Organismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Foliar Sampling and Analysis
2.3. Remotely Sensed Data
2.4. Model Development
2.5. Model Application and Assessment
Foliar Trait | Mean | Std. Dev. |
---|---|---|
LMA (g·m−2) | 104.4 | 26.6 |
N (%) | 2.38 | 0.68 |
P (%) | 0.12 | 0.05 |
Ca (%) | 0.91 | 0.83 |
K (%) | 0.64 | 0.31 |
Mg (%) | 0.22 | 0.13 |
3. Results
3.1. Model Fitting and Selection
Foliar Trait | R2 | Cal RMSE | nRMSE | R2 | Val RMSE | nRMSE | LV * | R2 | Test RMSE | nRMSE |
---|---|---|---|---|---|---|---|---|---|---|
LMA | 0.46 | 18.69 | 0.12 | 0.43 | 19.25 | 0.12 | 9 | 0.26 | 14.71 | 0.10 |
N | 0.56 | 0.45 | 0.12 | 0.53 | 0.47 | 0.13 | 9 | 0.36 | 0.38 | 0.10 |
P | 0.53 | 0.03 | 0.14 | 0.50 | 0.04 | 0.14 | 9 | 0.36 | 0.03 | 0.11 |
Ca | 0.66 | 0.52 | 0.12 | 0.64 | 0.53 | 0.13 | 9 | 0.56 | 0.47 | 0.11 |
K | 0.51 | 0.20 | 0.11 | 0.48 | 0.21 | 0.11 | 9 | 0.27 | 0.17 | 0.09 |
Mg | 0.69 | 0.06 | 0.08 | 0.67 | 0.06 | 0.08 | 9 | 0.57 | 0.06 | 0.08 |
3.2. Model Application and Evaluation
Trait | Intercept (95% CI) | Slope (95% CI) | R2 | RMSE | nRMSE |
---|---|---|---|---|---|
LMA | −16.12 (−36.2, 3.97) | 1.18 (0.99, 1.37) | 0.45 | 19.8 | 0.13 |
N | −0.35 (−0.77, 0.06) | 1.14 (0.97, 1.31) | 0.49 | 0.50 | 0.14 |
P | −0.02 (−0.04, 0.003) | 1.11 (0.96, 1.26) | 0.53 | 0.03 | 0.12 |
Ca | −0.05 (−0.16, 0.07) | 1.05 (0.94, 1.15) | 0.67 | 0.47 | 0.11 |
K | −0.14 (−0.27, −0.02) | 1.2 (1.02, 1.39) | 0.47 | 0.22 | 0.12 |
Mg | −0.01 (−0.04, 0.02) | 1.12 (0.97, 1.28) | 0.53 | 0.09 | 0.13 |
3.3. Coefficient and Trait Correlations
4. Discussion
4.1. Mapped Canopy Traits
4.2. Foliar Trait and Canopy Reflectance Interrelationships
4.3. Future Research Directions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CAO-AToMS | Carnegie Airborne Observatory—Airborne Taxonomic Mapping System |
DCM | Digital canopy model |
DSM | Digital surface model |
DTM | Digital terrain model |
GPS | Global positioning system |
HiFIS | High Fidelity Imaging Spectroscopy |
ICP-OES | inductively coupled plasma optical emission spectrometer |
IMU | Inertial measurement unit |
LACC | Los Amigos Conservation Concession |
LiDAR | Light detection and ranging |
LMA | Leaf mass per area |
NDVI | Normalized difference vegetation index |
PLSR | Partial least squares regression |
RDN | Rock derived nutrients |
RMSE | Root mean square error |
VSWIR | Visible to shortwave infrared |
Appendix A
Trait | Natural Log Transformed | Back Transformed | ||
---|---|---|---|---|
Intercept (95% CI) | Slope (95% CI) | Intercept (95% CI) | Slope (95% CI) | |
LMA | −0.56 (−1.37, 0.25) | 1.13 (0.95, 1.3) | −11.71 (−30.75, 7.33) | 1.15 (0.97, 1.34) |
N | −0.14 (−0.3, 0.01) | 1.16 (0.98, 1.34) | −0.53 (−0.95, −0.11) | 1.24 (1.06, 1.41) |
P | 0.37 (0.04, 0.706) | 1.19 (1.03, 1.35) | −0.03 (−0.05, −0.005) | 1.22 (1.05, 1.38) |
Ca | 0.12 (0.01, 0.23) | 1.05 (0.94, 1.16) | 0.16 (0.06, 0.27) | 0.95 (0.85, 1.06) |
K | 0.05 (−0.06, 0.15) | 1.16 (0.97, 1.35) | −0.16 (−0.29, −0.04) | 1.29 (1.09, 1.49) |
Mg | 0.16 (−0.09, 0.41) | 1.05 (0.91, 1.18) | 0.01 (−0.02, 0.04) | 1.09 (0.93, 1.24) |
References
- Violle, C.; Reich, P.B.; Pacala, S.W.; Enquist, B.J.; Kattge, J. The emergence and promise of functional biogeography. Proc. Natl. Acad. Sci. USA 2014, 111, 13690–13696. [Google Scholar] [CrossRef] [PubMed]
- Malhi, Y.; Grace, J. Tropical forests and atmospheric carbon dioxide. Trends Ecol. Evol. 2000, 15, 332–337. [Google Scholar] [CrossRef]
- Schimel, D.; Stephens, B.B.; Fisher, J.B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Townsend, A.R.; Asner, G.P.; Cleveland, C.C. The biogeochemical heterogeneity of tropical forests. Trends Ecol. Evol. 2008, 23, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Kokaly, R.F.; Asner, G.P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 2009, 113, S78–S91. [Google Scholar] [CrossRef]
- Ollinger, S.V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P.; Martin, R.E.; Knapp, D.E.; Tupayachi, R.; Anderson, C.; Carranza, L.; Martinez, P.; Houcheime, M.; Sinca, F.; Weiss, P. Spectroscopy of canopy chemicals in humid tropical forests. Remote Sens. Environ. 2011, 115, 3587–3598. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E.; Tupayachi, R.; Emerson, R.; Martinez, P.; Sinca, F.; Powell, G.V.N.; Wright, S.J.; Lugo, A.E. Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests. Ecol. Appl. 2011, 21, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Feilhauer, H.; Asner, G.P.; Martin, R.E.; Schmidtlein, S. Brightness-normalized Partial Least Squares Regression for hyperspectral data. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1947–1957. [Google Scholar] [CrossRef]
- Feilhauer, H.; Asner, G.P.; Martin, R.E. Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sens. Environ. 2015, 164, 57–65. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E.; Anderson, C.B.; Knapp, D.E. Quantifying forest canopy traits: Imaging spectroscopy versus field survey. Remote Sens. Environ. 2015, 158, 15–27. [Google Scholar] [CrossRef]
- Asner, G.P.; Anderson, C.B.; Martin, R.E.; Tupayachi, R.; Knapp, D.E.; Sinca, F. Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy. Nat. Geosci. 2015, 8, 567–573. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 1992, 62, 365–392. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Demarty, M.; Morvan, C.; Thellier, M. Calcium and the cell wall. Plant Cell Environ. 1984, 7, 441–448. [Google Scholar] [CrossRef]
- McLaughlin, S.B.; Wimmer, R. Calcium physiology and terrestrial ecosystem processes. New Phytol. 1999, 142, 373–417. [Google Scholar] [CrossRef]
- Vitousek, P.M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 1984, 65, 285–298. [Google Scholar] [CrossRef]
- Cuevas, E.; Medina, E. Nutrient dynamics within Amazonian forests. Oecologia 1988, 76, 222–235. [Google Scholar] [CrossRef]
- Kaspari, M.; Garcia, M.; Harms, K. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology 2008, 11, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Townsend, A.R.; Cleveland, C.C.; Houlton, B.Z.; Alden, C.B.; White, J.W. Multi-element regulation of the tropical forest carbon cycle. Front. Ecol. Environ. 2011, 9, 9–17. [Google Scholar] [CrossRef]
- Wright, S.J.; Yavitt, J.B.; Wurzburger, N.; Turner, B.L.; Tanner, E.V.J.; Sayer, E.J.; Santiago, L.S.; Kaspari, M.; Hedin, L.O.; Harms, K.E.; et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 2011, 92, 1616–1625. [Google Scholar] [CrossRef] [PubMed]
- Koerselman, W.; Meuleman, A.F.M. The Vegetation N:P Ratio: A New Tool to Detect the Nature of Nutrient Limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Güsewell, S. N:P Ratios in Terrestrial Plants: Variation and Functional Significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Rigsby, C.A.; Hemric, E.M.E.; Baker, P.A. Late Quaternary Paleohydrology of the Madre de Dios River, southwestern Amazon Basin, Peru. Geomorphology 2009, 113, 158–172. [Google Scholar] [CrossRef]
- Osher, L.J.; Buol, S.W. Relationship of soil properties to parent material and landscape position in eastern Madre de Dios, Peru. Geoderma 1998, 83, 143–166. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E. Airborne spectranomics: Mapping canopy chemical and taxonomic diversity in tropical forests. Front. Ecol. Environ. 2009, 7, 269–276. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E. Canopy phylogenetic, chemical and spectral assembly in a lowland Amazonian forest. New Phytol. 2011, 189, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P.; Martin, R.E.; Tupayachi, R.; Anderson, C.B.; Sinca, F.; Carranza-Jimenez, L.; Martinez, P.; Carranza-Jiménez, L.; Martinez, P. Amazonian functional diversity from forest canopy chemical assembly. Proc. Natl. Acad. Sci. USA 2014, 111, 5604–5609. [Google Scholar] [CrossRef] [PubMed]
- Carnegie Spectranomics. Available online: http://spectranomics.ciw.edu (accessed on 19 January 2016).
- Stanford Environmental Measurements Facility. Available online: http://em1.stanford.edu (accessed on 19 January 2016).
- Asner, G.P.; Knapp, D.E.; Boardman, J.; Green, R.O.; Kennedy-Bowdoin, T.; Eastwood, M.; Martin, R.E.; Anderson, C.; Field, C.B. Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens. Environ. 2012, 124, 454–465. [Google Scholar] [CrossRef]
- Asner, G.; Martin, R. Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels. Remote Sens. Environ. 2008, 112, 3958–3970. [Google Scholar] [CrossRef]
- Asner, G.P.; Knapp, D.E.; Kennedy-Bowdoin, T.; Jones, M.O.; Martin, R.E.; Boardman, J.; Field, C.B. Carnegie Airborne Observatory: In-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems. J. Appl. Remote Sens. 2007, 1. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- RDC Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- Schmidtlein, S.; Feilhauer, H.; Bruelheide, H. Mapping plant strategy types using remote sensing. J. Veg. Sci. 2012, 23, 395–405. [Google Scholar] [CrossRef]
- Piñeiro, G.; Perelman, S.; Guerschman, J.P.; Paruelo, J.M. How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecol. Model. 2008, 216, 316–322. [Google Scholar] [CrossRef]
- Salo, J.S.; Kalliola, R.; Häkkinen, I.; Mäkinen, Y.; Niemelä, P.; Puhakka, M.; Coley, P.D. River dynamics and the diversity of Amazon lowland forest. Nature 1986, 322, 254–258. [Google Scholar] [CrossRef]
- Puhakka, M.; Kalliola, R.; Rajasilta, M.; Salo, J. River Types, Site Evolution and Successional Vegetation Patterns in Peruvian Amazonia. J. Biogeogr. 1992, 19, 651–665. [Google Scholar] [CrossRef]
- Pitman, N.C.A. An Overview of the Los Amigos Watershed, Madre de Dios, Southeastern Peru; Draft Report; Amazon Conservation Association: Washington, DC, USA, 2010. [Google Scholar]
- Chadwick, K.D.; Asner, G.P. Tropical soil nutrient distributions determined by biotic and hillslope processes. Biogeochemistry 2016. [Google Scholar] [CrossRef]
- Fyllas, N.M.; Patiño, S.; Baker, T.R.; Nardoto, G.B.; Martinelli, L.A.; Quesada, C.A.; Paiva, R.; Schwarz, M.; Horna, V.; Mercado, L.M.; et al. Basin-wide variations in foliar properties of Amazonian forest: Phylogeny, soils and climate. Biogeosciences 2009, 6, 2677–2708. [Google Scholar] [CrossRef] [Green Version]
- Townsend, P.A.; Serbin, S.P.; Kruger, E.L.; Gamon, J.A. Disentangling the contribution of biological and physical properties of leaves and canopies in imaging spectroscopy data. Proc. Natl. Acad. Sci. USA 2013, 110. [Google Scholar] [CrossRef] [PubMed]
- Knyazikhin, Y.; Schull, M.A.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Yang, Y.; Marshak, A.; Latorre Carmona, P.; Kaufmann, R.K.; Lewis, P.; et al. Hyperspectral remote sensing of foliar nitrogen content. Proc. Natl. Acad. Sci. USA 2013, 110. [Google Scholar] [CrossRef] [PubMed]
- Phillips, O.L.; Vargas, P.N.; Lorenzo, A.; Cruz, A.P.; Chuspe, M.; Sánchez, W.G.; Yli-halla, M.; Rose, S.A.M. Habitat association among Amazonian tree species: A landscape-scale approach. J. Ecol. 2003, 91, 757–775. [Google Scholar] [CrossRef]
- Asner, G.P. Organismic Remote Sensing for Tropical Forest Ecology and Conservation. Ann. Mo. Bot. Gard. 2015, 100, 127–140. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chadwick, K.D.; Asner, G.P. Organismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests. Remote Sens. 2016, 8, 87. https://doi.org/10.3390/rs8020087
Chadwick KD, Asner GP. Organismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests. Remote Sensing. 2016; 8(2):87. https://doi.org/10.3390/rs8020087
Chicago/Turabian StyleChadwick, K. Dana, and Gregory P. Asner. 2016. "Organismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests" Remote Sensing 8, no. 2: 87. https://doi.org/10.3390/rs8020087
APA StyleChadwick, K. D., & Asner, G. P. (2016). Organismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests. Remote Sensing, 8(2), 87. https://doi.org/10.3390/rs8020087