Mineral Classification of Makhtesh Ramon in Israel Using Hyperspectral Longwave Infrared (LWIR) Remote-Sensing Data
Abstract
:1. Introduction
2. Tools and Methods
2.1. The Study Area
2.2. The Airborne Data
2.3. Field and Laboratory Measurements
2.4. Data Analysis
2.4.1. Classification Based on Both Day and Night Images
Mineral | Indices |
---|---|
Quartz | Ls/Lbλ = 8.26 μm a − Ls/Lbλ = 8.54 μm < 0 and Ls/Lbλ = 8.54 μm − Ls/Lbλ = 9.10 μm > 0 |
Silicates b | Ls/Lbλ = 9.10 μm − Ls/Lbλ = 9.43 μm > 0 and Ls/Lbλ = 9.43 μm − Ls/Lbλ = 10.09 μm < 0 |
Gypsum | CR_Ls/Lbλ = 8.68 μm (8.17–9.01) c < 0.99 and Ls/Lbλ = 8.68 μm − Ls/Lbλ = 9.10 μm < 0 |
Carbonates | CR_Ls/Lbλ = 11.21 μm (10.98–11.45) < 0.995 |
2.4.2. Classification Based on Gain Spectrum
Mineral | Indices |
---|---|
Quartz | CRλ = 8.26 μm (8.12–9.29) a < 0.993 and CRλ = 9.15 μm (8.12–9.29) < 0.995 |
Silicates | CRλ = 9.47 μm (9.10–10.23) < 0.993 |
Gypsum | CRλ = 8.63 μm (8.40–8.78) < 0.993 |
Carbonates | CRλ = 11.16 μm (11.02–11.49) < 0.995 |
3. Results and Discussion
3.1. The Straightforward Approach
ROI | HRS Analysis a | XRD Analysis (from Major to Minor)b | HRS Analysis c |
---|---|---|---|
1 | Quartz | Quartz, Calcite, Dolomite, Kaolinite, Iron oxides | Quartz |
2 | Silicates | Albite-low, Quartz, Clinochlore | Silicates, Quartz |
3 | Not classified | Anorthite, Albite, Quartz, Ilmenite, Augite | ---- |
4 | Gypsum, Carbonates | Gypsum, Quartz, Dolomite, Calcite, Iron oxides, Titanium dioxide | Gypsum, Carbonates, Quartz |
5 | Gypsum | Gypsum, Quartz, Brushite | Gypsum, Quartz |
6 | Gypsum, Carbonates | Quartz, Gypsum, Calcite, Dolomite, Brushite | Gypsum, Carbonates |
7 | Carbonates | Calcite, Quartz | Carbonates, Quartz |
8 | Carbonates, Gypsum | Dolomite, Gypsum, Calcite, Quartz, Kaolinite, Titanium dioxide | Carbonates, Gypsum, Quartz |
9 | Carbonates | Calcite, Quartz, Dolomite, Kaolinite, Iron oxides | Carbonates, Quartz |
10 | Silicates | Calcite, Kaolinite, Quartz, Dolomite, Iron oxides | Silicates |
11 | Quartz | Quartz, Calcite, Kaolinite, Iron oxides | Quartz |
12 | Carbonates | Calcite, Quartz, Dolomite, Kaolinite | Carbonates, Quartz |
13 | Quartz, Carbonates | Quartz, Calcite, Kaolinite, Dolomite, Iron oxides | Quartz, Carbonates |
14 | Carbonates | Calcite, Quartz, Dolomite, Kaolinite, Iron oxides | Quartz, Carbonates |
15 | Quartz | Quartz, Calcite, Iron oxides | Quartz |
16 | Quartz, Carbonates | Calcite, Quartz, Kaolinite, Iron oxides, Dolomite | Quartz, Carbonates |
17 | Carbonates, Silicates | Calcite, Quartz, Dolomite, Albite | Carbonates, Silicates, Quartz |
3.2. The Gain Spectrum Approach
4. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Vaughan, R.G.; Calvin, W.M.; Taranik, J.V. SEBASS hyperspectral thermal infrared data: Surface emissivity measurement and mineral mapping. Remote Sens. Environ. 2003, 85, 48–63. [Google Scholar] [CrossRef]
- Hook, S.J.; Dmochowski, J.E.; Howard, K.A.; Rowan, L.C.; Karlstrom, K.E.; Stock, J.M. Mapping variations in weight percent silica measured from multispectral thermal infrared imagery—Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico. Remote Sens. Environ. 2005, 95, 273–289. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B.; Cudahy, T.J. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens. Environ. 2005, 99, 127–139. [Google Scholar] [CrossRef]
- Eisele, A.; Lau, I.; Hewson, R.; Carter, D.; Wheaton, B.; Ong, C.; Cudahy, T.J.; Chabrillat, S.; Kaufmann, H. Applicability of the thermal infrared spectral region for the prediction of soil properties across semi-arid agricultural landscapes. Remote Sens. 2012, 4, 3265–3286. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Coll, C.; Caselles, V.; Rubio, E.; Sospedra, F.; Enric Valor, E. Temperature and emissivity separation from calibrated data of the digital airborne imaging spectrometer. Remote Sens. Environ. 2001, 76, 250–259. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.; Wang, J.; Li, X. A Stepwise refining algorithm of temperature and emissivity separation for hyperspectral thermal infrared data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1588–1597. [Google Scholar] [CrossRef]
- Young, S.J.; Johnson, B.R.; Hackwell, J.A. An in-scene procedure for atmospheric compensation of thermal hyperspectral data. J. Geophys. Res. 2002, 107, 4774–4793. [Google Scholar] [CrossRef]
- Evenari, M.; Shanan, L.; Tadmor, N. The Negev: The Challenge of a Desert; Harvard University Press: Cambridge, MA, USA, 1982. [Google Scholar]
- The Specim AisaOWL System. Available online: http://www.specim.fi/index.php/products/airborne/aisaowl (accessed on 14 June 2015).
- The Israel Meteorological Service. Available online: http://www.ims.gov.il (accessed on 14 June 2015).
- Notesco, G.; Kopačková, V.; Rojík, P.; Schwartz, G.; Livne, I.; Ben Dor, E. Mineral classification of land surface using multispectral LWIR and hyperspectral SWIR remote-sensing data: A case study over the Sokolov Lignite Open-Pit Mines, the Czech Republic. Remote Sens. 2014, 6, 7005–7025. [Google Scholar] [CrossRef]
- The Arizona State University Spectral Library. Available online: http://speclib.asu.edu (accessed on 14 June 2015).
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Nativ, R.; Mazor, E. Rain events in an arid environment—Their distribution and ionic and isotopic composition patterns: Makhtesh Ramon Basin, Israel. J. Hydrol. 1987, 89, 205–237. [Google Scholar] [CrossRef]
- Kaufman, H.; Weisbrich, W.; Beyth, M.; Bartov, Y.; Itamar, A.; Ronen, S.; Kafri, U. Mineral identification using GER-II data acquired from Makhtesh Ramon/Negev, Israel. EARSeL Adv. Remote Sens. 1991, 1, 82–92. [Google Scholar]
- Lawes, M.J.; Nanni, R.F. The density, habitat use and social organisation of Dorcas Gazelles (Gazella dorcas) in Makhtesh Ramon, Negev Desert, Israel. J. Arid Environ. 1993, 24, 177–196. [Google Scholar] [CrossRef]
- Ben Dor, E.; Kruse, F.A. Surface mineral mapping of Makhtesh Ramon Negev, Israel using GER 63 channel scanner data. Int. J. Remote Sens. 1995, 16, 3529–3553. [Google Scholar] [CrossRef]
- Anker, Y.; Ben Dor, E.; Zelikman, E.; Karnieli, A.; Mazor, E. Makhtesh Ramon, a super site for calibration and validation of IS sensors. In Proceedings of the 6th EARSeL SIG Workshop on Imaging Spectroscopy, Tel Aviv, Israel, 16–18, March 2009.
- Guanter, L.; Segl, K.; Kaufmann, H. Simulation of optical remote-sensing scenes with application to the EnMAP hyperspectral mission. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2340–2351. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sens. Environ. 1992, 42, 83–106. [Google Scholar] [CrossRef]
- Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Howard, D.A.; Lane, M.D.; Piatek, J.L.; Ruff, S.W.; Stefanov, W.L. A thermal emission spectral library of rock-forming minerals. J. Geophys. Res. 2000, 105, 9735–9739. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Notesco, G.; Ogen, Y.; Ben-Dor, E. Mineral Classification of Makhtesh Ramon in Israel Using Hyperspectral Longwave Infrared (LWIR) Remote-Sensing Data. Remote Sens. 2015, 7, 12282-12296. https://doi.org/10.3390/rs70912282
Notesco G, Ogen Y, Ben-Dor E. Mineral Classification of Makhtesh Ramon in Israel Using Hyperspectral Longwave Infrared (LWIR) Remote-Sensing Data. Remote Sensing. 2015; 7(9):12282-12296. https://doi.org/10.3390/rs70912282
Chicago/Turabian StyleNotesco, Gila, Yaron Ogen, and Eyal Ben-Dor. 2015. "Mineral Classification of Makhtesh Ramon in Israel Using Hyperspectral Longwave Infrared (LWIR) Remote-Sensing Data" Remote Sensing 7, no. 9: 12282-12296. https://doi.org/10.3390/rs70912282
APA StyleNotesco, G., Ogen, Y., & Ben-Dor, E. (2015). Mineral Classification of Makhtesh Ramon in Israel Using Hyperspectral Longwave Infrared (LWIR) Remote-Sensing Data. Remote Sensing, 7(9), 12282-12296. https://doi.org/10.3390/rs70912282