Changes in Aerosol Optical and Micro-Physical Properties over Northeast Asia from a Severe Dust Storm in April 2014
Abstract
:1. Introduction
2. Datasets and Methodology
2.1. AERONET Measurements and Retrievals
2.2. Meteorological Data
2.3. Space-Based Aerosol Products
3. Results and Discussion
3.1. General Description of the Dust Storm Transport and the Affected Areas
3.2. Synoptic Meteorological Conditions during the Dust Storm
3.3. The Breakout and Transport Path of the Dust Storm
3.4. Vertical Distribution of Dust Particles
3.5. Spatial Distribution of Dust Particles with AI from TOU
3.6. Changes of Aerosol Properties over Northeast Asia
3.6.1. Changes in the Combined AOD Products of MODIS
3.6.2. Changes in the Aerosol Microphysical Properties
4. Conclusions
- Dust identification IDDI images derived from FY-2E showed that the dust storm originated from the Taklamakan Desert at 2:00 a.m. UTC on 23 April, moved eastward and northeastward on 24 April, dissipated on 25 April and ended on 26 April.
- From four-day forward air mass trajectories, the dusty air masses were mostly transported within the atmospheric boundary layer (<3 km) over northwest China on 23 and 24 April; however, they progressively increased in altitude to above 5 km over the surface when they reached the central part of north and northeast China.
- Anticyclonic circulation occupying the southern Xinjiang basin and cyclonic circulation in Mongolia formed the typical case of a low–high dipole orienting in the northeast-southwest direction over the source areas, which led to strong, high speed winds that favored dust storm formation. AI derived from TOU is sensitive to dust particles. The dust-affected areas show consistency with the synoptic meteorological condition analysis, strongly suggesting that such conditions are the primary reason for the breakout and transport of the dust storm.
- Anomalies of the mean MODIS AOD distributions over northern China during the dust storm to the average of those in April between 2010 and 2014 were as high as 121% and, hence, reveal high aerosol loading over the affected areas in northern China and south of Mongolia caused by the dust storm.
- The dust storm brought different variations in the aerosol microphysical properties (i.e., VSD and SSA) between Beijing and Dalanzadgad as a result of the different distances from the dust source and the wind induced by the dipole pressure system. While the aerosol properties in Dalanzadgad, which is located closer to the dust source, were primarily influenced by coarse dust particles, the aerosol properties in Beijing were mostly influenced by fine dust particles that travelled over longer distances and at higher levels of the atmosphere.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
IDDI | Infrared Difference Dust Index |
MERSI | Medium Resolution Spectral Imager |
AI | Aerosol Index |
TOU | Total Ozone Unit |
MODIS | Moderate Resolution Imaging Spectroradiometer |
AOD | Aerosol Optical Depth |
AERONET | Aerosol Robotic Network |
SSA | Single Scattering Albedo |
OMI | Ozone Monitoring Instrument |
HYSPLIT | Hybrid Single Particle Lagrangian Integrated Trajectory |
MICAPS | Meteorological Information Comprehensive Analysis and Process System |
DST | Dust Storm Monitoring |
CALIPSO | Cloud-Aerosol LiDAR with Orthogonal Polarization |
UV | Ultraviolet |
VSD | Volume Size Distributions |
FMF | Fine Mode Weighting |
References
- Dong, Z.; Wang, X.; Liu, L. Wind erosion in arid and semiarid China: An overview. J. Soil Water Conserv. 2000, 55, 439–444. [Google Scholar]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 1002. [Google Scholar] [CrossRef]
- Wang, X.; Xia, D.; Wang, T.; Xue, X.; Lia, J. Dust sources in arid and semiarid China and southern Mongolia: impacts of geomorphological setting and surface materials. Geomorphology 2008, 97, 583–600. [Google Scholar] [CrossRef]
- Guan, Q.; Yang, J.; Zhao, S.; Pan, B.; Liu, C.; Zhang, D.; Wu, T. Climatological analysis of dust storms in the area surrounding the Tengger Desert during 1960–2007. Clim. Dyn. 2016, 42, 1–11. [Google Scholar]
- Ke, F.; Wang, H. Antarctic Oscillation and the dust weather frequency in North China. Geophys. Res. Lett. 2004, 31, 399–420. [Google Scholar]
- Gong, S.L.; Zhang, X.Y.; Zhao, T.L.; Blanchet, J.-P.; McKendry, I.G.; Zhou, Z.J. A simulated climatology of asian dust aerosol and its trans-pacific transport. Part II: Interannual variability and climate connections. J. Clim. 2006, 19, 104–122. [Google Scholar] [CrossRef]
- Gong, D.Y.; Mao, R.; Shi, P.J.; Fan, Y.D. Correlation between East Asian dust storm frequency and PNA. Geophys. Res. Lett. 2007, 34, 176–192. [Google Scholar] [CrossRef]
- Qian, W.; Quan, L.; Shi, S. Variations of the dust storm in China and its climatic control. J. Clim. 2002, 15, 1216–1229. [Google Scholar] [CrossRef]
- Gao, T.; Su, L.J.; Ma, Q.X.; Li, H.Y.; Li, X.C.; Yu, X. Climatic analyses on increasing dust storm frequency in the springs of 2000 and 2001 in Inner Mongolia. Int. J. Clim. 2003, 23, 1743–1755. [Google Scholar] [CrossRef]
- Kurosaki, Y.; Mikami, M. Resent frequent dust events and their relation to surface wind in East Asia. Geophys. Res. Lett. 2003, 30, 1736. [Google Scholar] [CrossRef]
- Liu, X.D.; Yin, Z.Y.; Zhang, X.Y. Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Xu, J.X.; Liao, J.H. Original and secondary high-frequency sand storm zones in the Loess Plateau region, China. Geogr. Ann. 2007, 89, 121–127. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Dong, W.J.; Fu, C.B. Impact of land surface degradation in norther China and southern Mongolia on regional climate. Chin. Sci. Bull. 2005, 50, 75–81. [Google Scholar] [CrossRef]
- Xu, X.K.; Jason, K.L.; Lin, Z.H.; Chen, H. An investigation of sand dust storm events and land surface characteristics in China using NOAA NDVI data. Glob. Planet. Change 2006, 52, 182–196. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhou, Z.J.; Dong, Z.B. Control of dust emissions by geomorphic conditions, wind environments and land use in northern China: An examination based on dust storm frequency from 1960 to 2003. Geomorphology 2006, 81, 292–308. [Google Scholar] [CrossRef]
- Hu, X.Q.; Lu, N.M.; Niu, T.; Zhang, P. Operational retrieval of Asian sand and dust storm from FY-2C geostationary meteorological satellite and its application to real time forecast in Asia. Atmos. Chem. Phys. 2008, 8, 1649–1659. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, X.B.; Wu, L.A. Seasonal forecast scheme for spring dust storm predictions in Northern China. Meteorol. Appl. 2010, 17, 433–441. [Google Scholar] [CrossRef]
- Zhang, R.J.; Wang, M.X.; Zhang, X.Y.; Zhu, G.H. Analysis on the Chemical and Physical Properties of Particles in a Dust Storm in Spring in Beijing. Powder Technol. 2003, 137, 77–82. [Google Scholar] [CrossRef]
- Zhao, J.P.; Zhang, F.W.; Xu, Y.; Chen, J.S.; Yin, L.Q.; Shang, X.S.; Xu, L.L. Chemical characteristics of particulate matter during a heavy dust episode in a coastal city, Xiamen, 2010. Aerosol Air Qual. Res. 2011, 11, 299–308. [Google Scholar] [CrossRef]
- Stone, E.A.; Yoon, S.C.; Schauer, J.J. Chemical characterization of fine and coarse particles in Gosan, Korea during Springtime Dust Events. Aerosol Air Qual. Res. 2011, 11, 31–43. [Google Scholar] [CrossRef]
- Mori, I.; Nishikawa, M.; Quan, H.; Morita, M. Estimation of the concentration and chemical composition of Kosa aerosols at their origin. Atmos. Environ. 2002, 36, 4569–4575. [Google Scholar] [CrossRef]
- Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gassó, S.; Gill, T.; Laulainen, N.S.; Lu, F.; et al. Asian dust events of April 1998. J. Geophys. Res. 2001, 106, 18317–18330. [Google Scholar] [CrossRef]
- Bory, A.J.M.; Biscaye, P.E.; Svensson, A.; Grousset, F.E. Seasonal variability in the origin of recent atmospheric mineral dust at North GRIP, Greenland, Earth Planet. Sci. Lett. 2002, 196, 123–134. [Google Scholar]
- Mori, I.; Nishikawa, M.; Tanimura, T.; Quan, H. Change in Size distribution and chemical composition of Kosa (Asian Dust) Aerosol during long-range transport. Atmos. Environ. 2003, 37, 4253–4263. [Google Scholar] [CrossRef]
- Kokhanovsky, A.A. Satellite Aerosol Remote Sensing over Land; Springer: Heidelberg, Germany, 2009. [Google Scholar]
- Kaskaoutis, D.G.; Rashki, A.; Houssos, E.E.; Goto, D.; Nastos, P.T. Extremely high aerosol loading over Arabian Sea during June 2008: The specific role of the atmospheric dynamics and Sistan dust storms. Atmos. Environ. 2014, 94, 374–384. [Google Scholar] [CrossRef]
- Che, H.; Wang, Y.; Sun, J.; Zhang, X.; Zhang, X.; Guo, J. Variation of aerosol optical properties over the Taklimakan Desert in China. Aerosol Air Qual. Res. 2013, 13, 777–785. [Google Scholar] [CrossRef]
- Alam, K.; Trautmann, T.; Blaschke, T.; Subhan, F. Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. Remote Sens. Environ. 2014, 143, 216–227. [Google Scholar] [CrossRef]
- Chen, Y.S.; Sheen, P.C.; Chen, E.R.; Liu, Y.K.; Wu, T.N.; Yang, C.Y. Effects of Asian Dust Storm Events on Daily Mortality in Taipei, Taiwan. Environ. Res. 2004, 95, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Winckler, G.; Anderson, R.F.; Fleisher, M.Q.; McGee, D.; Mahowald, N. Covariant Glacial-interglacial Dust Fluxes in the Equatorial Pacific and Antarctica. Science 2008, 320, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Wang, H.; Wang, Z.; Fan, K. Simulation of Dust Aerosol Radiative Feedback Using the Global Transport Model of Dust: 1. Dust Cycle and Validation. J. Geophys. Res. 2009, 114, D10202. [Google Scholar] [CrossRef]
- Solmon, F.; Nair, V.S.; Mallet, M. Increasing Arabian dust activity and the Indian summer monsoon. Atmos. Chem. Phys. 2015, 15, 8051–8064. [Google Scholar] [CrossRef]
- Lee, Y.G.; Ho, C.H.; Kim, J.H.; Kim, J. Quiescence of Asian dust events in South Korea and Japan during 2012 spring: Dust outbreaks and transports. Atmos. Environ. 2015, 114, 92–101. [Google Scholar] [CrossRef]
- Basha, G.; Phanikumar, D.V.; Kumar, K.N.; Ouarda, T.B.M.J.; Marpu, P.R. Investigation of aerosol optical, physical, and radiative characteristics of a severe dust storm observed over UAE. Remote Sens. Environ. 2015, 169, 404–417. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Wang, W.; Cao, D.; Wang, X.; Ye, D. Long-term trend and spatiotemporal variations of haze over China by satellite observations from 1979 to 2013. Atmos. Environ. 2015, 119, 362–373. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Rashki, A.; Houssos, E.E.; Mofidi, A.; Goto, D.; Bartzokas, A.; Francois, P.; Legrand, M. Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran. Clim. Dyn. 2015, 45, 407–424. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud screening and quality control algorithms for the AERONET data base. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 9791–9806. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Luo, B.; Tan, X.; Guo, Y. Introduction of MICAPS-A Chinese forecaster’s interactive system. In Proceedings of the 86th AMS Annual Meeting/8th Conference on Atmospheric Chemistry, Atlanta, GA, USA, 27 January–3 February 2006.
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Ahmad, Z.; Gleason, J. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophy. Res. Atmos. 1998, 103, 17099–17110. [Google Scholar] [CrossRef]
- Legrand, M.; Plana-Fattori, A.; N’doum’e, C. Satellite detectionof dust using the IR imagery of Meteosat: 1. Infrared difference dust index. J. Geophys. Res. 2001, 106, 18251–18274. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. 2007, 112, D13211. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Deep blue retrievals of Asian aerosol properties during ACE-Asia. Geosci. Remote Sens. IEEE Trans. 2006, 44, 3180–3195. [Google Scholar] [CrossRef]
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, L19803. [Google Scholar] [CrossRef]
- Rodríguez, S.; Cuevas, E.; Prospero, J.M.; Alastuey, A.; Querol, X.; López-Solano, J.; García, M.I.; Alonso-Pérez, S. Modulation of Saharan dust export by the North African dipole. Atmos. Chem. Phys. 2015, 15, 7471–7486. [Google Scholar] [CrossRef]
- Guan, H.; Schmid, B.; Bucholtz, A.; Bergstrom, R. Sensitivity of shortwave radiative flux density, forcing, and heating rate to the aerosol vertical profile. J. Geophys. Res. 2010, 115, D06209. [Google Scholar] [CrossRef]
- Lemaître, C.; Flamant, C.; Cuesta, J.; Raut, J.-C.; Chazette, P.; Formenti, P.; Pelon, J. Radiative heatingrates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa. Atmos. Chem. Phys. 2010, 10, 8131–8150. [Google Scholar] [CrossRef] [Green Version]
- Kaskaoutis, D.G.; Prasad, A.K.; Kosmopoulos, P.G.; Sinha, P.R.; Kharol, S.K.; Gupta, P.; El-Askary, H.M.; Kafatos, M. Synergistic Use of Remote Sensing and Modeling for Tracing Dust Storms in the Mediterranean. Adv. Meteorol. 2012, 2012, 978–988. [Google Scholar]
- Kaskaoutis, D.G.; Kosmopoulos, P.G.; Nastos, P.T.; Kambezidis, H.D.; Sharma, M.; Mehdi, W. Transport pathways of Sahara dust over Athens, Greece as detected by MODIS and TOMS. Geomat. Nat. Hazards Risk 2012, 3, 35–54. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Nastos, P.T.; Kosmopoulos, P.G.; Kambezidis, H.D. Characterizing the long-range transport mechanisms of different aerosol types over Athens, Greece during 2000–2005. Int. J. Clim. 2012, 32, 1249–1270. [Google Scholar] [CrossRef]
- Todd, M.C.; Washington, R.; Raghavan, S.; Lizcano, G.; Knippertz, P. Regional Model Simulations of the Bodélé Low-Level Jet of Northern Chad during the Bodélé Dust Experiment (BoDEx 2005). J. Clim. 2008, 21, 995–1012. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Lau, K.M. Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: Implications for regional climate warming. J. Geophys. Res. 2010, 115, 1383–1392. [Google Scholar] [CrossRef]
- Rashki, A.; Kaskaoutis, D.G.; Francois, P.; Kosmopoulos, P.G.; Legrand, M. Dust-storm dynamics over Sistan region, Iran: Seasonality, transport characteristics and affected areas. Aeolian Res. 2015, 16, 35–48. [Google Scholar] [CrossRef]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Ahn, C.; Seftor, C. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 2007, 112, D24S47. [Google Scholar] [CrossRef]
- Cao, J.; Tie, X.; Xu, B.; Zhao, Z.; Zhu, C.; Li, G.; Liu, S. Measuring and modeling black carbon (BC) contamination in the SE Tibetan Plateau. J. Atmos. Chem. 2010, 67, 45–60. [Google Scholar] [CrossRef]
- Wang, S.P.; Fang, L.; Gu, X.F.; Yu, T.; Gao, J. Comparison of aerosol optical properties from Beijing and Kanpur. Atmos. Environ. 2011, 45, 7406–7414. [Google Scholar] [CrossRef]
- Yu, X.; Shi, C.; Ma, J.; Zhu, B.; Li, M.; Wang, J.; Yang, S.; Kang, N. Aerosol optical properties during firework, biomass burning and dust episodes in Beijing. Atmos. Environ. 2013, 81, 475–484. [Google Scholar] [CrossRef]
- Yu, X.; Kumar, K.R.; Lü, R.; Ma, J. Changes in column aerosol optical properties during extreme haze-fog episodes in January 2013 over urban Beijing. Environ. Pollut. 2016, 210, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Zheng, S.; Singh, R.P. Characteristics of aerosol optical properties and meteorological parameters during three major dust events (2005–2010) over Beijing, China. Atmos. Res. 2014, 150, 129–142. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, T.; Gu, X.; Wu, Y. Characterization of aerosols in Beijing during severe aerosol loadings. Atmos. Environ. 2015. [Google Scholar] [CrossRef]
(a) | ||||
Acronym | FY-2E | FY-3B | FY-3C | |
Full name | Feng-Yun-2E | Feng-Yun-3B | Feng-Yun 3C | |
Mass at launch | 1380 kg | 2298 kg | 2300 kg | |
Power | 300 W | 2480 W | 2500 W | |
Data access information | (1) Near real-time availability of full resolution S-VISSR (Stretched Visible and Infrared Spin Scan Radiometer) images. (2) Availability of image segments of S-VISSR in digital form. (3) Availability of DCP (Data Collection Platform) messages by ground lines. | (1) Real-time availability of ERM (Earth Radiation Measurement)-1, IRAS (Infra Red Atmospheric Sounder), MERSI (Medium Resolution Spectral Imager)-1, MWHS (Micro-Wave Humidity Sounder)-1, MWRI (Micro-Wave Radiation Imager), MWTS (Micro-Wave Temperature Sounder)-1, SBUS (Solar Backscatter Ultraviolet Sounder), SEM (Space Environment Monitor), SIM (Solar Irradiance Monitor)-1, TOU and VIRR by MTP. (2) Real-time availability of a selection of data. (3) Selected global data available under bilateral arrangements. | (1) Real-time availability of MERSI-1 by MPT (note: on FY-3C, MPT uses LHCP (Left-Handed Circularly Polarized) polarization unlike FY-3A and 3B). (2) Real-time availability of other instrument data (ERM-1, IRAS, MWHS-1, MWRI, MWTS-1, SBUS, SEM, SIM-1, TOU and VIRR). | |
Orbit | Geostationary orbit | Sun-synchronous orbit | Sun-synchronous orbit | |
Altitude | 35,786 km | 847 km | 834 km | |
Longitude/passing time | 86.5°E | 14:25 ascending | 10:20 descending | |
Launch | 23 December 2008 | 4 November 2010 | 23 September 2013 | |
(b) | ||||
Acronym | MERSI-1 | TOU | ||
Full name | Medium Resolution Spectral Imager-1 | Total Ozone Unit | ||
Type of instrument | Moderate-resolution optical imager | Cross-nadir scanning short wave sounder | ||
Purpose | Ocean color, vegetation indexes and aerosol | Ozone total column mapping | ||
Short description | 20 channels, 19 narrow-bandwidth in VIR/NIR/SWIR and one broadband in the Thermal IR (see detailed characteristics below) | 6 channels of 1.2-nm bandwidth in the range 308–360 nm, | ||
Scanning technique | Cross-track: 2048 detectors for channels at 1000-m resolution or 8192 detectors for channels at 250-m resolution, swath 2900 km; along-track: ten 10-km lines every 1.5 s | Cross-track scanning, swath 3000 km | ||
Resolution | 250 m or 1.0 km | 50 km | ||
Coverage/cycle | Global coverage in 1 day (in daylight) | Global coverage once/day (daylight) | ||
Mass | 117 kg | 19.2 kg | ||
Power | 125 W | 18 W | ||
Data rate | 16 Mbps | 1 kbps |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, L.; Wang, S.; Yu, T.; Gu, X.; Zhang, X.; Wang, W.; Ren, S. Changes in Aerosol Optical and Micro-Physical Properties over Northeast Asia from a Severe Dust Storm in April 2014. Remote Sens. 2016, 8, 394. https://doi.org/10.3390/rs8050394
Fang L, Wang S, Yu T, Gu X, Zhang X, Wang W, Ren S. Changes in Aerosol Optical and Micro-Physical Properties over Northeast Asia from a Severe Dust Storm in April 2014. Remote Sensing. 2016; 8(5):394. https://doi.org/10.3390/rs8050394
Chicago/Turabian StyleFang, Li, Shupeng Wang, Tao Yu, Xingfa Gu, Xingying Zhang, Weihe Wang, and Suling Ren. 2016. "Changes in Aerosol Optical and Micro-Physical Properties over Northeast Asia from a Severe Dust Storm in April 2014" Remote Sensing 8, no. 5: 394. https://doi.org/10.3390/rs8050394
APA StyleFang, L., Wang, S., Yu, T., Gu, X., Zhang, X., Wang, W., & Ren, S. (2016). Changes in Aerosol Optical and Micro-Physical Properties over Northeast Asia from a Severe Dust Storm in April 2014. Remote Sensing, 8(5), 394. https://doi.org/10.3390/rs8050394