Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data
Abstract
:1. Introduction: Remote Sensing-Based Rice Mapping
2. Study Area: Mekong Delta
3. Data
4. Methods and Data Analyses
4.1. Incidence Angle Normalization
4.2. Time-Series Creation and Filtering
4.3. Reference Dataset
Land-Use Map 2010 | Merged Legend | Land-Use Map 2005 |
---|---|---|
Triple-cropped rice | Triple-cropped rice | Triple-irrigated rice |
Double-cropped rice + subsidiary | Double-cropped rice | Double-irrigated rice |
Double-cropped rice (WS & SA) | ||
Double-cropped rice (SA & Main) | Double rainfed rice | |
Double-cropped rice (WS & Main) | ||
Single-cropped rice + subsidiary | Single-cropped rice | Single rainfed rice |
Single-cropped rice + shrimp | ||
Single-cropped rice + aquatic | ||
Single-cropped rice |
4.4. Rice Crop Classification
- Start of Season (SOS) as it can be identified from the inflection point in time series where the second derivative equals 0 and changes from negative to positive.
- End of Season (EOS) as inflection point in time series where the second derivative equals 0 and changes from positive to negative.
- Length of Season (LOS) as the difference between start and end of season.
5. Results
Land Use Map 2005-2010 Intersect | |||||||
Class | SC | DC | TC | Non-Rice | Total | Producer Accuracy | |
ASAR | SC | 695 | 97 | 4 | 2561 | 3357 | 20.7% |
DC | 20 | 21,980 | 3544 | 2001 | 27,545 | 79.8% | |
TC | 2 | 1290 | 12,121 | 868 | 14,281 | 84.9% | |
non-rice | 149 | 2905 | 3086 | 64,474 | 70,614 | 91.3% | |
total | 866 | 26,272 | 18,755 | 69,904 | 115,797 | ||
user accuracy | 80.3% | 83.7% | 64.6% | 92.2% | |||
Land Use Map 2010 | |||||||
Class | SC | DC | TC | Non-Rice | Total | Producer Accuracy | |
ASAR | SC | 2864 | 264 | 36 | 4371 | 7041 | 33.7% |
DC | 252 | 30,155 | 7261 | 6258 | 43,926 | 68.7% | |
TC | 36 | 2643 | 15,906 | 2972 | 21,557 | 73.8% | |
non-rice | 934 | 6120 | 5558 | 75,763 | 88,735 | 85.7% | |
total | 3592 | 39,182 | 28,761 | 89,364 | 160,899 | ||
user accuracy | 66.0% | 77.0% | 55.3% | 84.8% | |||
Land Use Map 2005 | |||||||
Class | SC | DC | TC | Non-Rice | Total | Producer Accuracy | |
ASAR | SC | 1234 | 614 | 20 | 4199 | 6067 | 20.3% |
DC | 234 | 29,645 | 7639 | 6544 | 44,062 | 67.3% | |
TC | 30 | 4213 | 14,697 | 3346 | 22,286 | 65.9% | |
non-rice | 714 | 10,011 | 10,712 | 68,816 | 90,253 | 76.3% | |
total | 2212 | 44,483 | 28,761 | 82,905 | 162,668 | ||
user accuracy | 55.9% | 66.6% | 44.4% | 83.0% |
Province Name | WSM data (× 103 ha) | Statistical Database ( × 103 ha) | Δ (× 103 ha) | Δ2 (× 106 ha) |
---|---|---|---|---|
LongAn | 507.4 | 489.6 | 17.8 | 316.84 |
TienGiang | 210.4 | 247.1 | −36.7 | 1346.89 |
BenTre | 68.2 | 81.5 | −13.3 | 176.89 |
TraVinh | 240.5 | 237.4 | 3.1 | 9.61 |
VinhLong | 198.2 | 184.2 | 14.0 | 196.00 |
DongThap | 538.0 | 468.5 | 35.4 | 1253.16 |
AnGiang | 633.9 | 610.3 | 23.6 | 556.96 |
KienGiang | 722.6 | 694.7 | 27.9 | 778.41 |
CanTho | 233.3 | 228.1 | 5.2 | 27.04 |
HauGiang | 210.0 | 214.0 | −4.0 | 16.00 |
SocTrang | 351.9 | 355.8 | −3.9 | 15.21 |
BacLieu | 187.9 | 171.2 | 16.7 | 278.89 |
CaMau | 146.6 | 139.2 | 7.4 | 54.76 |
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- FAOSTAT Paddy Rice Production 2013. Available online: http://faostat3.fao.org/ (accessed on 3 July 2015).
- General Statistics Office of Vietnam. Statistical Yearbook of Vietnam 2014; Statistical Publishing House: Hanoi, Vietnam, 2014. [Google Scholar]
- De Datta, S. Principles and Practices of Rice Production; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Kuenzer, C.; Knauer, K. Remote sensing of rice crop areas. Int. J. Remote Sens. 2013, 34, 2101–2139. [Google Scholar] [CrossRef]
- Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H. Application of remote sensors in mapping rice area and forecasting its production: A review. Sensors 2015, 15, 769–791. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Chen, C.F.; Son, N.T.; Chang, L.Y.; Chen, C.R. Classification of rice cropping systems by empirical mode decomposition and linear mixture model for time-series MODIS 250 m NDVI data in the Mekong Delta, Vietnam. Int. J. Remote Sens. 2011, 32, 5115–5134. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Duc, H.N.; Chang, L.Y. A phenology-based classification of time-series MODIS data for rice crop monitoring in Mekong Delta, Vietnam. Remote Sens. 2014, 6, 135–156. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Peng, D.; Huete, A.R.; Huang, J.; Wang, F.; Sun, H. Detection and estimation of mixed paddy rice cropping patterns with MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 13–23. [Google Scholar] [CrossRef]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Chen, C.F.; Son, N.T.; Chang, L.Y. Monitoring of rice cropping intensity in the upper Mekong Delta, Vietnam using time-series MODIS data. Adv. Space Res. 2012, 49, 292–301. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Zhang, G.; Li, L.; Jin, C.; Zhou, Y.; Wang, J.; Biradar, C.; et al. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015, 160, 99–113. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Salas, W.; Moore, B.; Li, C.; He, L.; Zhao, R. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data. Int. J. Remote Sens. 2002, 23, 3009–3022. [Google Scholar] [CrossRef]
- Leinenkugel, P.; Kuenzer, C.; Oppelt, N.; Dech, S. Characterisation of land surface phenology and land cover based on moderate resolution satellite data in cloud prone areas—A novel product for the Mekong Basin. Remote Sens. Environ. 2013, 136, 180–198. [Google Scholar] [CrossRef]
- Naeimi, V.; Leinenkugel, P.; Sabel, D.; Wagner, W.; Apel, H.; Kuenzer, C. Evaluation of soil moisture retrieval from the ERS and Metop scatterometers in the lower Mekong Basin. Remote Sens. 2013, 5, 1603–1623. [Google Scholar] [CrossRef] [Green Version]
- Lam-Dao, N.; le Toan, T.; Apan, A.; Bouvet, A.; Young, F.; Le-Van, T. Effects of changing rice cultural practices on C-band synthetic aperture radar backscatter using Envisat advanced synthetic aperture radar data in the Mekong River Delta. J. Appl. Remote Sens. 2009, 3, 1–17. [Google Scholar]
- Bouvet, A.; le Toan, T. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sens. Environ. 2011, 115, 1090–1101. [Google Scholar] [CrossRef] [Green Version]
- Ribbes, F.; le Toan, T. Rice field mapping and monitoring with RADARSAT data. Int. J. Remote Sens. 1999, 20, 745–765. [Google Scholar] [CrossRef]
- Ribbes, F.; le Toan, T. Use of ERS-1 SAR data for ricefield mapping and rice crop parameters retrieval. In Proceedings of the Geoscience and Remote Sensing Symposium, Lincoln, NE, USA, 27–31 May 1996; pp. 1983–1985.
- Le Toan, T.; Ribbes, F.; Floury, N.; Fujita, M.; Kurosu, T.; Wang, L.F.; Floury, N.; Ding, K.H.; Kong, J.A.; Fujita, M.; Kurosu, T. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans. Geosci. Remote Sens. 1997, 35, 41–56. [Google Scholar] [CrossRef]
- Aschbacher, J.; Pongsrihadulchai, A.; Karnchanasutham, S.; Rodprom, C.; Paudyal, D.R.R.; le Toan, T. Assessment of ERS-1 SAR data for rice crop mapping and monitoring. In Proceedings of the Geoscience and Remote Sensing Symposium, Firenze, Italy, 10–14 July 1995.
- Kurosu, T.; Fujita, M.; Chiba, K. Monitoring of rice crop growth from space using the ERS-1 C-band SAR. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1092–1096. [Google Scholar] [CrossRef]
- Kurosu, T.; Fujita, M.; Chiba, K. The identification of rice fields using multi-temporal ERS-1 C band SAR data. Int. J. Remote Sens. 1997, 18, 2953–2965. [Google Scholar] [CrossRef]
- Patel, N.K.; Medhavy, T.T.; Patnaik, C.; Hussain, A. Multi temporal ERS-1 SAR data for identification of rice crop. J. Indian Soc. Remote Sens. 1995, 23, 33–39. [Google Scholar] [CrossRef]
- Chakraborty, M.; Panigrahy, S.; Sharma, S.A. Discrimination of rice crop grown under different cultural practices using temporal ERS-1 synthetic aperture radar data. ISPRS J. Photogramm. Remote Sens. 1997, 52, 183–191. [Google Scholar] [CrossRef]
- Wang, L.F.; Kong, J.A.; Ding, K.H.; le Toan, T.; Ribbes, F.; Floury, N. Electromagnetic scattering model for rice canopy based on Monte Carlo simulation. Prog. Electromagn. Res. 2005, 52, 153–171. [Google Scholar] [CrossRef]
- IRRI Knowledgebank. Available online: http://www.knowledgebank.irri.org/ (accessed on 3 July 2015).
- Liew, S.C.; Kam, S.P.; Tuong, T.P.; Chen, P.; Minh, V.Q.; Lim, H. Application of multitemporal ERS-2 synthetic aperture radar in delineating rice cropping systems in the Mekong River Delta, Vietnam. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1412–1420. [Google Scholar] [CrossRef]
- McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J. Remote Sens. 2004, 30, 525–542. [Google Scholar] [CrossRef]
- Jia, M.; Tong, L.; Chen, Y.; Wang, Y.; Zhang, Y. Rice biomass retrieval from multitemporal ground-based scatterometer data and RADARSAT-2 images using neural networks. J. Appl. Remote Sens. 2013. [Google Scholar] [CrossRef]
- Panigrahy, S.; Chakraborty, M.; Sharma, S.A.; Kundu, N.; Ghose, S.C.; Pal, M. Early estimation of rice area using temporal ERS-1 synthetic aperture radar data a case study for the Howrah and Hughly districts of West Bengal, India. Int. J. Remote Sens. 1997, 18, 1827–1833. [Google Scholar] [CrossRef]
- Premalatha, M.; Nageswara Rao, P.P. Crop acreage estimation using ERS-1 SAR data. J. Indian Soc. Remote Sens. 1994, 22, 139–147. [Google Scholar] [CrossRef]
- Shao, Y.; Fan, X.; Liu, H.; Xiao, J.; Ross, S.; Brisco, B.; Brown, R.; Staples, G. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sens. Environ. 2001, 76, 310–325. [Google Scholar] [CrossRef]
- Panigrahy, S.; Manjunath, K.R.; Chakraborty, M.; Kundu, N.; Parihar, J.S. Evaluation of RADARSAT Standard Beam data for identification of potato and rice crops in India. ISPRS J. Photogramm. Remote Sens. 1999, 54, 254–262. [Google Scholar] [CrossRef]
- Chakraborty, M.; Manjunath, K.R.; Panigrahy, S.; Kundu, N.; Parihar, J.S. Rice crop parameter retrieval using multi-temporal, multi-incidence angle Radarsat SAR data. ISPRS J. Photogramm. Remote Sens. 2005, 59, 310–322. [Google Scholar] [CrossRef]
- Li, Y.; Liao, Q.; Li, X.; Liao, S.; Chi, G.; Peng, S. Towards an operational system for regional-scale rice yield estimation using a time-series of Radarsat ScanSAR images. Int. J. Remote Sens. 2003, 24, 4207–4220. [Google Scholar] [CrossRef]
- Choudhury, I.; Chakraborty, M. SAR signature investigation of rice crop using RADARSAT data. Int. J. Remote Sens. 2006, 27, 519–534. [Google Scholar] [CrossRef]
- Yun, S.; Cuizhen, W.; Xiangtao, F.; Hao, L. Estimation of rice growth status using RADARSAT data. In Proceedings of the IEEE International Geoscience and Remote Sensing, Singapore, 3–8 August 1997; pp. 1430–1432.
- Liew, S.C.; Chen, P.; Kam, S.P.; Tuong, T.P.; Minh, V.Q.; Lim, H. Rice crops monitoring in the Mekong river delta using combined ERS and RADARSAT synthetic aperture radar. In Proceedings of the Geoscience and Remote Sensing Symposium, Seattle, WA, USA, 6–10 July 1998; pp. 2746–2748.
- Inoue, Y.; Kurosu, T.; Maeno, H.; Uratsuka, S.; Kozu, T.; Dabrowska-Zielinska, K.; Qi, J. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables. Remote Sens. Environ. 2002, 81, 194–204. [Google Scholar] [CrossRef]
- Suga, Y.; Konishi, T. Rice crop monitoring using X, C and L band SAR data. Proc. SPIE 2008. [Google Scholar] [CrossRef]
- Rosenqvist, A. Temporal and spatial characteristics of irrigated rice in JERS-1 L-band SAR data. Int. J. Remote Sens. 1999, 20, 1567–1587. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Wu, J.; Qi, J.; Salas, W. Mapping paddy rice with multitemporal ALOS/PALSAR imagery in southeast China. Int. J. Remote Sens. 2009, 30, 6301–6315. [Google Scholar] [CrossRef]
- Wang, C.; Wu, J.; Zhang, Y.; Pan, G.; Qi, J.; Salas, W.A. Characterizing L-band scattering of paddy rice in southeast China with radiative transfer model and multitemporal ALOS/PALSAR imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 988–998. [Google Scholar] [CrossRef]
- Ling, F.; Li, Z.; Chen, E.; Tian, X.; Bai, L.; Wang, F. RICE areas mapping using ALOS PALSAR FBD data considering the Bragg scattering in L-band SAR images of rice fields. In Proceedings of the Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 1461–1464.
- Le Toan, T.; Laur, H.; Mougin, E.; Lopes, A. Multitemporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images. IEEE Trans. Geosci. Remote Sens. 1989, 27, 709–718. [Google Scholar] [CrossRef]
- Chen, E.X.; Li, Z.Y.; Tan, B.X.; Pang, Y.; Tian, X.; Li, B.B. Supervised wishart classifier for rice mapping using multi-temporal envisat asar aps data. In Proceedings of the Envisat Symposium, Montreux, Switzerland, 23–27 April 2007; pp. 2–7.
- Bouvet, A.; le Toan, T.; Lam-Dao, N. Monitoring of the Rice Cropping System in the Mekong Delta Using ENVISAT/ASAR Dual Polarization Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Wang, C.; Zhang, H.; Zhang, B.; Tang, Y. Rice crop monitoring in South China with RADARSAT-2 quad-polarization SAR Data. IEEE Geosci. Remote Sens. Lett. 2011, 8, 196–200. [Google Scholar] [CrossRef]
- Li, K.; Brisco, B.; Yun, S.; Touzi, R. Polarimetric decomposition with RADARSAT-2 for rice mapping and monitoring. Can. J. Remote Sens. 2012, 38, 169–179. [Google Scholar] [CrossRef]
- Yonezawa, C.; Negishi, M.; Azuma, K.; Watanabe, M.; Ishitsuka, N.; Ogawa, S.; Saito, G. Growth monitoring and classification of rice fields using multitemporal RADARSAT-2 full-polarimetric data. Int. J. Remote Sens. 2012, 33, 5696–5711. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Ballester-Berman, J.D.; Hajnsek, I. First results of rice monitoring practices in Spain by means of time series of TerraSAR-X dual-pol images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 412–422. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Ballester-Berman, J.D.; Cloude, S.R. Polarimetric response of rice fields at C-band: Analysis and phenology retrieval. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2977–2993. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Ballester-Berman, J.D.; Hajnsek, I. Rice monitoring in Spain by means of time series of TerraSAR-X dual-pol images. In Proceedings of the International Workshop on Applications of Polarimetry and Polarimetric Interferometry (Pol-InSAR), Frascati, Italy, 26–30 January 2009.
- Gebhardt, S.; Huth, J.; Nguyen, L.D.; Roth, A.; Kuenzer, C. A comparison of TerraSAR-X Quadpol backscattering with RapidEye multispectral vegetation indices over rice fields in the Mekong Delta, Vietnam. Int. J. Remote Sens. 2012, 33, 7644–7661. [Google Scholar] [CrossRef]
- Lam-Dao, N.; le Toan, T.; Hoang-Phi, P. Rice crop monitoring in the Mekong Delta, Vietnam, using radar remote sensing data. In Proceedings of the Asian Conference on Remote Sensing, Bali, Indonesia, 20–24 October 2013.
- Lam-Dao, N.; Hoang-Phi, P.; Huth, J.; Cao-Van, P. Estimation of the rice yield in the Mekong Delta using SAR dual polarisation data. In Proceedings of the Asian Conference on Remote Sensing, Taipei, Taiwan, 3–7 October2011.
- Xie, L.; Zhang, H.; Wu, F.; Wang, C.; Zhang, B. Capability of rice mapping using hybridpolarimetric SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3812–3822. [Google Scholar] [CrossRef]
- Nguyen, D.; Wagner, W.; Naeimi, V.; Cao, S. Rice-planted area extraction by time series analysis of ENVISAT ASAR WS data using a phenology-based classification approach: A case study for Red River Delta, Vietnam. In Proceedings of the International Archives Photogrammetry, Remote Sensing and Spatial Information Science, Berlin, Germany, 11–15 May 2015.
- Apel, H.; Hung, N.N.; Long, T.T.; Tri, V.K. Flood Hydraulics and Suspended Sediment Transport in the Plain of Reeds, Mekong Delta; Springer Netherlands: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Wolters, M.L.; Kuenzer, C. Vulnerability assessments of coastal river deltas—Categorization and review. J. Coast. Conserv. 2015, 19, 345–368. [Google Scholar] [CrossRef]
- Renaud, F.G.; Syvitski, J.P.; Sebesvari, Z.; Werners, S.E.; Kremer, H.; Kuenzer, C.; Ramesh, R.; Jeuken, A.; Friedrich, J. Tipping from the Holocene to the Anthropocene: How threatened are major world deltas? Curr. Opin. Environ. Sustain. 2013, 5, 644–654. [Google Scholar] [CrossRef]
- Kuenzer, C.; Guo, H.; Huth, J.; Leinenkugel, P.; Li, X.; Dech, S. Flood mapping and flood dynamics of the mekong delta: ENVISAT-ASAR-WSM based time series analyses. Remote Sens. 2013, 5, 687–715. [Google Scholar] [CrossRef] [Green Version]
- Kuenzer, C.; Campbell, I.; Roch, M.; Leinenkugel, P.; Tuan, V.Q.; Dech, S. Understanding the impact of hydropower developments in the context of upstream–downstream relations in the Mekong river basin. Sustain. Sci. 2013, 8, 565–584. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; de Bie, C.A.J.M.; Ali, A.; Smaling, E.M.A.; Chu, T.H. Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis. Int. J. Remote Sens. 2012, 33, 415–434. [Google Scholar] [CrossRef]
- General Statistics Office of Vietnam. Results of the 2011 Rural, Agricultural and Fishery Census; Statistical Publishing House: Hanoi, Vietnam, 2012. [Google Scholar]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef]
- Thu, P.M.; Populus, J. Status and changes of mangrove forest in Mekong Delta: Case study in Tra Vinh, Vietnam. Estuar. Coast. Shelf Sci. 2007, 71, 98–109. [Google Scholar] [CrossRef]
- Ha, T.T.T.; van Dijk, H.; Bush, S.R. Mangrove conservation or shrimp farmer’s livelihood? The devolution of forest management and benefit sharing in the Mekong Delta, Vietnam. Ocean Coast. Manag. 2012, 69, 185–193. [Google Scholar] [CrossRef]
- Quoc Vo, T.; Kuenzer, C.; Oppelt, N. How remote sensing supports mangrove ecosystem service valuation: A case study in Ca Mau province, Vietnam. Ecosyst. Serv. 2015, 14, 67–75. [Google Scholar] [CrossRef]
- Loew, A.; Ludwig, R.; Mauser, W. Derivation of surface soil moisture from ENVISAT ASAR wide swath and image mode data in agricultural areas. IEEE Trans. Geosci. Remote Sens. 2006, 44, 889–898. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Pathe, C.; Wagner, W.; Sabel, D.; Doubkova, M.; Basara, J.B. Using ENVISAT ASAR global mode data for surface soil moisture retrieval over Oklahoma, USA. IEEE Trans. Geosci. Remote Sens. 2009, 47, 468–480. [Google Scholar] [CrossRef]
- Nyquist, H. Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication in the presence of noise. Proc. IEEE 1998, 86, 447–457. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Sakamoto, T.; van Nguyen, N.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Spatio-temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens. Environ. 2006, 100, 1–16. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, D.B.; Clauss, K.; Cao, S.; Naeimi, V.; Kuenzer, C.; Wagner, W. Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data. Remote Sens. 2015, 7, 15868-15893. https://doi.org/10.3390/rs71215808
Nguyen DB, Clauss K, Cao S, Naeimi V, Kuenzer C, Wagner W. Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data. Remote Sensing. 2015; 7(12):15868-15893. https://doi.org/10.3390/rs71215808
Chicago/Turabian StyleNguyen, Duy Ba, Kersten Clauss, Senmao Cao, Vahid Naeimi, Claudia Kuenzer, and Wolfgang Wagner. 2015. "Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data" Remote Sensing 7, no. 12: 15868-15893. https://doi.org/10.3390/rs71215808
APA StyleNguyen, D. B., Clauss, K., Cao, S., Naeimi, V., Kuenzer, C., & Wagner, W. (2015). Mapping Rice Seasonality in the Mekong Delta with Multi-Year Envisat ASAR WSM Data. Remote Sensing, 7(12), 15868-15893. https://doi.org/10.3390/rs71215808