Quantifying the Daytime and Night-Time Urban Heat Island in Birmingham, UK: A Comparison of Satellite Derived Land Surface Temperature and High Resolution Air Temperature Observations
Abstract
:1. Introduction
1.1. Background
1.2. Measuring the Urban Heat Island
2. Study Area
3. Methodology and Datasets
3.1. Tair Data Acquisition and Processing
3.2. Pasquill-Gifford Stability Classes
3.3. LST Data Acquisition and Processing
4. Results
4.1. Stability Classification
4.2. Daytime UHIsurface
4.3. Daytime UHIcanopy
4.4. Night-time UHIsurface
4.5. Night-Time UHIcanopy
5. Comparisons between Land Surface and Air Temperatures
5.1. Daytime
5.2. Night-Time
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Oke, T. Boundary Layer Climates, 2nd ed.; Methuen: London, UK, 1987; p. 289. [Google Scholar]
- Lac, C.; Donnelly, R.P.; Masson, V.; Pal, S.; Riette, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I. CO2 dispersion modelling over paris region within the CO2-megaparis project. Atmos. Chem. Phys. 2013, 13, 4941–4961. [Google Scholar] [CrossRef]
- Bohnenstengel, S.I.; Evans, S.; Clark, P.A.; Belcher, S.E. Simulations of the london urban heat island. Q. J. R. Meteorol. Soc. 2011, 137, 1625–1640. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol. 2011, 31, 200–217. [Google Scholar] [CrossRef]
- Chapman, L.; Azevedo, J.A.; Prieto-Lopez, T. Urban heat & critical infrastructure networks: A viewpoint. Urban Clim. 2013, 3, 7–12. [Google Scholar]
- Tomlinson, C.; Chapman, L.; Thornes, J.; Baker, C. Including the urban heat island in spatial heat health risk assessment strategies: A case study for Birmingham, UK. Int. J. Health Geogr. 2011, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamouris, M.; Papanikolaou, N.; Livada, I.; Koronakis, I.; Georgakis, C.; Argiriou, A.; Assimakopoulos, D.N. On the impact of urban climate on the energy consumption of buildings. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- Dousset, B.; Gourmelon, F.; Laaidi, K.; Zeghnoun, A.; Giraudet, E.; Bretin, P.; Mauri, E.; Vandentorren, S. Satellite monitoring of summer heat waves in the paris metropolitan area. Int. J. Climatol. 2011, 31, 313–323. [Google Scholar] [CrossRef]
- Smith, C.; Webb, A.; Levermore, G.J.; Lindley, S.J.; Beswick, K. Fine-scale spatial temperature patterns across a UK conurbation. Clim. Chang. 2011, 109, 269–286. [Google Scholar] [CrossRef]
- Oke, T. The Heat Island of the Urban Boundary Layer: Characteristics, Causes and Effects; Springer Netherlands: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Wilby, R.L. Past and projected trends in london’s urban heat island. Weather 2003, 58, 251–260. [Google Scholar] [CrossRef]
- Muller, C.L.; Chapman, L.; Grimmond, C.S.B.; Young, D.T.; Cai, X. Sensors and the city: A review of urban meteorological networks. Int. J. Climatol. 2013, 33, 1585–1600. [Google Scholar] [CrossRef]
- Barlow, J.F. Progress in observing and modelling the urban boundary layer. Urban Clim. 2014, 10, 216–240. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Blackett, M.; Best, M.J.; Barlow, J.; Baik, J.J.; Belcher, S.E.; Bohnenstengel, S.I.; Calmet, I.; Chen, F.; Dandou, A.; et al. The international urban energy balance models comparison project: First results from phase 1. J. Appl. Meteorol. Climatol. 2010, 49, 1268–1292. [Google Scholar] [CrossRef]
- Heaviside, C.; Cai, X.M.; Vardoulakis, S. The effects of horizontal advection on the urban heat island in Birmingham and the West Midlands, United Kingdom during a heatwave. Q. J. R. Meteorol. Soc. 2015, 141, 1429–1441. [Google Scholar] [CrossRef]
- Bassett, R.; Cai, X.; Thornes, J.E.; Rees, R.; Chapman, L. Urban climatic map studies in UK: Birmingham. In The Urban Climatic Map: A Methodology for Sustainable Urban Planning; Edward, N., Chao, R., Eds.; Routledge: London, UK, 2015. [Google Scholar]
- Muller, C.L.; Chapman, L.; Grimmond, C.S.B.; Young, D.T.; Cai, X.M. Toward a standardized metadata protocol for urban meteorological networks. Bull. Am. Meteorol. Soc. 2013, 94, 1161–1185. [Google Scholar] [CrossRef]
- Chapman, L.; Muller, C.L.; Young, D.T.; Warren, E.L.; Grimmond, C.S.B.; Cai, X.M.; Ferranti, E.J.S. The Birmingham urban climate laboratory: An open meteorological testbed and challenges of the smart city. Bull. Am. Meteorol. Soc. 2014, 96, 1545–1560. [Google Scholar] [CrossRef]
- Muller, C.L.; Chapman, L.; Johnston, S.; Kidd, C.; Illingworth, S.; Foody, G.; Overeem, A.; Leigh, R.R. Crowdsourcing for climate and atmospheric sciences: Current status and future potential. Int. J. Climatol. 2015, 35, 3185–3203. [Google Scholar] [CrossRef]
- Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C.J. Derivation of birmingham’s summer surface urban heat island from modis satellite images. Int. J. Climatol. 2012, 32, 214–224. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of european cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Keramitsoglou, I.; Kiranoudis, C.T.; Ceriola, G.; Weng, Q.; Rajasekar, U. Identification and analysis of urban surface temperature patterns in greater Athens, Greece, using MODIS imagery. Remote Sens. Environ. 2011, 115, 3080–3090. [Google Scholar] [CrossRef]
- Dousset, B. Avhrr-derived cloudiness and surface temperature patterns over the los angeles area and their relationship to land use. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS-89), Vancouver, BC, Canada, 10–14 July1989; pp. 2132–2137.
- Dousset, B.; Laaidi, K.; Zeghnoun, A. Surface temperature variability and mortality impact in the paris region during the august 2003 heat wave. Urban Clim. News 2011, 32, 7–14. [Google Scholar]
- De Ridder, K.; Bertrand, C.; Casanova, G.; Lefebvre, W. Exploring a new method for the retrieval of urban thermophysical properties using thermal infrared remote sensing and deterministic modeling. J. Geophys. Res. Atmos. 2012, 117, 1–14. [Google Scholar] [CrossRef]
- Wouters, H.; De Ridder, K.; Demuzere, M.; Lauwaet, D.; van Lipzig, N.P.M. The diurnal evolution of the urban heat island of paris: A model-based case study during summer 2006. Atmos. Chem. Phys. 2013, 13, 8525–8541. [Google Scholar] [CrossRef]
- Keramitsoglou, I.; Daglis, I.A.; Amiridis, V.; Chrysoulakis, N.; Ceriola, G.; Manunta, P.; Maiheu, B.; De Ridder, K.; Lauwaet, D.; Paganini, M. Evaluation of satellite-derived products for the characterization of the urban thermal environment. J. Appl. Remote Sens. 2012, 6, 061704. [Google Scholar] [CrossRef]
- Azevedo, J.A.; Chapman, L.; Muller, C.L. Critique and suggested modifications of the degree days methodology to enable long-term electricity consumption assessments: A case study in Birmingham, UK. Meteorol. Appl. 2015, 22, 789–796. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Prieto-Lopez, T.; Bassett, R.; Chapman, L.; Cai, X.M.; Thornes, J.E.; Baker, C.J. Showcasing urban heat island work in Birmingham—Measuring, monitoring, modelling and more. Weather 2013, 68, 44–49. [Google Scholar] [CrossRef]
- Birmingham City Council (BCC). B.C.C. Population in Birmingham. Available online: http://www.birmingham.gov.uk/ (accessed on 19 November 2014).
- Minder, J.R.; Mote, P.W.; Lundquist, J.D. Surface temperature lapse rates over complex terrain: Lessons from the cascade mountains. J. Geophys. Res. Atmos. 2010, 115, D14122. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Urban Atlas. Available online: http://www.eea.europa.eu/data-and-maps/data/urban-atlas#tab-figures-produced (accessed on 3 November 2015).
- Zhang, F.; Cai, X.; Thornes, J.E. Birmingham’s air and surface urban heat islands associated with lamb weather types and cloudless anticyclonic conditions. Prog. Phys. Geogr. 2014, 38, 431–447. [Google Scholar] [CrossRef]
- Young, D.T.; Chapman, L.; Muller, C.L.; Cai, X.M.; Grimmond, C.S.B. A low-cost wireless temperature sensor: Evaluation for use in environmental monitoring applications. J. Atmos. Ocean. Technol. 2014, 31, 938–944. [Google Scholar] [CrossRef]
- Scientific, C. Instructions wxt520 Weather Transmitter. Available online: https://s.campbellsci.com/documents/us/manuals/wxt520.pdf (accessed on 8 January 2016).
- Warren, E. Hitemp: High Density Meterological and Temperature Measurements within the Urban Birmingham Conurbation for the Hitemp Project; NCAS British Atmospheric Data Centre: London, UK, 2015. [Google Scholar]
- Chapman, L.; Thornes, J.E. The use of geographical information systems in climatology and meteorology. Prog. Phys. Geogr. 2003, 27, 313–330. [Google Scholar] [CrossRef]
- UKMO. U.M.O. Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-Current). Available online: http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_ukmo-midas (accessed on 19 November 2014).
- Pasquill, F.; Smith, F. Atmospheric Diffusion, 3rd ed.; Ellis Horwood Limited: Chichester, UK, 1983. [Google Scholar]
- USGS. U.S.G.S. Band Designation Landsat Satellites. Available online: http://landsat.usgs.gov/band_designations_landsat_satellites.php (accessed on 7 July 2014).
- USGS. U.S.G.S. Myd11a1 (v5)—Modis/Aqua Land Surface Temperature and Emissivity Daily l3 1 km Grid Sin. Available online: http://glovis.usgs.gov/ (accessed on 7 July 2014).
- LPDAAC. L.P.D.A.A.C. Modis Products Table—Myd11a1. Available online: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/myd11a1 (accessed on 07 July 2014).
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C.J.; Prieto-Lopez, T. Comparing night-time satellite land surface temperature from modis and ground measured air temperature across a conurbation. Remote Sens. Lett. 2012, 3, 657–666. [Google Scholar] [CrossRef]
- LPDAAC. L.P.D.A.A.C. Modis Reprojection Tool. Available online: https://lpdaac.usgs.gov/tools/modis_reprojection_tool (accessed on 7 July 2014).
- Kolokotroni, M.; Giridharan, R. Urban heat island intensity in london: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Solar Energy 2008, 82, 986–998. [Google Scholar] [CrossRef]
- UKMO. U.M.O. Midlands: Climate. Available online: http://www.metoffice.gov.uk/climate/uk/regional-climates/mi (accessed on 21 April 2015).
- Chandler, T. Climate of London; W. Heffer & Sons, Ltd.: Cambridge, UK, 1965. [Google Scholar]
- Unger, J.; Sümeghy, Z.; Szegedi, S.; Kiss, A.; Géczi, R. Comparison and generalisation of spatial patterns of the urban heat island based on normalized values. Phys. Chem. Earth A/B/C 2010, 35, 107–114. [Google Scholar] [CrossRef]
- Brandsma, T.; Können, G.P.; Wessels, H.R.A. Empirical estimation of the effect of urban heat advection on the temperature series of de bilt (The Netherlands). Int. J. Climatol. 2003, 23, 829–845. [Google Scholar] [CrossRef]
- Unger, J.; Gal, T.; Rakonczai, J.; Mucsi, L.; Szatmari, J.; Tobak, Z.; van Leeuwen, B.; Fiala, K. Modeling of the urban heat island pattern based on the relationship between surface and air temperatures. Idöjárás 2010, 114, 287–302. [Google Scholar]
Class | Definition |
---|---|
A | Extremely Unstable |
B | Moderately Unstable |
C | Slightly Unstable |
D | Neutral |
E | Slightly Stable |
F | Moderately Stable |
G | Extremely stable |
Sky Cover | Solar Elevation | ||
---|---|---|---|
Angle > 60° | 35° > Angle < 60° | 15° > Angle < 35° | |
≤4/8 or any amount of high thin clouds | Strong | Moderate | Slight |
>4/8 middle clouds (700 foot—16,000 foot base) | Moderate | Slight | Slight |
>4/8 low clouds (less than 7000 foot base) | Slight | Slight | Slight |
Surface Wind Speed (m·s−1) | Night | Day with Insolation | |||
---|---|---|---|---|---|
Cloud Cover | Insolation | ||||
≥4/8 Oktas | <4/8 Oktas | Strong | Moderate | Slight | |
<2 | G | G | A | A–B | B |
2–3 | E | F | A-B | B | C |
3–5 | D | E | B | B–C | C |
5–6 | D | D | C | C–D | D |
>6 | D | D | C | D | D |
LST = 11 Daytime Images | Tair = 87 Days Analysed | Pasquill-Gifford Class | Description |
0 | 12 | A and A-B | Extremely Unstable |
8 | 22 | B and B-C | Moderately Unstable |
2 | 50 | C and C-D | Slightly Unstable |
1 | 3 | D | Neutral |
LST = 13 Night-Time Images | Tair = 86 Days Analysed | Pasquill-Gifford Class | Description |
0 | 23 | D | Neutral |
0 | 19 | E | Slightly Stable |
3 | 13 | F | Moderately Stable |
10 | 31 | G | Extremely stable |
Temperature Difference (°C) | Land Use |
---|---|
10.9–13.3 | Industrial and commercial |
9.5–10.9 | Continuous urban fabric; and discontinuous dense urban fabric |
8.7–9.5 | Discontinuous low density urban fabric |
6.8–8.7 | Discontinuous low density urban fabric |
3.1–6.8 | Discontinuous low density urban fabric and green urban area |
Temperature Difference (°C) | Land Use |
---|---|
−0.7–−1.2 | Industrial and commercial; continuous urban fabric; discontinuous dense urban fabric |
−1.2–−1.7 | Industrial and commercial; continuous urban fabric; discontinuous dense urban fabric |
−1.7–−2.2 | Discontinuous low density urban fabric; continuous and discontinuous urban fabric; and small proportion of industrial and commercial |
−2.2–−2.7 | Discontinuous low density urban fabric and green urban area |
−2.7–−3.2 | Green urban area |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azevedo, J.A.; Chapman, L.; Muller, C.L. Quantifying the Daytime and Night-Time Urban Heat Island in Birmingham, UK: A Comparison of Satellite Derived Land Surface Temperature and High Resolution Air Temperature Observations. Remote Sens. 2016, 8, 153. https://doi.org/10.3390/rs8020153
Azevedo JA, Chapman L, Muller CL. Quantifying the Daytime and Night-Time Urban Heat Island in Birmingham, UK: A Comparison of Satellite Derived Land Surface Temperature and High Resolution Air Temperature Observations. Remote Sensing. 2016; 8(2):153. https://doi.org/10.3390/rs8020153
Chicago/Turabian StyleAzevedo, Juliana Antunes, Lee Chapman, and Catherine L. Muller. 2016. "Quantifying the Daytime and Night-Time Urban Heat Island in Birmingham, UK: A Comparison of Satellite Derived Land Surface Temperature and High Resolution Air Temperature Observations" Remote Sensing 8, no. 2: 153. https://doi.org/10.3390/rs8020153
APA StyleAzevedo, J. A., Chapman, L., & Muller, C. L. (2016). Quantifying the Daytime and Night-Time Urban Heat Island in Birmingham, UK: A Comparison of Satellite Derived Land Surface Temperature and High Resolution Air Temperature Observations. Remote Sensing, 8(2), 153. https://doi.org/10.3390/rs8020153