Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Burned Area Mapping
2.3. Forest Inventory Data
2.4. Field-Based Biomass Estimation
2.5. LiDAR Dataset
2.5.1. LiDAR Data Processing
2.6. Statistical Analyses
3. Results
3.1. Analysis of Field Plot
3.2. Analysis of LiDAR Data
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Clement, C.R.; Higuchi, N. A floresta amazônica e o futuro do Brasil. Ciência Cultura 2006, 58, 44–49. [Google Scholar]
- Nobre, C.A.; Sampaio, G.; Salazar, L. Mudanças climáticas e Amazônia. Ciência Cultura 2007, 59, 22–27. [Google Scholar]
- Bi, J.; Myneni, R.; Lyapustin, A.; Wang, Y.; Park, T.; Chi, C.; Yan, K.; Knyazikhin, Y. Amazon forests’ response to droughts: A perspective from the MAIAC product. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Marengo, J.A.; Nobre, C.A.; Tomasella, J.; Oyama, M.D.; Oliveira, G.S.; de Oliveira, R.; Camargo, H.; Alves, L.M.; Brown, I.F. The drought of Amazonia in 2005. J. Clim. 2008, 21, 495–516. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Poulter, B.; Barlow, J.B.; Anderson, L.O.; Malhi, Y.; Saatchi, S.; Phillips, O.L.; Gloor, E. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. 2014, 89, 913–931. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Tomasella, J.; Alves, L.M.; Soares, W.R.; Rodriguez, D.A. The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Lewis, S.L.; Brando, P.M.; Phillips, O.L.; van der Heijden, G.M.F.; Nepstad, D. The 2010 Amazon drought. Science 2011, 331, 554. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, S.S.; Fearnside, P.M.; Graça, P.M.L.A.; Silva, P.R.T.; Dias, D.V. Suscetibilidade da vegetação ao fogo no sul do Amazonas sob condições meteorológicas atípicas durante a seca de 2005. Revista Brasileira Meteorologia 2015, 30, 134–144. [Google Scholar] [CrossRef]
- Monitoramento de Queimadas e Incêndios. Available online: http://www.inpe.br/queimadas (accessed on 20 May 2015).
- Lima, R.A.F. Estrutura e regeneração de clareiras em florestas pluviais tropicais. Braz. J. Bot. 2005, 28, 651–670. [Google Scholar] [CrossRef]
- Martins, F.S.R.V. Caracterização e Estimativa de Biomassa aérea de Florestas Atingidas Pelo Fogo a Partir de Imagens Polarimétricas ALOS/PALSAR. Master’s Thesis, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil, 2012. [Google Scholar]
- Anderson, L.O.; Aragão, L.E.O.C.; Gloor, M.; Arai, E.; Adami, M.; Saatchi, S.S.; Malhi, Y.; Shimabukuro, Y.E.; Barlow, J.; Berenguer, E.; et al. Disentangling the contribution of multiple land covers to fire-mediated carbon emissions in Amazonia during the 2010 drought. Glob. Biogeochem. Cycles 2015, 29, 1739–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlow, J.; Peres, C.A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 1787–1794. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, S.S.; Fearnside, P.M.; Alencastro Graça, P.M.L.; Nogueira, E.M.; Oliveira, L.C.; Figueiredo, E.O. Forest fires in southwestern Brazilian Amazonia: Estimates of area and potential carbon emissions. For. Ecol. Manag. 2013, 291, 199–208. [Google Scholar] [CrossRef]
- Barlow, J.; Peres, C.A.; Lagan, B.O.; Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 2003, 6, 6–8. [Google Scholar] [CrossRef]
- Brando, P.M.; Nepstad, D.C.; Balch, J.K.; Bolker, B.; Christman, M.C.; Coe, M.; Putz, F.E. Fire-induced tree mortality in a neotropical forest: The roles of bark traits, tree size, wood density and fire behavior. Glob. Chang. Biol. 2012, 18, 630–641. [Google Scholar] [CrossRef]
- Xaud, H.A.M. Abordagem Multisensor Aplicada ao Monitoramento de Florestas Tropicais Atingidas por Incêndios em Roraima. Ph.D. Thesis, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil, 2013. [Google Scholar]
- Dubayah, R.; Knox, R.; Hofton, M.; Blair, J.B.; Drake, J. Land surface characterization using LiDAR remote sensing. In Spatial Information for Land Use Management; Hill, M., Aspinall, R., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 25–38. [Google Scholar]
- Popescu, S.C.; Zhao, K.; Neuenschwander, A.; Lin, C. Satellite LiDAR vs. small footprint airborne LiDAR: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sens. Environ. 2011, 115, 2786–2797. [Google Scholar] [CrossRef]
- Drake, J.B.; Knox, R.G.; Dubayah, R.O.; Clark, D.B.; Condit, R.; Blair, J.B.; Hofton, M. Above-ground biomass estimation in closed canopy Neotropical forests using LiDAR remote sensing: Factors affecting the generality of relationships. Glob. Ecol. Biogeogr. 2003, 12, 147–159. [Google Scholar] [CrossRef]
- Balch, J.K.; Nepstad, D.C.; Curran, L.M.; Brando, P.M.; Portela, O.; Guilherme, P.; Reuning-Scherer, J.D.; Carvalho, O., Jr. Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. For. Ecol. Manag. 2011, 261, 68–77. [Google Scholar] [CrossRef]
- Brando, P.M.; Oliveria-Santos, C.; Rocha, W.; Cury, R.; Coe, M.T. Effects of experimental fuel additions on fire intensity and severity: Unexpected carbon resilience of a neotropical forest. Glob. Chang. Biol. 2016, 22, 2516–2525. [Google Scholar] [CrossRef] [PubMed]
- Devisscher, T.; Malhi, Y.; Landívar, V.D.R.; Oliveras, I. Understanding ecological transitions under recurrent wildfire: A case study in the seasonally dry tropical forests of the Chiquitania, Bolivia. For. Ecol. Manag. 2016, 360, 273–286. [Google Scholar] [CrossRef]
- Acre. Governo do Estado do Acre. Programa Estadual de Zoneamento Ecológico-Econômico do Acre; Secretaria de Estado de Meio Ambiente do Acre: Rio Branco, Brazil, 2006.
- Instituto Brasileiro de Geografia e Estatística (IBGE). Potencial Florestal do Estado do Acre; IBGE: Rio de Janeiro, Brazil, 2005.
- Brazil: Drought and Fire Response in the Amazon; World Resources Institute: Washington, DC, USA, 2011.
- Brown, I.F.; Schroeder, W.; Setzer, A.; De Los Rios Maldonado, M.; Pantoja, N.; Duarte, A.; Marengo, J. Monitoring fires in southwestern Amazonia rain forests. Eos Trans. Am. Geophys. Union 2006, 87, 253–259. [Google Scholar] [CrossRef]
- Aragão, L.E.O.; Malhi, Y.; Barbier, N.; Lima, A.; Shimabukuro, Y.; Anderson, L.; Saatchi, S. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 1779–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morton, D.C.; Le Page, Y.; DeFries, R.; Collatz, G.J.; Hurtt, G.C. Understorey fire frequency and the fate of burned forests in southern Amazonia. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20120163. [Google Scholar] [CrossRef] [PubMed]
- Mapaeamento da Degradação Florestal na Amazônia Brasileira. Available online: http://www.obt.inpe.br/degrad (accessed on 20 May 2015).
- Anderson, L.O.; Aragão, L.E.O.C.; Lima, A.; Shimabukuro, Y.E. Detecão de cicatrizes de Áreas queimadas baseada no modelo linear de mistura espectral e imagens Índice de vegetação utilizando dados multitemporais do sensor MODIS/TERRA no estado do Mato Grosso, Amazônia brasileira. Acta Amazonica 2005, 35, 445–456. [Google Scholar] [CrossRef]
- Vermote, E.F.; Kotchenova, J.P.R. MODIS Surface Reflectance User’s Guide. Available online: http://modis-sr.ltdri.org/guide/MOD09_UserGuide_v1_3.pdf (accessed on 11 June 2016).
- Shimabukuro, Y.E.; Smith, J.A. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data. IEEE Trans. Geosci. Remote Sens. 1991, 29, 16–20. [Google Scholar] [CrossRef]
- Shimabukuro, Y.E.; Duarte, V.; Arai, E.; Freitas, R.M.; Martini, P.R.; Lima, A. Monitoring land cover in Acre State, western Brazilian Amazonia, using multitemporal remote sensing data. Int. J. Image Data Fusion 2010, 1, 325–335. [Google Scholar] [CrossRef]
- Lima, A.; Silva, T.S.F.; Aragão, L.E.O.C.; Feitas, R.M.; Adami, M.; Formaggio, A.R.; Shimabukuro, Y.E. Land use and land cover changes determine the spatial relationship between fire and deforestation in the Brazilian Amazon. Appl. Geogr. 2012, 34, 239–246. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Zanne, A.E.; Lopez-Gonzalez, G.; Coomes, D.A.; Ilic, J.; Jansen, S.; Lewis, S.L.; Miller, R.B.; Swenson, N.G.; Wiemann, M.C.; Chave, J. Data from: Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar]
- Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. LiDAR Remote Sensing for Ecosystem Studies: LiDAR, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience 2002, 52, 19–30. [Google Scholar]
- Leitold, V.; Keller, M.; Morton, D.C.; Cook, B.D.; Shimabukuro, Y.E. Airborne LiDAR-based estimates of tropical forest structure in complex terrain: Opportunities and trade-offs for REDD+. Carbon Balance Manag. 2015, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Reutebuch, S.E.; Andersen, H.E.; McGaughey, R.J. Light detection and ranging (LIDAR): An emerging tool for multiple resource inventory. J. For. 2005, 103, 286–292. [Google Scholar]
- Farid, A.; Goodrich, D.; Sorooshian, S. Using airborne LiDAR to discern age classes of cottonwood trees in a riparian area. West. J. Appl. For. 2006, 21, 149–158. [Google Scholar]
- Mutlu, M.; Popescu, S.C.; Zhao, K. Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps. For. Ecol. Manag. 2008, 256, 289–294. [Google Scholar] [CrossRef]
- Hassebo, Y. Active remote sensing: LiDAR SNR improvements. Remote Sens. Adv. Tech. Platf. 2012. [Google Scholar] [CrossRef]
- Wehr, A.; Lohr, U. Airborne laser scanning-an introduction and overview. ISPRS 1999, 54, 68–82. [Google Scholar] [CrossRef]
- Large, A.R.G.; Heritage, G.L. Laser scanning—Evolution of the discipline. In Laser Scanning for the Environmental Sciences; Wiley-Blackwell: Oxford, UK, 2009; pp. 1–20. [Google Scholar]
- Carter, J.; Schmid, K.; Waters, K.; Betzhold, L.; Hadley, B.; Mataosky, R.; Halleran, J.; Center, N.C.S. An Introduction to LiDAR Technology, Data, and Applications; NOAA Coastal Services Center: Charleston, SC, USA, 2012.
- Naesset, E. Accuracy of forest inventory using airborne laser scanning: Evaluating the first nordic full-scale operational project. Scand. J. For. Res. 2004, 19, 554–557. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Ewel, J.J.; Clark, D.B. Estimation of tropical rain forest aboveground biomass with small-footprint LiDAR and hyperspectral sensors. Remote Sens. Environ. 2011, 115, 2931–2942. [Google Scholar] [CrossRef]
- Mascaro, J.; Detto, M.; Asner, G.P.; Muller-Landau, H.C. Evaluating uncertainty in mapping forest carbon with airborne LiDAR. Remote Sens. Environ. 2011, 115, 3770–3774. [Google Scholar] [CrossRef]
- Asner, G.P.; Clark, J.K.; Mascaro, J.; Galindo García, G.A.; Chadwick, K.D.; Navarrete Encinales, D.A.; Paez-Acosta, G.; Cabrera Montenegro, E.; Kennedy-Bowdoin, T.; Duque, A.; et al. High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences 2012, 9, 2683–2696. [Google Scholar] [CrossRef]
- D’Oliveira, M.V.; Reutebuch, S.E.; McGaughey, R.J.; Andersen, H.E. Estimating forest biomass and identifying low-intensity logging areas using airborne scanning LiDAR in Antimary State Forest, Acre State, Western Brazilian Amazon. Remote Sens. Environ. 2012, 124, 479–491. [Google Scholar] [CrossRef]
- Asner, G.P.; Mascaro, J. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sens. Environ. 2014, 140, 614–624. [Google Scholar] [CrossRef]
- Garcia, M.; Riaño, D.; Chuvieco, E.; Danson, F.M. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens. Environ. 2010, 114, 816–830. [Google Scholar] [CrossRef]
- Estornell, J.; Ruiz, L.; Velázquez-Martí, B.; Hermosilla, T. Estimation of biomass and volume of shrub vegetation using LiDAR and spectral data in a Mediterranean environment. Biomass Bioenergy 2012, 46, 710–721. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Q.; Kelly, M. Allometric equation choice impacts LiDAR-based forest biomass estimates: A case study from the Sierra National Forest, CA. Agric. For. Meteorol. 2012, 165, 64–72. [Google Scholar] [CrossRef]
- McGaughey, R. FUSION/LDV: Software for LIDAR Data Analysis and Visualization; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Seattle, WA, USA, 2015.
- Kronseder, K.; Ballhorn, U.; Böhm, V.; Siegert, F. Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 37–48. [Google Scholar] [CrossRef]
- Longo, M.; Keller, M.; dos Santos, M.N.; Leitold, V.; Pinagé, E.R.; Baccini, A.; Saatchi, S.; Nogueira, E.M.; Batistella, M.; Morton, D.C. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Glob. Biogeochem. Cycles 2016. under review. [Google Scholar] [CrossRef]
- Odum, E.P. Fundamentos de Ecologia, 6ed.; Fundação Calouste Gulbenkian: Lisboa, Portugal, 2001. [Google Scholar]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, E.M.; Fearnside, P.M.; Nelson, B.W.; Barbosa, R.I.; Keizer, E.W.H. Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories. For. Ecol. Manag. 2008, 256, 1853–1867. [Google Scholar] [CrossRef]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Réjou-Méchain, M.; Tymen, B.; Blanc, L.; Fauset, S.; Feldpausch, T.R.; Monteagudo, A.; Phillips, O.L.; Richard, H.; Chave, J. Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest. Remote Sens. Environ. 2015, 169, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Espírito-Santo, F.D.B.; Silva, B.S.G.; Shimabukuro, Y.E. Detecção da dinâmica da floresta de bambu no sudeste do Acre com o uso de técnicas de processamento de imagens de satélites. In Proceedings of the XI SBSR, Belo Horizonte, Brasil, 5–10 April 2003; pp. 649–656.
- Barlow, J.; Silveira, J.M.; Mestre, L.A.M.; Andrade, R.B.; Camacho D’Andrea, G.; Louzada, J.; Vaz-de Mello, F.Z.; Numata, I.; Lacau, S.; Cochrane, M.A. Wildfires in Bamboo-Dominated Amazonian Forest: Impacts on Above-Ground Biomass and Biodiversity. PLoS ONE 2012, 7, 1–11. [Google Scholar] [CrossRef]
- Silva, C.V.J.; Latorre, N.S.; Silva, R.D.A.; Brown, I.F.; Aragão, L.E.O.C. Alterações nos padrões espectrais e da paisagem devido ao impacto do fogo nas florestas dominadas por Bambu no Estado do Acre. In Proceedings of the XVII SBSR, João Pessoa, Brasil, 25–29 April 2015; pp. 6211–6218.
- Budke, J.C.; Alberti, M.S.; Zanardi, C.; Baratto, C.; Zanin, E.M. Bamboo dieback and tree regeneration responses in a subtropical forest of South America. For. Ecol. Manag. 2010, 260, 1345–1349. [Google Scholar] [CrossRef]
- De Carvalho, A.L.; Nelson, B.W.; Bianchini, M.C.; Plagnol, D.; Kuplich, T.M.; Daly, D.C. Bamboo-Dominated Forests of the Southwest Amazon: Detection, Spatial Extent, Life Cycle Length and Flowering Waves. PLoS ONE 2013, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Campanello, P.I.; Gatti, M.G.; Ares, A.; Montti, L.; Goldstein, G. Tree regeneration and microclimate in a liana and bamboo-dominated semideciduous Atlantic Forest. For. Ecol. Manag. 2007, 252, 108–117. [Google Scholar] [CrossRef]
- González, M.E.; Veblen, T.T.; Donoso, C.; Valeria, L. Tree regeneration responses in a lowland Nothofagus-dominated forest after bamboo dieback in South-Central Chile. Plant Ecol. 2002, 161, 59–73. [Google Scholar] [CrossRef]
- Montti, L.; Villagra, M.; Campanello, P.I.; Gatti, M.G.; Goldstein, G. Functional traits enhance invasiveness of bamboos over co-occurring tree saplings in the semideciduous Atlantic Forest. Acta Oecol. 2014, 54, 36–44. [Google Scholar] [CrossRef]
- Taylor, A.H.; Jinyan, H.; ShiQiang, Z. Canopy tree development and undergrowth bamboo dynamics in old-growth Abies–Betula forests in southwestern China: A 12-year study. For. Ecol. Manag. 2004, 200, 347–360. [Google Scholar] [CrossRef]
- Marchesini, V.A.; Sala, O.E.; Austin, A.T. Ecological consequences of a massive flowering event of bamboo (Chusquea culeou) in a temperate forest of Patagonia, Argentina. J. Veg. Sci. 2009, 20, 424–432. [Google Scholar] [CrossRef]
- Paul, R.; Gagnon, W.J.P. Multiple Disturbances Accelerate Clonal Growth in a Potentially Monodominant Bamboo. Ecology 2008, 89, 612–618. [Google Scholar]
- Cochrane, M.A.; Alencar, A.; Schulze, M.D.; Souza, C.M.; Nepstad, D.C.; Lefebvre, P.; Davidson, E.A. Positive Feedbacks in the Fire Dynamic of Closed Canopy Tropical Forests. Science 1999, 284, 1832–1835. [Google Scholar] [CrossRef] [PubMed]
- Slik, J.W.F.; Paoli, G.; McGuire, K.; Amaral, I.; Barroso, J.; Bastian, M.; Blanc, L.; Bongers, F.; Boundja, P.; Clark, C.; et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 2013, 22, 1261–1271. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Shimabukuro, Y.E. The Incidence of Fire in Amazonian Forests with Implications for REDD. Science 2010, 328, 1275–1278. [Google Scholar] [CrossRef] [PubMed]
- Aragao, L.E.O.C.; Malhi, Y.; Metcalfe, D.; Silva-Espejo, J.; Jimenez, E.; Navarrete, D.; Almeida, S.; Costa, A.; Salinas, N.; Phillips, O.; et al. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 2009, 6, 2759–2778. [Google Scholar] [CrossRef]
- Lima, A.; Shimabukuro, Y.E.; Adami, M.; Freitas, R.M.; Aragão, L.E.O.C.; Formaggio, A.R.; Lombardi, R. Mapeamento de Cicatrizes de Queimadas na Amazônia Brasileira a partir da aplicação do Modelo Linear de Mistura Espectral em imagens do sensor MODIS. In Proceedings of the Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, Natal, Brasil, 25–30 April 2009; pp. 5925–5932.
Parameter | Specification |
---|---|
Instrument | Optec Orion |
Position system | APPLANIX 09SEN243 |
Average flight altitude | 900 m |
System frequency | 100 kHz |
Scan frequency | 61.4 Hz |
Scan Angle | 11.1° |
Overlap between flight lines | 65% |
Beam divergence | 0.25 mrad |
Sites | Years of Occurrence of Fire | Height (m) | AGB (Mg·ha−1) | ||
---|---|---|---|---|---|
Control Mean ± stdev | Burned Mean ± stdev | Control Mean ± stdev | Burned Mean ± stdev | ||
RIB | 2005 | 23.66 ± 3.90 | 23.13 ± 3.99 | 134.03 ± 50.61 | 125.04 ± 46.89 |
Humaitá | 2005 | 23.54 ± 3.96 | 21.36 ± 3.82 | 110.35 ± 35.44 | 95.28 ± 32.60 |
Bonal | 2010 | 21.93 ± 3.02 | 17.49 ± 3.99 | 113.95 ± 34.37 | 93.56 ± 30.97 |
Talismã | 2010 | 21.73 ± 4.81 | 19.55 ± 4.50 | 103.46 ± 34.20 | 79.99 ± 32.72 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, L.Y.; Gomes, V.C.F.; Shimabukuro, Y.E.; Keller, M.; Arai, E.; Dos-Santos, M.N.; Brown, I.F.; Aragão, L.E.O.e.C.d. Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia. Remote Sens. 2016, 8, 839. https://doi.org/10.3390/rs8100839
Sato LY, Gomes VCF, Shimabukuro YE, Keller M, Arai E, Dos-Santos MN, Brown IF, Aragão LEOeCd. Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia. Remote Sensing. 2016; 8(10):839. https://doi.org/10.3390/rs8100839
Chicago/Turabian StyleSato, Luciane Yumie, Vitor Conrado Faria Gomes, Yosio Edemir Shimabukuro, Michael Keller, Egidio Arai, Maiza Nara Dos-Santos, Irving Foster Brown, and Luiz Eduardo Oliveira e Cruz de Aragão. 2016. "Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia" Remote Sensing 8, no. 10: 839. https://doi.org/10.3390/rs8100839