009, 113, 197–212. [Google Scholar]
- Matsuoka, M.; Yamazaki, F. Characteristics of Satellite SAR Images in the Areas Damaged by Earthquakes. Proceedings of the IEEE IGARSS, Honolulu, HY, USA, 24–28 July 2000; pp. 2693–2696.
- Hoffmann, J. Mapping damage during the Bam (Iran) earthquake using interferometric coherence. Int. J. Remote Sens 2007, 28, 1199–1216. [Google Scholar]
- Löffler, E.; Honecker, U.; Stabel, E. Geographie und Fernerkundung. Eine Einführung in Die Geographische Interpretation von Luftbildern und Modernen Fernerkundungsdaten; Borntraeger; Berlin, Germany, 2005. (In German) [Google Scholar]
- Yonezawa, C.; Takeuchi, S. Detection of Urban Damage Using Interferometric SAR Decorrelation. Proceedings of the IEEE IGARSS, Hamburg, Germany, 28 June–2 July 1999; pp. 925–927.
- Takeuchi, S.; Suga, Y.; Yonezawa, C.; Chen, A.J. Detection of Urban Disaster Using InSAR—A Case Study for the 1999 Great Taiwan Earthquake. Proceedings of the IEEE IGARSS, Honolulu, HI, USA, 24–28 July 2000; pp. 339–341.
- Stramondo, S.; Bignami, C.; Chini, M.; Pierdicca, N.; Tertulliani, A. Satellite radar and optical remote sensing for earthquake damage detection: Results from different case studies. Int. J. Remote Sens 2006, 27, 4433–4447. [Google Scholar]
- Strozzi, T.; Dammer, P.B.G.; Wegmüller, U.; Martinez, J.-M.; Askne, J.I.H.; Beaudion, A.; Hallikainen, M.T. Landuse mapping with ERS SAR interferometry. IEEE Trans. Geosci. Remote Sens 2000, 38, 766–775. [Google Scholar]
- Lu, Z. InSAR imaging of volcanic deformation over cloud-prone areas—Aleutian Islands. Photogramm. Eng. Remote Sens 2007, 73, 245–257. [Google Scholar]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens 1992, 30, 950–959. [Google Scholar]
- Gens, R.; van Genderen, J.L. Review article SAR interferometry—Issues, techniques, applications. Int. J. Remote Sens 1996, 17, 1803–1835. [Google Scholar]
- Grey, W.M.F.; Luckman, A.J.; Holland, D. Mapping urban change in the UK using satellite radar interferometry. Remote Sens. Environ 2003, 87, 16–22. [Google Scholar]
- Yonezawa, C.; Takeuchi, S. Decorrelation of SAR data by urban damages caused by the 1995 Hyogoken-nanbu earthquake. Int. J. Remote Sens 2001, 22, 1585–1600. [Google Scholar]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Mag. Geosci. Remote Sens 2013, 1, 6–43. [Google Scholar]
- Wegmüller, U.; Werner, C.L. SAR interferometric signatures of forest. IEEE Trans. Geosci. Remote Sens 1995, 33, 1153–1161. [Google Scholar]
- Rosin, P.L.; Hervás, J. Remote sensing image thresholding methods for determining landslide activity. Int. J. Remote Sens 2005, 26, 1075–1092. [Google Scholar]
- Rott, H.; Nagler, T. The contribution of radar interferometry to the assessment of landslide hazards. Adv. Space Res 2006, 37, 710–719. [Google Scholar]
- Ahmed, R.; Siqueira, P.; Hensley, S.; Chapman, B.; Bergen, K. A survey of temporal decorrelation from spaceborne L-Band repeat-pass InSAR. Remote Sens. Environ 2011, 115, 2887–2896. [Google Scholar]
- Cartus, O.; Santoro, M.; Schmullius, C.; Li, Z. Large area forest stem volume mapping in the boreal zone using synergy of ERS-1/2 tandem coherence and MODIS vegetation continuous fields. Remote Sens. Environ 2011, 115, 931–943. [Google Scholar]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens 2004, 25, 2365–2401. [Google Scholar]
- Suga, Y.; Takeuchi, S.; Oguro, Y.; Chen, A.J.; Ogawa, M.; Konishi, T.; Yonezawa, C. Application of ERS-2/SAR data for the 1999 Taiwan earthquake. Adv. Space Res 2001, 28, 155–163. [Google Scholar]
- Tzeng, Y.C.; Chiu, S.H.; Chen, D.; Chen, K.S. Change Detections from SAR Images for Damage Estimation Based on a Spatial Chaotic Model. Proceedings of the IEEE IGARSS, Barcelona, Spain, 23–27 July 2007; pp. 1926–1930.
- Gamba, P.; Dell’Acqua, F.; Trianni, G. Rapid damage detection in the Bam area using multitemporal SAR and exploiting ancillary data. IEEE Trans. Geosci. Remote Sens 2007, 45, 1582–1589. [Google Scholar]
- Ito, Y.; Hosokawa, M.; Lee, H.; Liu, J.G. Extraction of damaged regions using SAR data and neural networks. Int. Arch. Photogramm. Remote Sens 2000, XXXIII, 156–163. [Google Scholar]
- Ito, Y.; Hosokawa, M. Damage Estimation Model Using Temporal Coherence Ratio. Proceedings of the IEEE IGARSS, Toronto, ON, Canada, 24–28 June 2002; pp. 2859–2861.
- Matsuoka, M.; Yamazaki, F. Characteristics of Satellite Images of Damaged Areas Due to the 1995 Kobe Earthquake. Proceedings of the 2nd Conference on the Applications of Remote Sensing and GIS for Disaster Management, Honolulu, HI, USA, 24–28 July 1999; The George Washington University: Washington, DC, USA, 1999. (CD-ROM). [Google Scholar]
- Yonezawa, C.; Tomiyama, N.; Takeuchi, S. Urban Damage Detection Using Decorrelation of SAR Interferometric Data. Proceedings of the IEEE IGARSS, Toronto, Canada, 24–28 June 2002; pp. 2051–2053.
- Matsuoka, M.; Yamazaki, F. Use of satellite SAR intensity imagery for detecting building areas damaged due to earthquakes. Earthq. Spectra 2004, 2, 975–994. [Google Scholar]
- Matsuoka, M.; Yamazaki, F. Building damage mapping of the 2003 Bam, Iran, earthquake using Envisat/ASAR intensity imagery. Earthq. Spectra 2005, 21, 285–294. [Google Scholar]
- Matsuoka, M.; Nojima, N. Building damage estimation by integration of seismic intensity information and satellite L-band SAR imagery. Remote Sens 2010, 2, 2111–2126. [Google Scholar]
- Matsuoka, M.; Yamazaki, F. Application of the Damage Detection Method Using SAR Intensity Images to Recent Earthquakes. Proceedings of the IEEE IGARSS, Toronto, ON, Canada, 24–28 June 2002; pp. 2042–2044.
- Ito, Y.; Hosokawa, M.; Matsuoka, M. A. Degree Estimation Model of Earthquake Damage Using Temporal Coherence Ratio. Proceedings of the IEEE IGARSS, Toulouse, France, 21–25 July 2003; pp. 2410–2412.
- Trianni, G.; Lisini, G.; dell’Acqua, F.; Gamba, P. Fusion of GIS and Statistical Features of Satellite SAR Images for Earthquake Damage Mapping at the Block Scale. In Machine Interpretation of Patterns, Image Analysis and Data Mining, World Scientific; De, R.K., Mandal, D.P., Ghosh, A., Eds.; World Scientific: Singapore, 2010; pp. 195–206. [Google Scholar]
- Trianni, G.; Gamba, P. Fast damage mapping in case of earthquakes using multitemporal SAR data. J. Real-Time Image Process 2009, 4, 195–203. [Google Scholar]
- Arciniegas, G.A. Earthquake-Induced Urban Damage Analysis Using Interferometric SAR Data. M.Sc. Thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands, 2005. [Google Scholar]
- Fielding, E.J.; Talebian, M.; Rosen, P.A.; Nazari, H.; Jackson, J.A.; Ghorashi, M.; Walker, R. Surface ruptures and building damage of the 2003 Bam, Iran, earthquake mapped by satellite synthetic aperture radar interferometric correlation. J. Geophys. Res 2005, 110, B03302:1–B03302:15. [Google Scholar]
- Brunner, D.; Bruzzone, L.; Lemoine, G. Change Detection for Earthquake Damage Assessment in Built-up Areas Using very High Resolution Optical and SAR Data. Proceedings of the IEEE IGARSS, Honolulu, HI, USA, 25–30 July 2010; pp. 3210–3213.
- Matsuoka, M.; Yamazaki, F. Use of SAR Imagery for Monitoring Areas Damaged due to the 2006 Mid Java, Indonesia Earthquake. Proceedings of the 4th International Workshop on Remote Sensing for Post-Disaster Response, Cambridge, UK, 25–26 September 2006.
- Balz, T.; Perissin, D.; Soergel, U.; Zhang, L.; Liao, M. Post-Seismic Infrastructure Damage Assessment Using High-Resolution SAR Satellite Data. Proceedings of the 2nd International Conference on Earth Observation for Global Change, Chengdu, China, 25–29 May 2009; Available online: http://wenku.baidu.com/view/e7644919a216147917112860.html (accessed on 26 May 2014).
- Wang, H.; Jin, Y.-Q. Statistical Analysis to Assess Building Damage in 2008 Wenchuan Earthquake from Multi-Temporal SAR Images. Proceedings of the IEEE IGARSS, Cape Town, South Africa, 12–17 July 2009; pp. 121–123.
- Balz, T.; Liao, M. Building-damage detection using postseismic high-resolution SAR satellite data. Int. J. Remote Sens 2010, 31, 3369–3391. [Google Scholar]
- Pan, G.; Tang, D. Damage information derived from multi-sensor data of the Wenchuan Earthquake of May 2008. Int. J. Remote Sens 2010, 31, 3509–3519. [Google Scholar]
- Guida, R.; Iodice, A.; Riccio, D. Monitoring of Collapsed Built-up Areas with High Resolution SAR Images. Proceedings of the IEEE IGARSS, Honolulu, HI, USA, 25–30 July 2010; pp. 2422–2425.
- Dell’Acqua, F.; Bignami, C.; Chini, M.; Lisini, G.; Polli, D.A.; Stramondo, S. Earthquake damages rapid mapping by satellite remote sensing data: L’Aquila 6 April 2009 event. IEEE Trans. Geosci. Remote Sens 2011, 4, 935–943. [Google Scholar]
- Cossu, R.; dell’Acqua, F.; Polli, D.A.; Rogolino, G. SAR-based seismic damage assessment in urban areas: Scaling down resolution, scaling up computational performance. IEEE Trans. Geosci. Remote Sens 2012, 5, 1110–1116. [Google Scholar]
- Dell’Acqua, F.; Lanese, I.; Polli, D.A. Integration of EO-based vulnerability estimation into EO-based seismic damage assessment: A case study on L’Aquila, Italy, 2009 earthquake. Nat. Hazards 2013, 68, 165–180. [Google Scholar]
- Brett, P.T.B.; Guida, R. Earthquake damage detection in urban areas using curvilinear features. IEEE Trans. Geosci. Remote Sens 2013, 51, 4877–4884. [Google Scholar]
- Kawamura, M.; Tsujino, K.; Tsujiko, Y.; Tanjung, J. Detection Method of Slope Failures Due to the 2009 Sumatra Earthquake by Using TerraSAR-X Images. Proceedings of the IEEE IGARSS, Vancouver, BC, Canada, 24–29 July 2011; pp. 4292–4295.
- Jin, D.; Wang, X.; Dou, A.; Dong, Y. Post-earthquake building damage assessment in Yushu using airborne SAR imagery. Earthq. Sci 2011, 24, 463–473. [Google Scholar]
- Chini, M.; Piscini, A.; Cinti, F.R.; Amici, S.; Nappi, R.; de Martini, P.M. The 2011 Tohoku (Japan) Tsunami inundation and liquefaction investigated through optical, thermal, and SAR data. IEEE Trans. Geosci. Remote Sens 2013, 10, 347–351. [Google Scholar]
- European Macroseismic Scale 1998; EMS-98; Grünthal, G.; Musson, R.M.W.; Schwarz, J.; Stucchi, M. (Eds.) European Seismological Commission: Luxemburg, Luxemburg, 1998.
- Shinozuka, M.; Loh, K. Remote Sensing with the Synthetic Aperture Radar (SAR) for Urban Damage Detection. Proceedings of the 9th International Conference Engineering, Construction, Operations in Challenging Environments, League City/Houston, TX, USA, 7–10 March 2004; pp. 223–230.
- Mansouri, B.; Shinozuka, M.; Huyck, C.; Houshmand, B. Earthquake-induced change detection in the 2003 Bam, Iran, earthquake by complex analysis using Envisat ASAR data. Earthq. Spectra 2005, 21, 275–284. [Google Scholar]
- Mansouri, B.; Shinozuka, M.; Nourjou, R. SAR Remote Sensing for Urban Damage Assessment for Teheran. Proceedings of the 5th International Workshop Remote Sensing Application Natural Hazards, Washington, DC, USA, 10–11 September 2007; Available online: http://www.gwu.edu/~spi/assets/docs/Babak%20-%20SAR%20Remote%20Sensing%20for%20Urban%20Damage%20Assessment%20for%20Tehran.pdf (accessed on 26 May 2014).
- United Nations Institute for Training and Research (UNITAR); Operational Satellite Applications Programme (UNOSAT); European Commission (EC); Joint Research Centre (JRC); The World Bank. Atlas of Building Damage Assessment: Haiti earthquake 12 January 2010 in support to Post Disaster Needs Assessment and Recovery Framework (PDNA). 2010. Available online: http://www.geo.uzh.ch/fileadmin/files/content/abteilungen/rsl1/newspress/various_files/100317_Atlas_damage_assessment.pdf (accessed on 26 May 2014).
- Giordano, F.; Goccia, M.; Dellpiane, S. Segmentation of Coherence Maps for Flood Damage Assessment. Proceedings of the IEEE IGARSS, Seoul, Korea, 25–29 July 2005; pp. 233–236.
- Takeuchi, S.; Yamada, S. Monitoring of Forest Fire Damage by Using JERS-1 InSAR. Proceedings of the IEEE IGARSS, Toronto, ON, Canada, 24–28 June 2002; pp. 3290–3292.
- Tanase, M.A.; Santoro, M.; Wegmüller, U.; de la Riva, J.; Pérez-Cabello, F. Properties of X-, C- and L-band repeat-pass interferometric SAR coherence in Mediterranean pine forests affected by fires. Remote Sens. Environ 2010, 114, 2182–2194. [Google Scholar]
- Tanase, M.A.; de la Riva, J.; Santoro, M.; Pérez-Cabello, F.; Kasischke, E. Sensitivity of SAR data to post-fire forest regrowth in Mediterranean and boreal forests. Remote Sens. Environ 2011, 115, 2075–2085. [Google Scholar]
- Wright, P.; Macklin, T.; Willis, C.; Rye, T. Coherent Change Detection with SAR. Proceedings of the Radar Conference EURAD 2005, Paris, France, 6–7 October 2005; pp. 17–20.
- Zhao, C.; Zhang, Q.; Yin, Y.; Lu, Z.; Yang, C.; Zhu, W.; Li, B. Pre-, co-, and post- rockslide analysis with ALOS/PALSAR imagery: A case study of the Jiweishan rockslide, China. Nat. Hazards Earth Syst. Sci 2013, 13, 2851–2861. [Google Scholar]
- Open Street Map. Available online: http://download.geofabrik.de/ (accessed on 2 May 2014).
- ESRI Base Maps. Available online: http://www.esri.com/software/arcgis/arcgisonline/maps/maps-and-map-layers (accessed on 2 May 2014).
- Bing Maps. Available online: http://www.bing.com/maps/ (accessed on 2 May 2014).
- Google Maps. Available online: https://maps.google.de/ (accessed on 2 May 2014).
- Google Earth. Available online: http://earth.google.de/ (accessed on 2 May 2014).
- United States Census Bureau. Available online: https://www.census.gov/geo/maps-data/data/gazetteer.html (accessed on 2 May 2014).
- GeoScience Australia. Available online: http://www.ga.gov.au/search/index.html#/ (accessed on 2 May 2014).
- Global Earthquake Model, Global Exposure Database (GED). Available online: http://www.globalquakemodel.org (accessed on 2 May 2014).
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ 2012, 120, 9–24. [Google Scholar]
- De Zan, F.; Monti Guarnieri, A.M. TOPSAR: Terrain observation by progressive scans. IEEE Trans. Geosci. Remote Sens 2006, 44, 2352–2360. [Google Scholar]
- Aschbacher, J.; Milagro-Peréz, M.P. The European Earth monitoring (GMES) programme: Status and perspectives. Remote Sens. Environ 2012, 120, 3–8. [Google Scholar]
- ESA. Sentinel High Level Operations Plan, 1st ed 2013. Available online: https://sentinel.esa.int/documents/247904/351367/Sentinel+High+Level+Operations+Plan/530fd782-6386-4d26-9e05-36970bf91b85 (accessed on 25 March 2014).
Year | Type of Disaster | Country | Fatalities |
---|---|---|---|
12 January 2010 | Earthquake | Haiti | 222,570 |
26 December 2004 | Earthquake/Tsunami | Indonesia, Thailand, India, Sri Lanka, Myanmar, Malaysia, Maldivians | 222,000 |
2–5 May 2008 | Cyclone Nargis, storm surge | Myanmar | 140,000 |
29–30 April 1991 | Tropical cyclone, storm surge | Bangladesh | 139,000 |
8 October 2005 | Earthquake | Pakistan, India, Afghanistan | 88,000 |
12 May 2008 | Earthquake | China | 84,000 |
July/August 2003 | Heat wave, Drought | France, Germany, Italy, Portugal, Romania, Spain, UK | 70,000 |
July/September 2010 | Heat wave | Russia | 56,000 |
20 June 1990 | Earthquake | Iran | 40,000 |
26 December 2003 | Earthquake | Iran: Bam | 26,200 |
SAR Mission | Launch | Out of Service | Band * | Spatial Resolution (Azmiuth and Ground Range) (m) ** | Repeat Cycle (Days) |
---|---|---|---|---|---|
ERS-1 | 1991 | 2000 | C | 30 | 35 |
ERS-2 | 1995 | 2011 | C | 30 | 35 |
ENVISAT/ASAR | 2002 | 2012 | C | 30 | 35 |
Radarsat-1 | 1995 | 2013 | C | 8–100 | 24 |
Radarsat-2 | 2007 | C | 2–160 | 24 | |
Sentinel-1 | 2014 | C | 5–40 | 12 (6 ***) | |
J-ERS-1 | 1992 | 1998 | L | 18 | 46 |
ALOS/PALSAR | 2006 | 2011 | L | 10–100 | 44 |
COSMO-SkyMed | 2007 | X | 1–30 | 16 (4 ****) | |
TerraSAR-X | 2007 | X | 1–40 | 11 |
Year | Earthquake | Country | Studies |
---|---|---|---|
1995 | Kobe/Hyogokon-Nanbu | Japan | Ito et al. 2000 [95], Yonezawa and Takeuchi 1999 [76], Yonezawa and Takeuchi 2001 [84], Ito and Hosokawa 2002 [96], Matsuoka and Yamazaki 1999 [97], Matsuoka and Yamazaki 2000 [73], Yonezawa et al. 2002 [98], Matsuoka and Yamazaki 2004 [99], Matsuoka and Yamazaki 2005 [101], Matsuoka and Nojima 2010 [101] |
1999 | Kocaeli/Gölcük | Turkey | Matsuoka and Yamazaki 2000 [73], Matsuoka and Yamazaki 2002 [102], Ito et al. 2003 [103], Trianni et al. 2010 [104] |
1999 | Izmit | Turkey | Bignami et al. 2004 [7], Stramondo et al. 2006 [78], Trianni and Gamba 2009 [105], Trianni et al. 2010 [104] |
1999 | Chi-Chi/Great Taiwan | Taiwan | Takeuchi et al. 2000 [77], Suga et al. 2001 [92] |
2001 | Gujarat | India | Matsuoka and Yamazaki 2002 [102], Yonezawa et al. 2002 [98] |
2003 | Boumerdes | Algeria | Trianni and Gamba 2008 [2] |
2003 | Bam | Iran | Bignami et al. 2004 [7], Arciniegas 2005 [106], Fielding et al. 2005 [107], Matsuoka and Yamazaki 2005 [100], Stramondo et al. 2006 [78], Arciniegas et al. 2007 [8], Gamba et al. 2007 [94], Hoffmann 2007 [74], Brunner et al. 2010 [108], Trianni et al. 2010 [104] |
2004 | Sumatra | Indonesia | Chini et al. 2008 [9] |
2006 | Mid Java | Indonesia | Matsuoka and Yamazaki 2004 [99], Matsuoka and Yamazaki 2006 [109], Brunner et al. 2010 [108] |
2007 | Pisco | Peru | Trianni and Gamba 2008 [2] |
2007 | Chincha | Peru | Matsuoka and Nojima 2010 [101] |
2008 | Wenchuan | China | Balz et al. 2009 [110], Wang and Jin 2009 [111], Balz and Lia 2010 [112], Pan and Tang 2010 [113] |
2009 | L’Aquila | Italy | Guida et al. 2010 [114], Dell’Acqua et al. 2011 [115], Cossu et al. 2012 [116], Dell’Acqua and Gamba 2012 [24], Dell’Acqua et al. 2013 [117], Brett and Guida 2013 [118] |
2009 | Sumatra | Indonesia | Christophe et al. 2010 [21], Kawamura et al. 2011 [119] |
2010 | Haiti | Haiti | Uprety and Yamazaki 2012 [10], Brett and Guida 2013 [118] |
2010 | Yushu County | China | Jin et al. 2011 [120] |
2011 | Tohoku | Japan | Chini et al. 2013 [121] |
Parameter | Interferometric Wide Swath Mode (IW) | Strip Map Mode (SM) |
---|---|---|
Polarization | HH + HV, VV + VH, HH, VV | HH + HV, VV + VH, HH, VV |
Incidence angle range | 29°–46° | 20°–45° |
Azimuth resolution | 20 m | 5 m |
Ground range resolution | 5 m | 5 m |
Swath width | 250 km | 80 km (6 swathes) |
Section | Method (General) | Advantages | Achieved Accuracies * |
---|---|---|---|
3.1 | Interferometric coherence | Enables better differentiation of slightly damaged and undamaged areas. | ca. 45%–49% |
3.2 | SAR intensity correlation | More sensitive to larger changes (stronger damages) on the ground. Provides still useful information at spatial and temporal baselines, which are too large for useful coherence application. | ca. 41%–55% |
3.3 | Combination of coherence and intensity correlation (and SAR backscatter) | Strong increase of the damage assessment accuracy compared to the application of only interferometric coherence or intensity correlation, respectively. | ca. 52%–60% |
3.4 | Use of additional data (e.g., optical imagery and GIS data) | Additional increase of the damage assessment accuracy (compared to Section 3.3). Presentation of the damage level at meaningful distribution (e.g., city parcel boundaries, building blocks, etc.) enables the generation of damage maps more suited to the user. | ca. 77%–88% |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Plank, S. Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1. Remote Sens. 2014, 6, 4870-4906. https://doi.org/10.3390/rs6064870
Plank S. Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1. Remote Sensing. 2014; 6(6):4870-4906. https://doi.org/10.3390/rs6064870
Chicago/Turabian StylePlank, Simon. 2014. "Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1" Remote Sensing 6, no. 6: 4870-4906. https://doi.org/10.3390/rs6064870
APA StylePlank, S. (2014). Rapid Damage Assessment by Means of Multi-Temporal SAR — A Comprehensive Review and Outlook to Sentinel-1. Remote Sensing, 6(6), 4870-4906. https://doi.org/10.3390/rs6064870