Using Class Probabilities to Map Gradual Transitions in Shrub Vegetation from Simulated EnMAP Data
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. EnMAP Data
AISA Eagle/AISA Hawk | Simulated EnMAP | |
---|---|---|
Spectral range (nm) | 400–970/970–2500 | 420–2450 |
Spectral bands | 244/254 | 146 (after removal of 98 bands with low signal-to-noise ratio) |
Spectral sampling distance (nm) | 2.3/6.5 | 6.5–10 |
Ground sampling distance (m) | 5.4/5.4 (after geometric correction) | 30 |
2.3. Training Data
2.4. Reference Data
3. Methods and Data Analysis
3.1. Support Vector Classification (SVC)
3.2. Adapted Support Vector Classification
3.3. Validation
4. Results
4.1. Assessment of Discrete Shrub Cover Maps
Standard SVC | Adapted SVC | |||
---|---|---|---|---|
(a) | F1(%) | 72.37 | 81.33 | |
(b) | F1(%) | 71.15 | 75.65 | (i) |
64.41 | 67.50 | (ii) | ||
62.88 | 63.83 | (iii) | ||
55.10 | 48.17 | (iv) |
4.2. Assessment of Shrub Cover Fraction Maps
Standard SVC | Adapted SVC | |||
---|---|---|---|---|
(a) | MAE(%) | 17.10 | 16.28 | |
RMSE(%) | 29.52 | 23.20 | ||
R²(%) | 47.30 | 53.12 | ||
(b) | MAE(%) | 12.95 | 11.14 | |
RMSE(%) | 19.56 | 16.68 | (i) | |
R²(%) | 76.00 | 79.82 | ||
MAE(%) | 14.54 | 12.77 | ||
RMSE(%) | 20.24 | 17.54 | (ii) | |
R²(%) | 61.05 | 66.88 | ||
MAE(%) | 14.12 | 11.32 | ||
RMSE(%) | 21.61 | 20.33 | (iii) | |
R²(%) | 50.33 | 61.98 | ||
MAE(%) | 11.79 | 13.25 | ||
RMSE(%) | 18.32 | 30.25 | (iv) | |
R²(%) | 49.32 | 42.91 |
5. Discussion
6. Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Millennium Ecosystem Assesement. Millennium Ecosystem Assessment Synthesis Reports; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Fonseca, F.; de Figueiredo, T.; Bompastor Ramos, M.A. Carbon storage in the Mediterranean upland shrub communities of Montesinho Natural Park, northeast of Portugal. Agrofor. Syst. 2012, 86, 463–475. [Google Scholar] [CrossRef]
- Shoshany, M.; Karnibad, L. Mapping shrubland biomass along Mediterranean climatic gradients: The synergy of rainfall-based and NDVI-based models. Int. J. Remote Sens. 2011, 32, 9497–9508. [Google Scholar] [CrossRef]
- Vogiatzakis, I.N.; Mannion, A.M.; Griffiths, G.H. Mediterranean ecosystems: Problems and tools for conservation. Prog. Phys. Geogr. 2006, 30, 175–200. [Google Scholar] [CrossRef]
- Moreira, F.; Russo, D. Modelling the impact of agricultural abandonment and wildfires on vertebrate diversity in Mediterranean Europe. Landsc. Ecol. 2007, 22, 1461–1476. [Google Scholar] [CrossRef]
- Van Auken, O.W. Causes and consequences of woody plant encroachment into western North American grasslands. J. Environ. Manage. 2009, 90, 2931–2942. [Google Scholar]
- Eldridge, D.J.; Bowker, M.A.; Maestre, F.T.; Roger, E.; Reynolds, J.F.; Whitford, W.G. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecol. Lett. 2011, 14, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Graetz, R.D. Remote sensing of terrestrial ecosystem structure: An ecologist’s pragmatic view. In Ecological Studies: Remote Sensing of Biosphere Functioning; Hobbs, R.J., Mooney, H.A., Eds.; Springer Science & Business Media: Berlin, Germany, 1990; pp. 5–30. [Google Scholar]
- Shoshany, M. Satellite remote sensing of natural Mediterranean vegetation: A review within an ecological context. Prog. Phys. Geogr. 2000, 24, 53–78. [Google Scholar] [CrossRef]
- Hamada, Y.; Stow, D.A.; Roberts, D.A. Estimating life-form cover fractions in California sage scrub communities using multispectral remote sensing. Remote Sens. Environ. 2011, 115, 3056–3068. [Google Scholar] [CrossRef]
- Selkowitz, D.J. A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in Arctic Alaska. Remote Sens. Environ. 2010, 114, 1338–1352. [Google Scholar] [CrossRef]
- Silvan-Cardenas, J.L.; Wang, L. Retrieval of subpixel Tamarix canopy cover from Landsat data along the Forgotten River using linear and nonlinear spectral mixture models. Remote Sens. Environ. 2010, 114, 1777–1790. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Rango, A.; Havstad, K.M.; Paris, J.F.; Beck, R.F.; McNeely, R.; Gonzalez, A.L. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. Remote Sens. Environ. 2004, 93, 198–210. [Google Scholar] [CrossRef]
- McGlynn, I.O.; Okin, G.S. Characterization of shrub distribution using high spatial resolution remote sensing: Ecosystem implications for a former Chihuahuan Desert grassland. Remote Sens. Environ. 2006, 101, 554–566. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomForest). Remote Sens. Environ. 2006, 100, 356–362. [Google Scholar] [CrossRef]
- Jafari, R.; Lewis, M.M. Arid land characterisation with EO-1 Hyperion hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 298–307. [Google Scholar] [CrossRef]
- Hamada, Y.; Stow, D.A.; Coulter, L.L.; Jafolla, J.C.; Hendricks, L.W. Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery. Remote Sens. Environ. 2007, 109, 237–248. [Google Scholar] [CrossRef]
- Miao, X.; Patil, R.; Heaton, J.S.; Tracy, R.C. Detection and classification of invasive saltcedar through high spatial resolution airborne hyperspectral imagery. Int. J. Remote Sens. 2011, 32, 2131–2150. [Google Scholar] [CrossRef]
- Thorp, K.R.; French, A.N.; Rango, A. Effect of image spatial and spectral characteristics on mapping semi-arid rangeland vegetation using multiple endmember spectral mixture analysis (MESMA). Remote Sens. Environ. 2013, 132, 120–130. [Google Scholar] [CrossRef]
- Chopping, M.; Su, L.; Laliberte, A.; Rango, A.; Peters, D.P.C.; Kollikkathara, N. Mapping shrub abundance in desert grasslands using geometric-optical modeling and multi-angle remote sensing with CHRIS/PROBA. Remote Sens. Environ. 2006, 104, 62–73. [Google Scholar] [CrossRef]
- Stagakis, S.; Markos, N.; Sykioti, O.; Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations. Remote Sens. Environ. 2010, 114, 977–994. [Google Scholar] [CrossRef]
- Blanco, P.D.; del Valle, H.F.; Bouza, P.J.; Metternicht, G.I.; Hardtke, L.A. Ecological site classification of semiarid rangelands: Synergistic use of Landsat and Hyperion imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 29, 11–21. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens. 2015, 7, 8830. [Google Scholar] [CrossRef]
- Olsson, A.D.; Morisette, J.T. Comparison of simulated HyspIRI with two multispectral sensors for invasive species mapping. Photogramm. Eng. Remote Sens. 2014, 80, 217–227. [Google Scholar] [CrossRef]
- Leitão, P.J.; Schwieder, M.; Suess, S.; Okujeni, A.; Galvão, L.S.; van der Linden, S.; Hostert, P. Monitoring natural ecosystem and ecological gradients: Perspectives with EnMAP. Remote Sens. 2015. Accepted. [Google Scholar]
- Rosenqvist, A.; Milne, A.; Lucas, R.; Imhoff, M.; Dobson, C. A review of remote sensing technology in support of the Kyoto Protocol. Environ. Sci. Policy 2003, 6, 441–455. [Google Scholar] [CrossRef]
- Kaufmann, H.; Segl, K.; Itzerott, S.; Bach, H.; Wagner, A.; Hill, J.; Heim, B.; Oppermann, K.; Heldens, W.; Stein, E.; et al. Hyperspectral Algorithms: Report of the Frame of EnMAP Preparation Activities; German Research Center for Geosciences (GFZ): Potsdam, Germany, 2008. [Google Scholar]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Shoshany, M.; Svoray, T. Multidate adaptive unmixing and its application to analysis of ecosystem transitions along a climatic gradient. Remote Sens. Environ. 2002, 82, 5–20. [Google Scholar] [CrossRef]
- Foody, G.M. A fuzzy-sets approach to the representation of vegetation continua from remotely sensed data—An example from lowland heath. Photogramm. Eng. Remote Sens. 1992, 58, 221–225. [Google Scholar]
- Pan, Y.Z.; Hu, T.G.; Zhu, X.F.; Zhang, J.S.; Wang, X.D. Mapping cropland distributions using a hard and soft classification model. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4301–4312. [Google Scholar] [CrossRef]
- Manslow, J.; Brown, M.; Nixon, M. On the Probabilistic Interpretation of Area Based Fuzzy Land Cover Mixing Proportions; Springer-Verlag: Berlin, Germany, 2000. [Google Scholar]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Schwieder, M.; Leitão, P.J.; Suess, S.; Senf, C.; Hostert, P. Estimating fractional shrub cover using simulated EnMAP data: A comparison of three machine learning regression techniques. Remote Sens. 2014, 6, 3427–3445. [Google Scholar] [CrossRef]
- Camps-Valls, G. Machine learning in remote sensing data processing. In Proceedings of the 2009 IEEE International Workshop on Machine Learning for Signal Processing, Grenoble, France, 2–4 September 2009; pp. 1–6.
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer-Verlag: New York, USA, 1995; Volume 8. [Google Scholar]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, 110–122. [Google Scholar] [CrossRef]
- Waske, B.; van der Linden, S.; Benediktsson, J.A.; Rabe, A.; Hostert, P. Sensitivity of support vector machines to random feature selection in classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2880–2889. [Google Scholar] [CrossRef]
- Platt, J.C. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. Kernel Methods Support Vector Learn. 2000, 10, 61–74. [Google Scholar]
- Wu, T.F.; Lin, C.J.; Weng, R.C. Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 2004, 5, 975–1005. [Google Scholar]
- Waske, B.; van der Linden, S. Classifying multilevel imagery from SAR and optical sensors by decision fusion. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1457–1466. [Google Scholar] [CrossRef]
- Brown, M.; Lewis, H.G.; Gunn, S.R. Linear spectral mixture models and support vector machines for remote sensing. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2346–2360. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.P.; Li, Y.; Wang, X.F. Pixel-unmixing moderate-resolution remote sensing imagery using pairwise coupling support vector machines: A case study. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4298–4307. [Google Scholar] [CrossRef]
- Suess, S.; van der Linden, S.; Leitão, P.J.; Okujeni, A.; Waske, B.; Hostert, P. Import vector machines for quantitative analysis of hyperspectral data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 449–453. [Google Scholar] [CrossRef]
- Leitão, P.J.; Moreira, F.; Osborne, P.E. Breeding habitat selection by steppe birds in Castro Verde: A remote sensing and advanced statistics approach. Ardeola 2010, 57, 93–116. [Google Scholar]
- Moreira, F. Relationships between vegetation structure and breeding bird densities in fallow cereal steppes in Castro Verde, Portugal. Bird Study 1999, 46, 309–318. [Google Scholar] [CrossRef]
- Leitão, P.J.P. Improving Species Distribution Models to Describe Steppe Bird Occurence Patterns and Habitat Selection in Southern Portugal. Ph.D. Thesis, University of Southampton, Southampton, UK, December 2008. [Google Scholar]
- Richter, R.; Schläpfer, D. Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction. Int. J. Remote Sens. 2002, 23, 2631–2649. [Google Scholar] [CrossRef]
- Schläpfer, D.; Richter, R. Geo-atmospheric processing of airborne imaging spectrometry data. Part 1: Parametric orthorectification. Int. J. Remote Sens. 2002, 23, 2609–2630. [Google Scholar] [CrossRef]
- Segl, K.; Guanter, L.; Rogass, C.; Kuester, T.; Roessner, S.; Kaufmann, H.; Sang, B.; Mogulsky, V.; Hofer, S. EeteS: an end-to-end image simulation tool applied to the EnMAP hyperspectral mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 522–530. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1351–1362. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Rabe, A.; van der Linden, S.; Hostert, P. ImageSVM, Version 3.0. 2014. Available online: www.imagesvm.net (accessed on 12 August 2015).
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. Acm Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Van der Linden, S.; Rabe, A.; Held, M.; Jakimow, B.; Leitão, P.J.; Okujeni, A.; Schwieder, M.; Senf, C.; Suess, S.; Hostert, P. The EnMAP-Box—A toolbox and application programming interface for EnMAP data processing. Remote Sens. 2015. under review. [Google Scholar]
- Powers, D.M. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Okujeni, A.; van der Linden, S.; Tits, L.; Somers, B.; Hostert, P. Support vector regression and synthetically mixed training data for quantifying urban land cover. Remote Sens. Environ. 2013, 137, 184–197. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Wrigley, N., Bennet, R.J., Eds.; Quantitative applications in the social sciences; Addison-Wesley: New Jersey, USA, 1977; Volume 2. [Google Scholar]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM. Remote Sens. Environ. 2006, 103, 179–189. [Google Scholar] [CrossRef]
- Escadafal, R.; Huete, A. Improvement in remote sensing of low vegetation cover in arid regions by correcting vegetation indexes for soil noise. Comptes Rendus l’Académie des Sci.-Ser. II 1991, 312, 1385–1391. [Google Scholar]
- Okin, G.S.; Roberts, D.A.; Murray, B.; Okin, W.J. Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments. Remote Sens. Environ. 2001, 77, 212–225. [Google Scholar] [CrossRef]
- Mansour, K. Remote sensing based indicators of vegetation species for assessing rangeland degradation: Opportunities and challenges. Afr. J. Agric. Res. 2012, 7, 3261–3270. [Google Scholar]
- Hellesen, T.; Matikainen, L. An object-based approach for mapping shrub and tree cover on grassland habitats by use of LiDAR and CIR orthoimages. Remote Sens. 2013, 5, 558–583. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suess, S.; Van der Linden, S.; Okujeni, A.; Leitão, P.J.; Schwieder, M.; Hostert, P. Using Class Probabilities to Map Gradual Transitions in Shrub Vegetation from Simulated EnMAP Data. Remote Sens. 2015, 7, 10668-10688. https://doi.org/10.3390/rs70810668
Suess S, Van der Linden S, Okujeni A, Leitão PJ, Schwieder M, Hostert P. Using Class Probabilities to Map Gradual Transitions in Shrub Vegetation from Simulated EnMAP Data. Remote Sensing. 2015; 7(8):10668-10688. https://doi.org/10.3390/rs70810668
Chicago/Turabian StyleSuess, Stefan, Sebastian Van der Linden, Akpona Okujeni, Pedro J. Leitão, Marcel Schwieder, and Patrick Hostert. 2015. "Using Class Probabilities to Map Gradual Transitions in Shrub Vegetation from Simulated EnMAP Data" Remote Sensing 7, no. 8: 10668-10688. https://doi.org/10.3390/rs70810668
APA StyleSuess, S., Van der Linden, S., Okujeni, A., Leitão, P. J., Schwieder, M., & Hostert, P. (2015). Using Class Probabilities to Map Gradual Transitions in Shrub Vegetation from Simulated EnMAP Data. Remote Sensing, 7(8), 10668-10688. https://doi.org/10.3390/rs70810668