Remote Sensing of Aerosol Optical Depth Using an Airborne Polarimeter over North China
Abstract
:1. Introduction
2. Experiments
2.1. Instruments
2.2. Observations and Case Studies
3. Aerosol Retrieval Method
- 1.
- Set and ;
- 2.
- Obtain the aerosol polarized reflectance from the lookup tables on the basis of viewing geometry angles and calculate the up-welling surface-atmosphere reflectance ;
- 3.
- Calculate the residual error and the combination of AOD and aerosol type that gives the smallest residual error () is selected as the expected retrieval;
- 4.
- Reobtain the polarized reflectance of the land surface from measurements at 1640 nm by atmospheric correction. If go to step 2 and set , if go to step 5;
- 5.
- Judge two propositions (explained in detail below) about the smallest residual error and the differences of optical depth. If both the propositions are true, the expected AOD is promoted to be the formal result and the program is ended. Otherwise, set and restart from step 2.
4. Results and Analysis
4.1. Surface Polarized Reflectances
4.2. Polarized Reflectances at Aircarft Level
4.3. Aerosol Optical Depth
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kokhanovsky, A.A. Remote sensing of atmospheric aerosol using spaceborne optical observations. Earth Sci. Rev. 2013, 116, 95–108. [Google Scholar] [CrossRef]
- Li, Z.Q.; Gu, X.; Wang, L.; Li, D. Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter. Atmos. Chem. Phys. 2013, 13, 10171–10183. [Google Scholar] [CrossRef] [Green Version]
- Sorek-Hamer, M.; Strawa, A.W.; Chatfield, R.B.; Esswein, R.; Cohen, A.; Broday, D.M. Improved retrieval of PM2.5 from satellite data products using non-linear methods. Environ. Pollut. 2013, 182, 417. [Google Scholar] [CrossRef] [PubMed]
- Shmirko, K.; Bobrikov, A.; Pavlov, A. Atmospheric correction of satellite data. In Proceedings of the XXI International Symposium Atmospheric and Ocean Optics, Atmospheric Physics, Tomsk, Russia, 22–26 June 2015; p. 96803B. [Google Scholar]
- Liang, T.; Sun, X.; Wang, H.; Ti, R.; Shu, C. Airborne Polarimetric Remote Sensing for Atmospheric Correction. J. Sens. 2015, 2016, 1–7. [Google Scholar] [CrossRef]
- Deuzé, J.L.; Bréon, F.M.; Devaux, C.; Goloub, P.; Herman, M.; Lafrance, B.; Maignan, F.; Marchand, A.; Nadal, F.; Perry, G. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys. Res. Atmos. 2001, 106, 4913–4926. [Google Scholar] [CrossRef]
- Deuzé, J.L.; Goloub, P.; Herman, M.; Marchand, A.; Perry, G.; Susana, S.; Tanré, D. Estimate of the aerosol properties over the ocean with POLDER. J. Geophys. Res. Atmos. 2000, 105, 15329–15346. [Google Scholar] [CrossRef]
- Deuzé, J.L.; Bréon, F.M.; Deschamps, P.Y.; Devaux, C.; Herman, M.; Podaire, A.; Roujean, J.L. Analysis of the POLDER (POLarization and directionality of earth’s reflectances) airborne instrument observations over land surfaces. Remote Sens. Environ. 1993, 45, 137–154. [Google Scholar] [CrossRef]
- Waquet, F.; Cornet, C.; Deuzé, J.L.; Dubovik, O. Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements. Atmos. Meas. Tech. 2013, 6, 991–1016. [Google Scholar] [CrossRef]
- Fan, X.; Chen, H.; Lin, L.; Han, Z.; Goloub, P. Retrieval of Aerosol Optical Properties over the Beijing Area Using POLDER/PARASOL Satellite Polarization Measurements. Adv. Atmos. Sci. 2009, 26, 1099–1107. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.; Huang, J.; Tsay, S.C. Enhanced deep blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Kahn, R.A.; Nelson, D.L.; Garay, M.J.; Levy, R.C.; Bull, M.A.; Diner, D.J.; Martonchik, J.V.; Paradise, S.R.; Hansen, E.G.; Remer, L.A. MISR Aerosol product attributes, and statistical comparison with MODIS. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4095–4114. [Google Scholar] [CrossRef]
- Curier, R.L.; Veefkind, J.P.; Braak, R.; de Leeuw, G.; Torres, O.; de Leeuw, G. Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: Application to western Europe. J. Geophys. Res. Atmos. 2008, 113, 1161–1165. [Google Scholar] [CrossRef]
- Wagner, S.C.; Govaerts, Y.M.; Lattanzio, A. Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 2. Implementation and evaluation. J. Geophys. Res. Atmos. 2010, 115, 470–471. [Google Scholar] [CrossRef]
- Popp, C.; Hauser, A.; Foppa, N.; Wunderle, S. Remote sensing of aerosol optical depth over central Europe from MSG-SEVIRI data and accuracy assessment with ground-based AERONET measurements. J. Geophys. Res. Atmos. 2007, 112, 88–97. [Google Scholar] [CrossRef]
- Jackson, J.M.; Liu, H.; Laszlo, I.; Huang, H. Suomi-NPP VIIRS aerosol algorithms and data products. J. Geophys. Res. Atmos. 2013, 118, 12673–12689. [Google Scholar] [CrossRef]
- Cheng, T.H.; Gu, X.F.; Xie, D.H.; Li, Z.Q.; Yu, T.; Chen, X.F. Simultaneous retrieval of aerosol optical properties over the Pearl River Delta, China using multi-angular, multi-spectral, and polarized measurements. Remote Sens. Environ. 2011, 115, 1643–1652. [Google Scholar] [CrossRef]
- Wang, H.; Sun, X.; Sun, B.; Liang, T.; Li, C.; Hong, J. Retrieval of Aerosol Optical Properties over a Vegetation Surface Using Multi-angular, Multi-spectral, and Polarized Data. Adv. Atmos. Sci. 2014, 31, 879–887. [Google Scholar]
- Yang, L.; Xue, Y.; Jie, G.; Kazemian, H.; Zhang, J.; Li, C. Improved Aerosol Optical Depth and Ångstrom Exponent Retrieval Over Land From MODIS Based on the Non-Lambertian Forward Model. IEEE Geosci. Remote Sens. 2014, 11, 1629–1633. [Google Scholar] [CrossRef]
- Waquet, F.; Léon, J.F.; Cairns, B.; Goloub, P.; Deuzé, J.L.; Auriol, F. Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land. Appl. Opt. 2009, 48, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, X.; Sun, B.; Hong, J. Evaluation of Land surface polarization models based on airborne Advanced Atmosphere Multi-Angle Polarization Radiometer measurements. ACTA Opt. Sin. 2014, 34, 244–251. [Google Scholar] [CrossRef]
- Deschamps, P.Y.; Breon, F.M.; Leroy, M.; Podaire, A.; Bricaud, A.; Buriez, J.C.; Seze, G. The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens. 1994, 32, 598–615. [Google Scholar] [CrossRef]
- Cairns, B. Research scanning polarimeter and airborne usage for remote sensing of aerosols. Proc. SPIE Int. Soc. Opt. Eng. 2003, 5158, 33–44. [Google Scholar]
- Waquet, F.; Goloub, P.; Deuzé, J.L.; Léon, J.F.; Auriol, F.; Verwaerde, C.; Balois, J.Y.; François, P. Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method. J. Geophys. Res. Atmos. 2007, 112, 71–81. [Google Scholar] [CrossRef]
- Waquet, F.; Léon, J.F.; Goloub, P.; Pelon, J.; Tanré, D.; Deuzé, J.L. Maritime and dust aerosol retrieval from polarized and multispectral active and passive sensors. J. Geophys. Res. Atmos. 2005, 110, 95–100. [Google Scholar] [CrossRef]
- Chenault, D.B. Research Scanning Polarimeter: Calibration and ground-based measurements. Proc. SPIE Int. Soc. Opt. Eng. 1999, 3754, 186–196. [Google Scholar]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding; World Scientific: Singapore, 2000; p. 238. [Google Scholar]
- Waquet, F.; Cairns, B.; Knobelspiesse, K.; Chowdhary, J.; Travis, L.D.; Schmid, B.; Mishchenko, M. Polarimetric remote sensing of aerosols over land. J. Geophys. Res. Atmos. 2009, 114, D01206. [Google Scholar] [CrossRef]
- Cairns, B.; Waquet, F.; Knobelspiesse, K.; Chowdhary, J.; Deuzé, J.L. Polarimetric Remote Sensing of Aerosols over Land Surfaces; Springer: Berlin/Heidelberg, Germany, 2009; pp. 295–325. [Google Scholar]
- Cairns, B.; Laveigne, J.D.; Rael, A.; Granneman, R.D. Atmospheric correction of HyperSpecTIR measurements using the research scanning polarimeter. In Proceedings of the Defense and Security, Orlando, FL, USA, 12–16 April 2004. [Google Scholar]
- Elias, T.G.; Cairns, B.; Chowdhary, J. Surface optical properties measured by the airborne research scanning polarimeter during the CLAMS experiment. Proc. SPIE Int. Soc. Opt. Eng. 2004, 5235, 595–606. [Google Scholar]
- Alexandrov, M.D.; Cairns, B.; Mishchenko, M.I.; Ackerman, A.S.; Emde, C. Characterization of cloud microphysical parameters using airborne measurements by the research scanning polarimeter. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2013; pp. 87–90. [Google Scholar]
- Alexandrov, M.D.; Cairns, B.; Emde, C.; Ackerman, A.S.; Ottaviani, M.; Wasilewski, A.P. Derivation of cumulus cloud dimensions and shape from the airborne measurements by the Research Scanning Polarimeter. Remote Sens. Environ. 2016, 177, 144–152. [Google Scholar] [CrossRef]
- Diner, D.J.; Xu, F.; Garay, M.J.; Martonchik, J.V. The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): A new tool for aerosol and cloud remote sensing. Atmos. Meas. Tech. 2013, 6, 2007–2025. [Google Scholar] [CrossRef]
- Alexandrov, M.D.; Cairns, B.; Wasilewski, A.P.; Ackerman, A.S.; McGill, M.; Yorks, J.; Hlavka, D.; Platnick, S.; Arnold, G.T.; van Diedenhoven, B.; et al. Liquid water cloud properties during the Polarimeter Definition Experiment (PODEX). Remote Sens. Environ. 2015, 169, 20–36. [Google Scholar] [CrossRef]
- Gu, X.; Chen, X.F.; Cheng, T.H.; Li, Z.Q.; Yu, T.; Xie, D.H.; Xu, H. In-flight polarization calibration methods of directional polarizedremote sensing camera. Acta Phys. Sin. 2011, 60, 707021–707028. [Google Scholar]
- Gu, X.; Qiao, Y.; Wang, J.; Yu, T.; Cheng, T. High-resolution Directional Polarimetric Camera (DPC) used in the remote sensing of aerosol properties. Proc. SPIE Earth Obs. Syst. XV 2010, 7807, 55–65. [Google Scholar]
- Yao, L.; Yang, L.; Yuan, Q.; Yan, C.; Dong, C.; Meng, C.; Sui, X.; Yang, F.; Lu, Y.; Wang, W. Sources apportionment of PM2.5 in a background site in the North China Plain. Sci. Total Environ. 2016, 541, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, X.; Lang, J.; Zhou, Y.; Wei, L.; Wang, X.; Guo, X. Estimating the contribution of regional transport to PM2.5 air pollution in a rural area on the North China Plain. Sci. Total Environ. 2017, 583, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Yang, L.; Yan, W.; Zhang, J.; Lu, W.; Yang, Y.; Chen, J.; Wang, W. Chemical characteristics of PM1/PM2.5 and influence on visual range at the summit of Mount Tai, North China. Sci. Total Environ. 2016, 575, 458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. Source attribution of PM2.5 pollution over North China using the adjoint method. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
- Song, M.; Sun, B.; Sun, X.; Hong, J. Polarization calibration of airborne multi-angle polarimetric radiometer. Opt. Precis. Eng. 2012, 20, 1153–1158. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E. Evaluation of MODIS aerosol retrieval algorithms over Beijing-Tianjin-Hebei region during low to very high pollution events. J. Geophys. Res. Atmos. 2015, 120, 7941–7957. [Google Scholar] [CrossRef]
- Qie, L.; Li, Z.; Sun, X.; Sun, B.; Li, D.; Liu, Z.; Huang, W.; Wang, H.; Chen, X.; Hou, W. Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China. Remote Sens. 2015, 7, 6240–6256. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 673–696. [Google Scholar] [CrossRef]
- Evans, K.F.; Stephens, G.L. A new polarized atmospheric radiative transfer model. J. Quant. Spectrosc. Radiat. Trans. 1991, 46, 413–423. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, Y.J. Satellite remote sensing of Asian aerosols: A case study of clean, polluted and dust storm days. Atmos. Meas. Tech. Discuss. 2010, 3, 1771–1784. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.Q.; Li, D.H.; Li, K.T.; Tian, Q.J.; Li, L.; Zhang, Y.; Lü, Y.; Gu, X.F. Retrieval of dust fraction of atmospheric aerosols based on spectra characteristics of refractive indices obtained from remote sensing measurements. Spectrosc. Spect. Anal. 2012, 32, 1644. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley: Hoboken, NJ, USA, 1983; p. 448. [Google Scholar]
- Grainger, R.G.; Lucas, J.; Thomas, G.E.; Ewen, G.B.L. Calculation of Mie derivatives. Appl. Opt. 2004, 43, 5386–5393. [Google Scholar] [CrossRef] [PubMed]
- Nadal, F.; Breon, F.M. Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1709–1718. [Google Scholar] [CrossRef]
- Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J.L.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 2010, 4, 975. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; Lapyonok, T.; Litvinov, P.; Federspiel, C. GRASP: A versatile algorithm for characterizing the atmosphere. SPIE Newsroom 2014. [Google Scholar] [CrossRef]
Flight | Date | Time (UT) | Flight Altitude (km) | Area | Viewing Angles | AOD (Aeronet Level 1.5, 670 nm) | Atmospheric Characteristics |
---|---|---|---|---|---|---|---|
1 | 2012-08-10 | 01:49–02:53 | 3.1 | 117.3°–118.6°E | 0 ≤ ≤ 38 | 0.24 (Caofeidian) | Thin haze |
38.9°–39.21°N | 0 ≤ ≤ 180 | ||||||
2 | 2012-08-10 | 05:06–06:47 | 3.2 | 117.3°–118.6°E | 0 ≤ ≤ 38 | 0.11 (Caofeidian) | Clear |
38.9°–39.21°N | 0 ≤ ≤ 180 | ||||||
3 | 2013-04-29 | 02:31–04:38 | 3.7 | 117.3°–118.6°E | 0 ≤ ≤ 38 | 0.23 (Caofeidian) | Clear |
38.9°–39.21°N | 0 ≤ ≤ 180 | ||||||
4 | 2013-04-30 | 01:31–04:00 | 3.7 | 117.3°–118.6°E | 0 ≤ ≤ 38 | 0.14 (Caofeidian) | Clear |
38.9°–39.21°N | 0 ≤ ≤ 180 | ||||||
5 | 2013-05-01 | 01:53–04:18 | 3.7 | 117.3°–118.6°E | 0 ≤ ≤ 38 | 0.33 (Caofeidian) | Thin haze |
38.9°–39.21°N | 0 ≤ ≤ 180 | ||||||
6 | 2014-09-18 | 03:31–04:48 | 3.7 | 116.5°–118.5°E 39.02°–39.96°N | 0 ≤ ≤ 36 0 ≤ ≤ 180 | 0.15 (Caofeidian) 0.19 (Fengnan) 0.45 (Yutian) 0.32 (Baodi) | Thin haze |
7 | 2016-11-13 | 03:55–06:37 | 3.1 | 114.3°–116.6°E | 0 ≤ ≤ 35 | - | Haze |
38.03°–39.98°N | 0 ≤ ≤ 180 |
Instrument | Brief Introduction |
---|---|
AMPR | Multispectral polarimeter (Anhui Institute of Optics and Fine Mechanics (AIOFM), Hefei, China) |
Lidar | Active atmospheric back scattering detector (AIOFM) |
SVC HR-1024 | Portable spectrometer (Spectra Vista, Poughkeepsie, NY, USA) |
CE318 | Automatic sun-photometer (Cimel, Paris, France) |
POS | Position and pose recorder (Applanix, Richmond Hill, ON, Canada) |
CCD camera | Color camera (Sony, Tokyo, Japan) |
Parameter | Specification |
---|---|
Band/Width (nm) | 490/28, 555/34, 665/46, 865/45, 960/38 and 1640/44 |
FOV/IFOV | −55°–+55°/1° |
Optical aperture | 12 mm |
Detector | Si-Pin (<1100 nm), InGaAs (>1100 nm) |
Dynamic range | 14 bits |
Data storage | Hard Disk Drive |
Voltage/power | 28 VDC/350 W |
Volume/Weight | 0.14 m3/50 kg |
Parameter | Values | No. of Values |
---|---|---|
0.00, 0.05, 0.10, 0.20, 0.40, 0.80, 1.60, 2.50 | 8 | |
Interval [0°, 78°], with an increment of 2° | 40 | |
0.00°, 6.97°, 12.76°, 18.51°, 24.24°, 29.96°, 35.68°, 41.40°, 47.12°, 52.84°, 58.56°, 64.28°, 69.99°, 75.71°, 81.43°, 87.14° | 16 | |
Interval [0°, 180°], with an increment of 5° | 37 | |
Interval [0.0, 1.0], with an increment of 0.1 | 11 |
Parameter | Type 1 | Type 2 | Type 3 | Type 4 | Type 5 | Type 6 |
---|---|---|---|---|---|---|
1.474 | 1.481 | 1.450 | 1.463 | 1.522 | 1.549 | |
1.480 | 1.483 | 1.458 | 1.472 | 1.535 | 1.549 | |
1.485 | 1.483 | 1.468 | 1.482 | 1.536 | 1.537 | |
1.481 | 1.476 | 1.468 | 1.481 | 1.528 | 1.525 | |
0.0102 | 0.0086 | 0.0113 | 0.0100 | 0.0053 | 0.0036 | |
0.0086 | 0.0074 | 0.0100 | 0.0088 | 0.0037 | 0.0024 | |
0.0088 | 0.0078 | 0.0102 | 0.0090 | 0.0036 | 0.0023 | |
0.0091 | 0.0080 | 0.0104 | 0.0092 | 0.0036 | 0.0025 | |
0.219 | 0.257 | 0.192 | 0.177 | 0.162 | 0.208 | |
0.531 | 0.535 | 0.504 | 0.474 | 0.538 | 0.619 | |
2.724 | 2.580 | 2.915 | 2.256 | 2.286 | 2.241 | |
0.583 | 0.568 | 0.618 | 0.565 | 0.594 | 0.531 |
Flight | Date (Station) | Time | CE318 | AMPR (Averaged) | Deviation |
---|---|---|---|---|---|
1 | 2012-08-10 (Caofeidian) | 02:33 | 0.24 | 0.22 | 0.02 |
2 | 2012-08-10 (Caofeidian) | 06:22 | 0.11 | 0.15 | 0.04 |
3 | 2013-04-29 (Caofeidian) | 03:12 | 0.23 | 0.20 | 0.03 |
4 | 2013-04-30 (Caofeidian) | 02:24 | 0.14 | 0.11 | 0.03 |
5 | 2013-05-01 (Caofeidian) | 02:38 | 0.33 | 0.28 | 0.05 |
6 | 2014-09-18 (Caofeidian) | 03:35 | 0.15 | 0.14 | 0.01 |
6 | 2014-09-18 (Fengnan) | 04:01 | 0.19 | 0.19 | 0.00 |
6 | 2014-09-18 (Yutian) | 04:15 | 0.45 | 0.38 | 0.07 |
6 | 2014-09-18 (Baodi) | 04:22 | 0.32 | 0.31 | 0.01 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yang, L.; Deng, A.; Du, W.; Liu, P.; Sun, X. Remote Sensing of Aerosol Optical Depth Using an Airborne Polarimeter over North China. Remote Sens. 2017, 9, 979. https://doi.org/10.3390/rs9100979
Wang H, Yang L, Deng A, Du W, Liu P, Sun X. Remote Sensing of Aerosol Optical Depth Using an Airborne Polarimeter over North China. Remote Sensing. 2017; 9(10):979. https://doi.org/10.3390/rs9100979
Chicago/Turabian StyleWang, Han, Leiku Yang, Anjian Deng, Weibing Du, Pei Liu, and Xiaobing Sun. 2017. "Remote Sensing of Aerosol Optical Depth Using an Airborne Polarimeter over North China" Remote Sensing 9, no. 10: 979. https://doi.org/10.3390/rs9100979
APA StyleWang, H., Yang, L., Deng, A., Du, W., Liu, P., & Sun, X. (2017). Remote Sensing of Aerosol Optical Depth Using an Airborne Polarimeter over North China. Remote Sensing, 9(10), 979. https://doi.org/10.3390/rs9100979