An Object-Based Approach for Fire History Reconstruction by Using Three Generations of Landsat Sensors
Abstract
:1. Introduction
- investigation and monitoring of the long-term post-fire vegetation succession [12],
- understanding of the causes of fire ignition [13],
- investigation of the interactions between climate change and fire occurrence [11],
- preservation and management of biodiversity [14], and
- determination of pre-fire planning and other fire management related policies [15].
- to develop an object-based classification model for mapping in detail burned areas using the TM scene for which accurate official fire perimeter provided by the Greek Forest Service was available;
- to test the transferability of the developed model by applying it to the MSS and OLI images in order to investigate the potential of the proposed method to be used operationally for the reconstructions of the recent fire history of the study area.
2. Study Area and Dataset Description
3. Methodology
3.1. Data Pre-Processing
3.2. Development of the GEOBIA Classification Model
3.3. Validation of the Burned Area Maps
4. Results and Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
- Author ContributionsAll authors have made significant contributions to the manuscript. Thomas Katagis is the main author who wrote the manuscript, conducted pre-processing of the images, as well as the accuracy assessment of the maps. Ioannis Z. Gitas had the original idea, supervised the study, and contributed in manuscript writing and revision. George H. Mitri developed and applied the GEOBIA classification model and contributed in the manuscript revision.
References
- Kutiel, P.; Inbar, M. Fire impacts on soil nutrients and soil erosion in a mediterranean pine forest plantation. Catena 1993, 20, 129–139. [Google Scholar]
- Capitanio, R.; Carcaillet, C. Post-fire mediterranean vegetation dynamics and diversity: A discussion of succession models. Forest Ecol. Manag 2008, 255, 431–439. [Google Scholar]
- Pérez-Cabello, F.; de la Riva Fernández, J.; Montorio Llovería, R.; García-Martín, A. Mapping erosion-sensitive areas after wildfires using fieldwork, remote sensing, and geographic information systems techniques on a regional scale. J. Geophys. Res.: Biogeosci 2006. [Google Scholar] [CrossRef]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the mediterranean basin?—A review. Int. J. Wildland Fire 2008, 17, 713–723. [Google Scholar]
- Díaz-Delgado, R.; Lloret, F.; Pons, X. Statistical analysis of fire frequency models for catalonia (NE Spain, 1975–1998) based on fire scar maps from Landsat MSS data. Int. J. Wildland Fire 2004, 13, 89–99. [Google Scholar]
- Turner, M.G. Disturbance and landscape dynamics in a changing world. Ecology 2010, 91, 2833–2849. [Google Scholar]
- Caldararo, N. Human ecological intervention and the role of forest fires in human ecology. Sci. Total Environ 2002, 292, 141–165. [Google Scholar]
- Pausas, J.; Fernández-Muñoz, S. Fire regime changes in the western mediterranean basin: From fuel-limited to drought-driven fire regime. Clim. Chang 2012, 110, 215–226. [Google Scholar]
- Moreno, M.V.; Conedera, M.; Chuvieco, E.; Pezzatti, G.B. Fire regime changes and major driving forces in spain from 1968 to 2010. Environ. Sci. Policy 2014, 37, 11–22. [Google Scholar]
- Pyne, S.J. Introduction to Wildland Fire: Fire Management in the United States; John Wiley & Sons Inc: New York, NY, USA, 1984. [Google Scholar]
- Chuvieco, E.; Englefield, P.; Trishchenko, A.P.; Luo, Y. Generation of long time series of burn area maps of the boreal forest from NOAA–AVHRR composite data. Remote Sens. Environ 2008, 112, 2381–2396. [Google Scholar]
- Röder, A.; Hill, J.; Duguy, B.; Alloza, J.A.; Vallejo, R. Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora region (eastern Spain). Remote Sens. Environ 2008, 112, 259–273. [Google Scholar]
- Loepfe, L.; Lloret, F.; Román-Cuesta, R.M. Comparison of burnt area estimates derived from satellite products and national statistics in Europe. Int. J. Remote Sens 2011, 33, 3653–3671. [Google Scholar]
- Bengtsson, J.; Nilsson, S.G.; Franc, A.; Menozzi, P. Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecol. Manag 2000, 132, 39–50. [Google Scholar]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J.Wildland Fire 2006, 15, 319–345. [Google Scholar]
- Csiszar, I.; Denis, L.; Giglio, L.; Justice, C.O.; Hewson, J. Global fire activity from two years of MODIS data. Int. J. Wildland Fire 2005, 14, 117–130. [Google Scholar]
- Chuvieco, E.; Congalton, R.G. Mapping and inventory of forest fires from digital processing of TM data. Geocarto Int 1988, 3, 41–53. [Google Scholar]
- Duncan, B.W.; Shao, G.; Adrian, F.W. Delineating a managed fire regime and exploring its relationship to the natural fire regime in East Central Florida, USA: A remote sensing and gis approach. Forest Ecol. Manag 2009, 258, 132–145. [Google Scholar]
- Barbosa, P.M.; Grégoire, J.-M.; Pereira, J.M.C. An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale. Remote Sens. Environ 1999, 69, 253–263. [Google Scholar]
- Roy, D.P.; Boschetti, L.; Justice, C.O.; Ju, J. The collection 5 modis burned area product—Global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ 2008, 112, 3690–3707. [Google Scholar]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ 2002, 83, 244–262. [Google Scholar]
- Tansey, K.; Grégoire, J.-M.; Defourny, P.; Leigh, R.; Pekel, J.-F.; van Bogaert, E.; Bartholomé, E. A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution. Geophys. Res. Lett 2008. [Google Scholar] [CrossRef]
- Carmona-Moreno, C.; Belward, A.; Malingreau, J.-P.; Hartley, A.; Garcia-Alegre, M.; Antonovskiy, M.; Buchshtaber, V.; Pivovarov, V. Characterizing interannual variations in global fire calendar using data from earth observing satellites. Glob. Chang. Biol 2005, 11, 1537–1555. [Google Scholar]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol 2008, 1, 9–23. [Google Scholar]
- Salvador, R.; Valeriano, J.; Pons, X.; Diaz-Delgado, R. A semi-automatic methodology to detect fire scars in shrubs and evergreen forests with Landsat MSS time series. Int. J. Remote Sens 2000, 21, 655–671. [Google Scholar] [Green Version]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ 2012, 122, 11–21. [Google Scholar]
- Chuvieco, E.; Martín, M.P.; Palacios, A. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens 2002, 23, 5103–5110. [Google Scholar]
- Loboda, T.; O’Neal, K.J.; Csiszar, I. Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sens. Environ 2007, 109, 429–442. [Google Scholar]
- Maingi, J.K.; Henry, M.C. Factors influencing wildfire occurrence and distribution in eastern Kentucky, USA. Int. J. Wildland Fire 2007, 16, 23–33. [Google Scholar]
- Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O.; Shimabukuro, Y.E. Mapping burned areas in mediterranean countries using spectral mixture analysis from a uni-temporal perspective. Int. J. Remote Sens 2006, 27, 645–662. [Google Scholar]
- Koutsias, N.; Karteris, M. Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 thematic mapper image. Int. J. Remote Sens 2000, 21, 673–687. [Google Scholar]
- Chuvieco, E.; Ventura, G.; Martín, M.P.; Gómez, I. Assessment of multitemporal compositing techniques of MODIS and AVHRR images for burned land mapping. Remote Sens. Environ 2005, 94, 450–462. [Google Scholar]
- Al-Rawi, K.R.; Casanova, J.L.; Calle, A. Burned area mapping system and fire detection system, based on neural networks and NOAA-AVHRR imagery. Int. J. Remote Sens 2001, 22, 2015–2032. [Google Scholar]
- Cao, X.; Chen, J.; Matsushita, B.; Imura, H.; Wang, L. An automatic method for burn scar mapping using support vector machines. Int. J. Remote Sens 2009, 30, 577–594. [Google Scholar]
- Katagis, T.; Gitas, I.Z.; Toukiloglou, P.; Veraverbeke, S.; Goossens, R. Trend analysis of medium- and coarse-resolution time series image data for burned area mapping in a mediterranean ecosystem. Int. J. Wildland Fire 2014. [Google Scholar] [CrossRef]
- Bastarrika, A.; Chuvieco, E.; Martin, M.P. Automatic burned land mapping from MODIS time series images: Assessment in mediterranean ecosystems. IEEE Trans. Geosci. Remote Sens 2011, 49, 3401–3413. [Google Scholar]
- Mitri, G.H.; Gitas, I.Z. A semi-automated object-oriented model for burned area mapping in the mediterranean region using Landsat-TM imagery. Int. J. Wildland Fire 2004, 13, 367–376. [Google Scholar]
- Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ 2011, 115, 1003–1012. [Google Scholar]
- Oliveira, S.L.J.; Pereira, J.M.C.; Carreiras, J.M.B. Fire frequency analysis in Portugal (1975–2005), using Landsat-based burnt area maps. Int. J. Wildland Fire 2012, 21, 48–60. [Google Scholar]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens 2004, 58, 239–258. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens 2010, 65, 2–16. [Google Scholar]
- Hay, G.J.; Castilla, G.; Wulder, M.A.; Ruiz, J.R. An automated object-based approach for the multiscale image segmentation of forest scenes. Int. J. Appl. Earth Obs. Geoinf 2005, 7, 339–359. [Google Scholar]
- Gitas, I.Z.; Mitri, G.H.; Ventura, G. Object-based image classification for burned area mapping of Creus Cape, Spain, using NOAA-AVHRR imagery. Remote Sens. Environ 2004, 92, 409–413. [Google Scholar]
- Mitri, G.H.; Gitas, I.Z. Fire type mapping using object-based classification of Ikonos imagery. Int. J. Wildland Fire 2006, 15, 457–462. [Google Scholar]
- Polychronaki, A.; Gitas, I.Z. Burned area mapping in greece using SPOT-4 HRVIR images and object-based image analysis. Remote Sens 2012, 4, 424–438. [Google Scholar]
- Gitas, I. Geographical Information Systems and Remote Sensing in Mapping and Monitoring Fire-Altered Forest Landscapes. Ph.D. Dissertation, Department of Geography, University of Cambridge, Cambridge, UK, 1999. [Google Scholar]
- Makedos, I. The Pinus Brutia Forest of Thasos. In Pinus Halepensis and Pinus Brutia Forests (Ecology, Management and Development); Papanastasis, V., Ed.; Hellenic Association of Foresters: Chalkida, Greece, 1987. [Google Scholar]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ 2009, 113, 893–903. [Google Scholar]
- Chavez, P.S.J. Radiometric calibration of Landsat thematic mapper multispectral images. Photogramm. Eng. Remote Sens 1989, 55, 1285–1294. [Google Scholar]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ 2001, 75, 230–244. [Google Scholar]
- Baatz, M.; Benz, U.; Dehghani, S.; Heynen, M.; Holtje, A.; Hofmann, P.; Lingenfelder, I.; Mimler, M.; Sohlbach, M.; Weber, M. eCognition Professional User Guide 4; Definiens Imaging: Munich, Germany, 2004. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ 1991, 37, 35–46. [Google Scholar]
- Pontius, R., Jr.; Boersma, W.; Castella, J.-C.; Clarke, K.; Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci 2008, 42, 11–37. [Google Scholar]
- Pontius, R.G.; Millones, M. Death to kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens 2011, 32, 4407–4429. [Google Scholar]
- Czaplewski, R.L. Statistical Design and Methodological Considerations for the Accuracy Assessment of Maps of Forest Condition. In Remote Sensing of Forest Environments: Concepts and Case Studies; Wulder, M.A., Franklin, S.E., Eds.; Kluwer Academic: Boston, MA, USA, 2003; pp. 115–141. [Google Scholar]
- Radoux, J.; Bogaert, P.; Fasbender, D.; Defourny, P. Thematic accuracy assessment of geographic object-based image classification. Int. J. Geogr. Inf. Sci 2010, 25, 895–911. [Google Scholar]
- Key, C.H. Ecological and sampling constraints on defining landscape fire severity. Fire Ecol 2006, 2, 178–203. [Google Scholar]
- Key, C.; Benson, N. Landscape Assessment: Ground Measure of Severity; the Composite Burn Index, and Remote Sensing of Severity, the Normalized Burn Index. In FIREMON: Fire Effects Monitoring and Inventory System; Lutes, D., Keane, R., Caratti, J., Key, C., Benson, N., Sutherland, S., Grangi, L., Eds.; General Technical Report RMRS-GTR-164-CD LA; USDA Forest Service, Rocky Mountains Research Station: Ogden, UT, USA, 2006; pp. 1–51. [Google Scholar]
- Chafer, C.J.N.M.M.E. The post-fire measurement of fire severity and intensity in the christmas 2001 Sidney wildfires. Int. J. Wildland Fire 2004, 13, 227–240. [Google Scholar]
Landsat Data | Spatial Resolution | Acquisition Date | Date of Fire Event | Area (ha) |
---|---|---|---|---|
Landsat 5 MSS | 60 m | 1984-08-04 | 1984-07-21 | 1605 |
Landsat 5 MSS (pre) | 60 m | 1984-06-26 | ||
Landsat-4 TM | 30 m | 1989-09-19 | 1989-08-16 | 9560 |
Landsat-4 TM (pre) | 30 m | 1989-07-09 | ||
Landsat-8 OLI | 30 m | 2013-08-20 | 2013-08-16 | 818 |
Landsat-8 OLI (pre) | 30 m | 2013-08-04 |
Classified | Reference | OA (%) | Oe (%) | Ce (%) | Area (ha) | |
---|---|---|---|---|---|---|
Burned | Unburned | |||||
1984 | ||||||
Burned | 57 | 4 | 94.00 | 8.00 | 6.56 | 1214 |
Unburned | 5 | 84 | ||||
Total | 62 | 88 | ||||
1989 | ||||||
Burned | 79 | 3 | 95.33 | 4.81 | 3.66 | 8558 |
Unburned | 4 | 64 | ||||
Total | 83 | 67 | ||||
2013 | ||||||
Burned | 62 | 1 | 96.67 | 6.01 | 1.59 | 887 |
Unburned | 4 | 83 | ||||
Total | 66 | 84 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Katagis, T.; Gitas, I.Z.; Mitri, G.H. An Object-Based Approach for Fire History Reconstruction by Using Three Generations of Landsat Sensors. Remote Sens. 2014, 6, 5480-5496. https://doi.org/10.3390/rs6065480
Katagis T, Gitas IZ, Mitri GH. An Object-Based Approach for Fire History Reconstruction by Using Three Generations of Landsat Sensors. Remote Sensing. 2014; 6(6):5480-5496. https://doi.org/10.3390/rs6065480
Chicago/Turabian StyleKatagis, Thomas, Ioannis Z. Gitas, and George H. Mitri. 2014. "An Object-Based Approach for Fire History Reconstruction by Using Three Generations of Landsat Sensors" Remote Sensing 6, no. 6: 5480-5496. https://doi.org/10.3390/rs6065480
APA StyleKatagis, T., Gitas, I. Z., & Mitri, G. H. (2014). An Object-Based Approach for Fire History Reconstruction by Using Three Generations of Landsat Sensors. Remote Sensing, 6(6), 5480-5496. https://doi.org/10.3390/rs6065480