Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI Images
Abstract
:1. Introduction
2. Methods
2.1. Principles
2.2. LSR Database Construction
Date | Wavelength (nm) | Surface Reflectance at Different AERONET Sites | |||
---|---|---|---|---|---|
Beijing | XiangHe | Beijing_RADI | Beijing_CAMS | ||
May 2012 | 645 | 0.0914 | 0.1040 | 0.0793 | 0.0933 |
858 | 0.1799 | 0.2494 | 0.2225 | 0.1807 | |
470 | 0.0465 | 0.0519 | 0.0387 | 0.0462 | |
555 | 0.0866 | 0.0935 | 0.0855 | 0.0870 | |
June 2012 | 645 | 0.0930 | 0.0796 | 0.0654 | 0.0841 |
858 | 0.1660 | 0.2503 | 0.2213 | 0.1779 | |
470 | 0.0409 | 0.0420 | 0.0303 | 0.0430 | |
555 | 0.0702 | 0.0744 | 0.0702 | 0.0807 | |
July 2012 | 645 | 0.0615 | 0.0676 | 0.0563 | 0.0471 |
858 | 0.1570 | 0.2475 | 0.2093 | 0.1383 | |
470 | 0.0325 | 0.0396 | 0.0238 | 0.0148 | |
555 | 0.0560 | 0.0667 | 0.0649 | 0.0463 | |
August 2012 | 645 | 0.0688 | 0.0490 | 0.0637 | 0.0639 |
858 | 0.1443 | 0.2245 | 0.1849 | 0.1402 | |
470 | 0.0356 | 0.0257 | 0.0305 | 0.0304 | |
555 | 0.0630 | 0.0466 | 0.0661 | 0.0571 |
3. AOD Retrieval
3.1. Data
Landsat 8 OLI (Date) | Landsat 8 OLI (Date) |
---|---|
12 May 2013 | 29 April 2014 |
13 June 2013 | 15 May 2014 |
31 July 2013 | 31 May 2014 |
1 September 2013 | 16 June 2014 |
3 October 2013 | 18 July 2014 |
4 November 2013 | 3 August 2014 |
20 November 2013 | 19 August 2014 |
6 December 2013 | 4 September 2014 |
1 August 2014 | 20 September 2014 |
13 April 2014 | 6 October 2014 |
Parameters | Landsat 8 OLI Sensor | |
---|---|---|
Spectral range | Panchromatic | 0.50–0.68 μm |
Multi-spectral | Aerosol 0.43–0.45 μm | |
Blue 0.45–0.51 μm | ||
Green 0.53–0.59 μm | ||
Red 0.64–0.67 μm | ||
NIR 0.85–0.88 μm | ||
SWIR1 1.57–1.65 μm | ||
SWIR2 2.11–2.29 μm | ||
Spatial resolution | Panchromatic | 15 m |
Multi-spectral | 30 m | |
Swath width | 185 km | |
Temporal resolution | 16 days |
3.2. The Look-Up Table
Model | Mode | rv (μm) | σ | V0 (μm3/(μm2) | k | SSA | g |
---|---|---|---|---|---|---|---|
Continental | Soluble | 0.170 | 1.09 | 3.05 | 1.53–0.006i | 0.89 | 0.63 |
Dust | 17.6 | 1.09 | 7.36 | 1.53–0.008i | |||
Soot | 0.050 | 0.69 | 0.11 | 1.75–0.440i |
3.3. AOD Retrieval
4. Results and Discussion
4.1. Characteristics of AOD Spatial Distribution
4.2. Comparison with AERONET Measurements
AODs | Counts | R2 | Absolute Error | Relative Error/% | r/% |
---|---|---|---|---|---|
AOD < 0.6 | 18 | 0.5254 | 0.143 | 84.30 | 50.00 |
AOD > 0.6 | 25 | 0.7911 | 0.206 | 34.22 | 80.00 |
Total | 43 | 0.9059 | 0.182 | 53.19 | 67.44 |
4.3. Comparison with Standard Aerosol Products
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Colvile, R.N.; Hutchinson, E.J.; Warren, R.F. The transport sector as a source of air pollution. Atmos. Environ. 2001, 35, 1537–1565. [Google Scholar] [CrossRef]
- Espinosa, A.J.F.; Rodriguez, M.T.; de la Rosa, F.J.B.; Sánchez, J.C.J. A chemical speciation of trace metals for fine urban particles. Atmos. Environ. 2002, 36, 773–780. [Google Scholar] [CrossRef]
- Xu, X.D. Dynamic issues of urban atmospheric pollution models. J. Appl. Meteorol. Sci. 2002, 13, 1–12. [Google Scholar] [CrossRef]
- Marcazzan, G.M.; Ceriani, M.; Valli, G.; Vecchi, R. Source apportionment of PM10 and PM2.5 in Milan (Italy) using receptor modelling. Sci. Total Environ. 2003, 317, 137–147. [Google Scholar] [CrossRef]
- Kocifaj, M.; Horvath, H.; Jovanović, O.; Gangl, M. Optical properties of urban aerosols in the region Bratislava-Vienna I. Methods and tests. Atmos. Environ. 2006, 40, 1922–1934. [Google Scholar] [CrossRef]
- Huang, D.S.; Xu, J.H.; Zhang, S.Q. Valuing the health risks of particulate air pollution in the Pearl River Delta, China. Environ. Sci. Policy 2012, 15, 38–47. [Google Scholar] [CrossRef]
- Riffler, M.; Popp, C.; Hauser, A.; Fontana, F.; Wunderle, S. Validation of a modified AVHRR aerosol optical depth retrieval algorithm over Central Europe. Atmos. Meas. Tech. 2010, 3, 1255–1270. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jenong, M.J.; Holben, B.N.; Zhang, J. Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS. Atmos. Meas. Tech. 2012, 5, 1761–1778. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S. Enhanced deep blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Rember, L.A.; Sayer, A.M.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 159–259. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote Sens. 1988, 9, 1357–1381. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanréx, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Kaufman, Y.J. Satellite sensing of aerosol absorption. J. Geophys. Res. Atmos. 1987, 92, 4307–4317. [Google Scholar] [CrossRef]
- Vermote, E.F.; Vermeulen, A. MODIS ATBD: Atmospheric Correction Algorithm: Spectral Reflectances (MOD09), Version 4.0, April 1999. Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod08.pdf (accessed on 30 June 2015).
- Levy, R.C.; Remer, L.A.; Martins, J.V.; Plana-Fattori, A.; Redemann, J.; Wenny, B. Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS. J. Atmos. Sci. 2005, 62, 974–992. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112, 1–21. [Google Scholar] [CrossRef]
- Jackson, J.M.; Liu, H.; Laszlo, I.; Kondragunta, S.; Remer, L.A.; Huang, J.; Huang, H.C. Suomi-NPP VIIRS aerosol algorithms and data products. J. Geophys. Res. Atmos. 2013, 118, 12673–12689. [Google Scholar] [CrossRef]
- Munchak, L.A.; Levy, R.C.; Mattoo, S.; Remer, L.A. Modis 3 km aerosol product: Applications over land in an urban/suburban region. Atmos. Meas. Tech. 2013, 6, 1747–1759. [Google Scholar] [CrossRef]
- Tanré, D.; Deschamps, P.Y.; Devaux, C.; Herman, M. Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data. J. Geophys. Res. Atmos. 1988, 93, 15955–15964. [Google Scholar] [CrossRef]
- Holben, B.N.; Vermote, E.; Kaufman, Y.J.; Tanré, D.; Kalb, V. Aerosol retrieval over land from AVHRR data-application for atmospheric correction. IEEE Trans. Geosci. Remote Sens. 1992, 30, 212–222. [Google Scholar] [CrossRef]
- Liu, G.R.; Chen, A.J.; Liu, T.H.; Kuo, T.H. Applying SPOT data to estimate the aerosol optical depth and air quality. Environ. Modell. Softw. 2002, 17, 3–9. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.A.; Levy, R.C.; Reid, J.S. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res. Atmos. 2011, 116, 613–632. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Bleiweiss, M.P.; Dubois, D. A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces. Remote Sens. Environ. 2013, 136, 135–145. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Chan, P.W. Validation and accuracy assessment of a Simplified Aerosol Retrieval Algorithm (SARA) over Beijing under low and high aerosol loadings and dust storms. Remote Sens. Environ. 2014, 153, 50–60. [Google Scholar] [CrossRef]
- Hsu, C.N.; Tsay, S.C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Hsu, C.N.; Tsay, S.C.; King, M.D.; Herman, J.R. Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3180–3195. [Google Scholar] [CrossRef]
- Hansen, M.C.; Roy, D.P.; Lindquist, E.; Adusei, B.; Justuce, C.O.; Altstatt, A. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sens. Environ. 2008, 112, 2495–2513. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Xin, Q.; Olofsson, P.; Zhu, Z.; Tan, B.; Woodcock, C.E. Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data. Remote Sens. Environ. 2013, 135, 234–247. [Google Scholar] [CrossRef]
- Roy, D.P.; Qin, Y.; Kovalskyy, V.; Vermote, E.F.; Ju, J.; Egorov, A.; Hansen, M.C.; Kommareddy, I.; Yan, L. Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction. Remote Sens. Environ. 2014, 140, 433–449. [Google Scholar] [CrossRef]
- Vermote, E.F.; Kotchenova, S.Y. MOD09 User’s Guide (J/OL). Available online: http://modis-sr.ltdri.org (accessed on 30 June 2015).
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcrette, J.J. Second Simulation of a Satellite Signal in the Solar Spectrum-Vector (6SV). Available online: http://6s.ltdri.org/files/tutorial/6S_Manual_Part_1.pdf (accessed on 30 June 2015).
- He, J.; Zha, Y.; Zhang, J.; Gao, J.; Li, Y.; Chen, X. Retrieval of aerosol optical thickness from HJ-1 CCD data based on MODIS-derived surface reflectance. Int. J. Remote Sens. 2015, 36, 882–898. [Google Scholar] [CrossRef]
- Chen, L.F. Quantitative Study and Application of Aerosol Remote Sensing Retrieval; Science Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Sun, L.; Sun, C.K.; Liu, Q.H.; Zhong, B. Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data. Sci. China Earth Sci. 2010, 53, 74–80. [Google Scholar]
- Wang, Z.T.; Li, Q.; Wang, Q.; Li, S.S.; Chen, L.F.; Zhou, C.Y.; Zhang, L.J.; Xu, Y.J. HJ-1 terrestrial aerosol data retrieval using deep blue algorithm. J. Remote Sens. 2012, 16, 596–610. [Google Scholar]
- Chew, B.N.; Campbell, J.R.; Reid, J.S.; Giles, D.M.; Welton, E.J.; Salinas, S.V.; Liew, S.C. Tropical cirrus cloud contamination in sun photometer data. Atmos. Environ. 2011, 45, 6724–6731. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F.; et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. Atmos. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloudscreening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Li, Z.Q.; Niu, F.; Lee, K.H.; Xin, J.Y.; Hao, W.M.; Nordgren, B.; Wang, Y.S.; Wang, P.C. Validation and understanding of Moderate resolution imaging spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. J. Geophys. Res. Atmos. 2007, 112, 365–371. [Google Scholar] [CrossRef]
- Ångström, A. The parameters of atmospheric turbidity. Tellus 1964, 16, 64–75. [Google Scholar] [CrossRef]
- Levy, R.C. Retrieval of Tropospheric Aerosol Properties over Land from Visible and Near-Infrared Spectral Reflectance: Application over Maryland. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2007. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Wei, J.; Bilal, M.; Tian, X.; Jia, C.; Guo, Y.; Mi, X. Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI Images. Remote Sens. 2016, 8, 23. https://doi.org/10.3390/rs8010023
Sun L, Wei J, Bilal M, Tian X, Jia C, Guo Y, Mi X. Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI Images. Remote Sensing. 2016; 8(1):23. https://doi.org/10.3390/rs8010023
Chicago/Turabian StyleSun, Lin, Jing Wei, Muhammad Bilal, Xinpeng Tian, Chen Jia, Yamin Guo, and Xueting Mi. 2016. "Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI Images" Remote Sensing 8, no. 1: 23. https://doi.org/10.3390/rs8010023
APA StyleSun, L., Wei, J., Bilal, M., Tian, X., Jia, C., Guo, Y., & Mi, X. (2016). Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI Images. Remote Sensing, 8(1), 23. https://doi.org/10.3390/rs8010023