SPOT-Based Sub-Field Level Monitoring of Vegetation Cover Dynamics: A Case of Irrigated Croplands
Abstract
:1. Introduction
- Spatiotemporal patterns of crop cover dynamics within and between the agricultural fields can be detected by the analysis of multitemporal 10 m SPOT data.
- The combined CVA-SMA procedure is suitable to monitor land conditions in irrigated croplands.
- The derived spatial information could be used to assist cropland management decisions.
2. Study Area
3. Datasets
3.1. Satellite Imagery
Sensor | Acquisition Date | Denoted in Text |
---|---|---|
SPOT-4 | 11 July 1998 | 1998 |
SPOT-5 | 27 July 2006 | 2006 |
SPOT-5 | 13 August 2010 | 2010 |
3.2. Ancillary Data
4. Methodology
4.1. Spectral Mixture Analysis
4.2. Change Vector Analysis
4.3. Evaluation and Interpretation of the CVA-SMA Results
5. Results and Discussion
5.1. Results of Spectral Mixture Analysis
- VT—associated with photosynthetically active vegetation within the crop fields;
- SL—representing bare soil patches in the fields;
- WT—referring mainly to waterlogged land.
5.2. Vegetation Cover Changes in the Study Area
Land Use Changes (1998–2010) | Vegetation Cover Decrease | Vegetation Cover Increase | Persisting Conditions | ||||||
---|---|---|---|---|---|---|---|---|---|
Number of Fields | Area (ha) | % of Irrigated Area | Number of Fields | Area (ha) | % of Irrigated Area | Number of Fields | Area (ha) | % of Irrigated Area | |
Cropped in 1998 and cropped in 2010 | 6532 | 26,773 | 27 | 4424 | 17,982 | 18 | 17,748 | 19,427 | 20 |
Fallow in 1998 and fallow in 2010 | 402 | 1990 | 2 | 194 | 574 | 1 | 965 | 3788 | 4 |
Cropped in 1998 and fallow in 2010 | 764 | 7049 | 7 | 382 | 1405 | 1 | 1779 | 3442 | 3 |
Fallow in 1998 and cropped in 2010 | 510 | 1860 | 2 | 1443 | 4816 | 5 | 2536 | 10,227 | 10 |
TOTAL | 8208 | 37,672 | 38 | 6443 | 24,777 | 25 | 23,028 | 36,884 | 37 |
5.3. Evaluation of the Change Detection Results
5.4. Implications for Site-Specific Cropland Management
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kienzler, K.M.; Lamers, J.P.A.; McDonald, A.; Mirzabaev, A.; Ibragimov, N.; Egamberdiev, O.; Ruzibaev, E.; Akramkhanov, A. Conservation agriculture in Central Asia—What do we know and where do we go from here? Field Crop. Res. 2012, 132, 95–105. [Google Scholar] [CrossRef]
- Bucknall, J.; Klytchnikova, I.; Lampietti, J.; Lundell, M.; Scatasta, M.; Thurman, M. Irrigation in Central Asia: Social, Economic and Environmental Considerations; World Bank: Washington, DC, USA, 2003. [Google Scholar]
- Akramkhanov, A.; Brus, D.J.; Walvoort, D.J.J. Geostatistical monitoring of soil salinity in Uzbekistan by repeated EMI surveys. Geoderma 2014, 213, 600–607. [Google Scholar] [CrossRef]
- Ji, C. Central Asian Countries Initiative for Land Management Multicountry Partnership Framework Support Project; ADB: Tashkent, Uzbekistan, 2008. [Google Scholar]
- Dubovyk, O.; Menz, G.; Khamzina, A. Land suitability assessment for afforestation with Elaeagnus angustifolia L. In degraded agricultural areas of the lower Amu Darya river basin. Land Degrad. Dev. 2014. [Google Scholar] [CrossRef]
- Le, Q.B.; Tamene, L.; Vlek, P.L.G. Multi-pronged assessment of land degradation in West Africa to assess the importance of atmospheric fertilization in masking the processes involved. Glob. Planet. Chang. 2012, 92–93, 71–81. [Google Scholar]
- Karnieli, A.; Bayarjargal, Y.; Bayasgalan, M.; Mandakh, B.; Dugarjav, C.; Burgheimer, J.; Khudulmur, S.; Bazha, S.N.; Gunin, P.D. Do vegetation indices provide a reliable indication of vegetation degradation? A case study in the Mongolian pastures. Int. J. Remote Sens. 2013, 34, 6243–6262. [Google Scholar] [CrossRef]
- Chen, X.; Bai, J.; Li, X.; Luo, G.; Li, J.; Li, B.L. Changes in land use/land cover and ecosystem services in Central Asia during 1990–2009. Curr. Opin. Environ. Sustain. 2013, 5, 116–127. [Google Scholar] [CrossRef]
- Conrad, C.; Dech, S.; Dubovyk, O.; Fritsch, S.; Klein, D.; Löw, F.; Schorcht, G.; Zeidler, J. Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Comput. Electron. Agric. 2014, 103, 63–74. [Google Scholar] [CrossRef]
- Klein, I.; Gessner, U.; Künzer, C. Generation of up to date land cover maps for Central Asia. In Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia; Mueller, L., Saparov, A., Lischeid, G., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 329–346. [Google Scholar]
- Karnieli, A.; Gilad, U.; Ponzet, M.; Svoray, T.; Mirzadinov, R.; Fedorina, O. Assessing land-cover change and degradation in the Central Asian deserts using satellite image processing and geostatistical methods. J. Arid Environ. 2008, 72, 2093–2105. [Google Scholar] [CrossRef]
- Propastin, P.A.; Kappas, M.; Muratova, N.R. Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003. J. Environ. Inform. 2008, 12, 75–87. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Henebry, G.M. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 2004, 89, 497–509. [Google Scholar] [CrossRef]
- Dubovyk, O.; Menz, G.; Conrad, C.; Lamers, J.; Lee, A.; Khamzina, A. Spatial targeting of land rehabilitation: A relational analysis of cropland productivity decline in arid Uzbekistan. Erdkunde 2013, 67, 167–181. [Google Scholar] [CrossRef]
- Tüshaus, J.; Dubovyk, O.; Khamzina, A.; Menz, G. Comparison of medium spatial resolution ENVISAT-MERIS and Terra-MODIS time series for vegetation decline analysis: A case study in Central Asia. Remote Sens. 2014, 6, 5238–5256. [Google Scholar] [CrossRef]
- Le, Q.B.; Nkonya, E.; Mirzabaev, A. Biomass Productivity-Based Mapping of Global Land Degradation Hotspots; Center for Development Research (ZEF): Bonn, Germany, 2014. [Google Scholar]
- Castillejo-González, I.L.; Peña-Barragán, J.M.; Jurado-Expósito, M.; Mesas-Carrascosa, F.J.; López-Granados, F. Evaluation of pixel- and object-based approaches for mapping wild oat (Avena sterilis) weed patches in wheat fields using QuickBird imagery for site-specific management. Eur. J. Agron. 2014, 59, 57–66. [Google Scholar] [CrossRef]
- Reynolds, J.; Smith, D.; Lambin, E.; Turner, B.; Mortimore, M.; Batterbury, S.; Downing, T.; Dowlatabadi, H.; Fernandez, R.; Herrick, J.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar]
- Li, Z.; Huffman, T.; McConkey, B.; Townley-Smith, L. Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sens. Environ. 2013, 138, 232–244. [Google Scholar] [CrossRef]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy global assessment of land degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Röder, A.; Udelhoven, T.; Hill, J.; del Barrio, G.; Tsiourlis, G. Trend analysis of Landsat-TM and -ETM+ imagery to monitor grazing impact in a rangeland ecosystem in northern Greece. Remote Sens. Environ. 2008, 112, 2863–2875. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Roy, D.P. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30 m Landsat data product generation. Remote Sens. Environ. 2013, 130, 280–293. [Google Scholar] [CrossRef]
- Dubovyk, O.; Menz, G.; Conrad, C.; Thonfeld, F.; Khamzina, A. Object-based identification of vegetation cover decline in irrigated agro-ecosystems in Uzbekistan. Q. Int. 2013, 311, 163–174. [Google Scholar] [CrossRef]
- Malila, W.A. Change vector analysis: An approach for detecting forest changes with Landsat. In Proceedings of The 6th Annual Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 3–6 June 1980; Purdue University Press: West Lafayette, IN, USA, 1980; pp. 326–335. [Google Scholar]
- Johnson, R.D.; Kasischke, E.S. Change vector analysis: A technique for the multispectral monitoring of land cover and condition. Int. J. Remote Sens. 1998, 19, 411–426. [Google Scholar] [CrossRef]
- Landmann, T.; Schramm, M.; Huettich, C.; Dech, S. MODIS-based change vector analysis for assessing wetland dynamics in southern Africa. Remote Sens. Lett. 2012, 1–10. [Google Scholar] [CrossRef]
- He, C.; Wei, A.; Shi, P.; Zhang, Q.; Zhao, Y. Detecting land-use/land-cover change in rural-urban fringe areas using extended change-vector analysis. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 572–585. [Google Scholar] [CrossRef]
- Karnieli, A.; Qin, Z.; Wu, B.; Panov, N.; Yan, F. Spatio-temporal dynamics of land-use and land-cover in the Mu Us sandy land, China, using the change vector analysis technique. Remote Sens. 2014, 6, 9316–9339. [Google Scholar] [CrossRef]
- Dawelbait, M.; Morari, F. Monitoring desertification in a savannah region in Sudan using Landsat images and spectral mixture analysis. J. Arid Environ. 2012, 80, 45–55. [Google Scholar] [CrossRef]
- Glazirin, G.E.; Chanishev, S.G.; Chub, V.E. Brief Outlines of Climate in Uzbekistan; Chinor ENK: Tashkent, Uzbekistan, 1999. (In Russian) [Google Scholar]
- Tischbein, B.; Awan, U.K.; Abdullaev, I.; Bobojonov, I.; Conrad, C.; Jabborov, H.; Forkutsa, I.; Ibrakhimov, M.; Poluasheva, G.; Martius, C.; et al. Water management in Khorezm: Current situation and options for improvement (hydrological perspective). In Cotton, Water, Salts and Soums; Martius, C., Rudenko, I., Lamers, J., Vlek, P., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 69–92. [Google Scholar]
- Mott-MacDonald. South Karakalpakstan Water Resources Management Improvement Project: Feasibility Report for Ministry of Agriculture and Water Resources of Uzbekistan; Mott-MacDonald (World Bank): Tashkent, Uzbekistan, 2011. [Google Scholar]
- Rakhimbaev, F.; Bezpalov, M.; Khamidov, M.; Isabaev, K.; Alieva, D. Peculiarities of Crop Irrigation in Lower Amu Darya River Areas; FAN: Tashkent, Uzbekistan, 1992. [Google Scholar]
- Akramkhanov, A.; Martius, C.; Park, S.J.; Hendrickx, J.M.H. Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma 2011, 163, 55–62. [Google Scholar] [CrossRef]
- Pohl, C.; van Genderen, J.L. Review article multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens. 1998, 19, 823–854. [Google Scholar] [CrossRef]
- LeicaGeosystems. In Imagine Autosync™ White Paper; Leica Geosystems Geospatial Imaging: Norcross, GA, USA, 2006.
- Richter, R. Atmospheric/Topographic Correction for Satellite Imagery (Atcor-2/3 User Guide, Version 8.2 Beta, February 2012). Available online: http://www.dlr.de/eoc/Portaldata/60/Resources/dokumente/5_tech_mod/atcor3_manual_2012.pdf (accessed on 20 May 2015).
- Canty, M.J.; Nielsen, A.A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted mad transformation. Remote Sens. Environ. 2008, 112, 1025–1036. [Google Scholar] [CrossRef]
- Scientific-Information Center of the Interstate Coordination Water Commission of the Central Asia (SIC-ICWC). Warmis Database. Available online: http://sic.icwc-aral.uz/index_e.htm (accessed on 20 May 2015).
- Van Assche, K.; Djanibekov, N. Spatial planning as policy integration: The need for an evolutionary perspective. Lessons from Uzbekistan. Land Use Policy 2012, 29, 179–186. [Google Scholar] [CrossRef]
- Pena-Barragan, J.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site. J. Geophys. Res. 1986, 91, 8098–8112. [Google Scholar] [CrossRef]
- Brisco, B.; Brown, R.J.; Hirose, T.; Mcnairn, H.; Staenz, K. Precision agriculture and the role of remote sensing: A review. Can. J. Remote Sens. 1998, 24, 315–327. [Google Scholar] [CrossRef]
- Asner, G.P.; Lobell, D.B. A biogeophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sens. Environ. 2000, 74, 99–112. [Google Scholar] [CrossRef]
- Chikhaoui, M.; Bonn, F.; Bokoye, A.I.; Merzouk, A. A spectral index for land degradation mapping using ASTER data: Application to a semi-arid Mediterranean catchment. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 140–153. [Google Scholar] [CrossRef]
- Plaza, A.; Martinez, P.; Perez, R.; Plaza, J. Spatial/spectral endmember extraction by multidimensional morphological operations. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2025–2041. [Google Scholar] [CrossRef]
- Dennison, P.E.; Charoensiri, K.; Roberts, D.A.; Peterson, S.H.; Green, R.O. Wildfire temperature and land cover modeling using hyperspectral data. Remote Sens. Environ. 2006, 100, 212–222. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M.; Mausel, P.; Moran, E. Mapping and monitoring land degradation risks in the western Brazilian Amazon using multitemporal Landsat TM/ETM+ images. Land Degrad. Dev. 2007, 18, 41–54. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping target signatures via partial unmixing of Aviris data. In Proceeding of Fifth JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 23–26 January 1995.
- Zerger, A.; Warren, G.; Hill, P.; Robertson, D.; Weidemann, A.; Lawton, K. Multi-criteria assessment for linking regional conservation planning and farm-scale actions. Environ. Model. Softw. 2011, 26, 103–110. [Google Scholar] [CrossRef]
- Collado, A.; Chuvieco, E.; Camarasa, A. Satellite remote sensing analysis to monitor desertification processes in the crop-rangeland boundary of Argentina. J. Arid. Environ. 2002, 52, 121–133. [Google Scholar] [CrossRef]
- Elmore, A.J.; Mustard, J.F.; Manning, S.J.; Lobell, D.B. Quantifying vegetation change in semiarid environments—Precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. Remote Sens. Environ. 2000, 73, 87–102. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember variability in spectral mixture analysis: A review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping chaparral in the Santa Monica mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Rogerson, P.A. Change detection thresholds for remotely sensed images. J. Geogr. Syst. 2002, 4, 85–97. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Man Cybern. Syst. 1979, 9, 62–66. [Google Scholar]
- Rosin, P.L. Unimodal thresholding. Pattern Recognit. 2001, 34, 2083–2096. [Google Scholar] [CrossRef]
- Chen, J.; Gong, P.; He, C.; Pu, R.; Shi, P. Land-use/land-cover change detection using improved change-vector analysis. Photogramm. Eng. Remote Sens. 2003, 69, 369–379. [Google Scholar] [CrossRef]
- Gessner, U.; Machwitz, M.; Conrad, C.; Dech, S. Estimating the fractional cover of growth forms and bare surface in savannas. A multi-resolution approach based on regression tree ensembles. Remote Sens. Environ. 2013, 129, 90–102. [Google Scholar] [Green Version]
- Dubovyk, O. Multi-Scale Targeting of Land Degradation in Northern Uzbekistan Using Satellite Remote Sensing. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2013. [Google Scholar]
- Dubovyk, O.; Conrad, C.; Khamzina, A.; Menz, G. Object-based retro-classification of agricultural land use: A case study of irrigated croplands. In Proceedings of 2013 ESA Living Planet Symposium (ESA SP-722), Edinburgh, UK, 9–13 September 2013.
- Quintano, C.; Fernandez-Manso, A.; Shimabukuro, Y.E.; Pereira, G. Spectral unmixing. Int. J. Remote Sens. 2012, 33, 5307–5340. [Google Scholar] [CrossRef]
- Trodd, N.M.; Dougill, A.J. Monitoring vegetation dynamics in semi-arid african rangelands: Use and limitations of Earth observation data to characterize vegetation structure. Appl. Geogr. 1998, 18, 315–330. [Google Scholar] [CrossRef]
- Dubovyk, O.; Menz, G.; Conrad, C.; Khamzina, A. Object-based cropland degradation identification: A case study in Uzbekistan. Proc. SPIE 2012. [Google Scholar] [CrossRef]
- Djanibekov, N.; Rudenko, I.; Lamers, J.; Bobojonov, I. Pros and cons of cotton production in Uzbekistan. In Food Policy for Developing Countries: Food Production and Supply Policie; Pinstrup-Andersen, P., Cheng, F., Eds.; Cornell University Press: Ithaca, Greece, 2010; pp. 13–27. [Google Scholar]
- Djanibekov, N.; Bobojonov, I.; Lamers, J.A. Farm reform in Uzbekistan. In Cotton, Water, Salts and Soums; Martius, C., Rudenko, I., Lamers, J.P.A., Vlek, P.L.G., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2012; pp. 95–112. [Google Scholar]
- Pomfret, R. Agrarian reform in Uzbekistan: Why has the Chinese model failed to deliver? Econ. Dev. Cult. Chang. 2000, 48, 269–284. [Google Scholar] [CrossRef]
- Djanibekov, N. Livestock system in households of Khorezm region. J. Uzb. Agric. 2006, 4, 1–10. (In Russian) [Google Scholar]
- Akramkhanov, A.; Vlek, P.G. The assessment of spatial distribution of soil salinity risk using neural network. Environ. Monit. Assess. 2012, 184, 2475–2485. [Google Scholar] [CrossRef] [PubMed]
- Sonnenschein, R.; Kuemmerle, T.; Udelhoven, T.; Stellmes, M.; Hostert, P. Differences in landsat-based trend analyses in drylands due to the choice of vegetation estimate. Remote Sens. Environ. 2011, 115, 1408–1420. [Google Scholar] [CrossRef]
- Vogt, J.V.; Safriel, U.; Von Maltitz, G.; Sokona, Y.; Zougmore, R.; Bastin, G.; Hill, J. Monitoring and assessment of land degradation and desertification: Towards new conceptual and integrated approaches. Land Degrad. Dev. 2011, 22, 150–165. [Google Scholar] [CrossRef]
- Landmann, T.; Dubovyk, O. Mapping vegetation productivity dynamics and degradation trends over East Africa using a decade of medium resolution MODIS time-series data. In Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, VIC, Australia, 21–26 July 2013; pp. 1801–1804.
- Wessels, K.J.; van den Bergh, F.; Scholes, R.J. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens. Environ. 2012, 125, 10–22. [Google Scholar] [CrossRef]
- Djanibekov, N.; Sommer, R.; Djanibekov, U. Evaluation of effects of cotton policy changes on land and water use in Uzbekistan: Application of a bio-economic farm model at the level of a water users association. Agric. Syst. 2013, 118, 1–13. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubovyk, O.; Menz, G.; Lee, A.; Schellberg, J.; Thonfeld, F.; Khamzina, A. SPOT-Based Sub-Field Level Monitoring of Vegetation Cover Dynamics: A Case of Irrigated Croplands. Remote Sens. 2015, 7, 6763-6783. https://doi.org/10.3390/rs70606763
Dubovyk O, Menz G, Lee A, Schellberg J, Thonfeld F, Khamzina A. SPOT-Based Sub-Field Level Monitoring of Vegetation Cover Dynamics: A Case of Irrigated Croplands. Remote Sensing. 2015; 7(6):6763-6783. https://doi.org/10.3390/rs70606763
Chicago/Turabian StyleDubovyk, Olena, Gunter Menz, Alexander Lee, Juergen Schellberg, Frank Thonfeld, and Asia Khamzina. 2015. "SPOT-Based Sub-Field Level Monitoring of Vegetation Cover Dynamics: A Case of Irrigated Croplands" Remote Sensing 7, no. 6: 6763-6783. https://doi.org/10.3390/rs70606763
APA StyleDubovyk, O., Menz, G., Lee, A., Schellberg, J., Thonfeld, F., & Khamzina, A. (2015). SPOT-Based Sub-Field Level Monitoring of Vegetation Cover Dynamics: A Case of Irrigated Croplands. Remote Sensing, 7(6), 6763-6783. https://doi.org/10.3390/rs70606763