Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Radiation
2.3. New Surface Fraction (Wet/Dry and Vegetated/Non-Vegetated) Methods
2.4. Sheltering Factor
2.5. Evaluation Method
3. Results
3.1. Surface Fractions
3.2. ET Estimations
4. Discussion
4.1. Uncertainties in MODIS LST, LAI, Albedo and In-Situ Measurements
4.2. Sources of Errors in Estimations
4.3. Global Estimations
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Korzoun, V.; Sokolov, A.; Budyko, M.; Voskresensky, K.; Kalinin, G.; Konoplyantsev, A.; Korotkevich, E.; Kuzin, P.; Lvovich, M. World Water Balance and Water Resources of the Earth; Studies and Reports in Hydrology (UNESCO); UNESCO: Paris, France, 1978. [Google Scholar]
- L’vovich, M.I.; White, G.F.; Belyaev, A.; Kindler, J.; Koronkevic, N.; Lee, T.R.; Voropaev, G. Use and transformation of terrestrial water systems. In The Earth as Transformed by Human Action: Global and Regional Changes in the Biosphere over the Past; Cambridge University Press: Cambridge, UK, 1990; Volume 300, pp. 235–252. [Google Scholar]
- Li, H.; Wigmosta, M.S.; Wu, H.; Huang, M.; Ke, Y.; Coleman, A.M.; Leung, L.R. A physically based runoff routing model for land surface and earth system models. J. Hydrometeorol. 2013, 14, 808–828. [Google Scholar] [CrossRef]
- Yamazaki, D.; Kanae, S.; Kim, H.; Oki, T. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Fleischer, E.; Bölter, J.; Klemm, O. Summer evapotranspiration in western Siberia: A comparison between eddy covariance and Penman method formulations. Hydrol. Process. 2015, 29, 4498–4513. [Google Scholar] [CrossRef]
- Nagler, P. The role of remote sensing observations and models in hydrology: The science of evapotranspiration. Hydrol. Process. 2011, 25, 3977–3978. [Google Scholar] [CrossRef]
- Baldocchi, D.; Valentini, R.; Running, S.; Oechel, W.; Dahlman, R. Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Glob. Chang. Biol. 1996, 2, 159–168. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Priestley, C.; Taylor, R. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Monteith, J. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Beighley, R.; Eggert, K.; Dunne, T.; He, Y.; Gummadi, V.; Verdin, K. Simulating hydrologic and hydraulic processes throughout the Amazon River Basin. Hydrol. Process. 2009, 23, 1221–1235. [Google Scholar] [CrossRef]
- Hong, J.; Takagi, K.; Ohta, T.; Kodama, Y. Wet surface resistance of forest canopy in monsoon Asia: Implications for eddy-covariance measurement of evapotranspiration. Hydrol. Process. 2014, 28, 37–42. [Google Scholar] [CrossRef]
- Senay, G.; Leake, S.; Nagler, P.; Artan, G.; Dickinson, J.; Cordova, J.; Glenn, E. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrol. Process. 2011, 25, 4037–4049. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. 6541. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Kay, J.E.; Deser, C.; Phillips, A.; Mai, A.; Hannay, C.; Strand, G.; Arblaster, J.M.; Bates, S.C.; Danabasoglu, G.; Edwards, J.; et al. The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bull. Am. Meteorol. Soc. 2014, 96, 1333–1349. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.Z.; Zhao, M.S.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, Q.; Liu, J. The performances of MODIS-GPP and-ET products in China and their sensitivity to input data (FPAR/LAI). Remote Sens. 2014, 7, 135–152. [Google Scholar] [CrossRef]
- Bhattarai, N.; Mallick, K.; Brunsell, N.A.; Sun, G.; Jain, M. Regional evapotranspiration from image-based implementation of the Surface Temperature Initiated Closure (STIC1.2) model and its validation across an aridity gradient in the conterminous United States. Hydrol. Earth Syst. Sci. Discuss. 2017. in review. [Google Scholar] [CrossRef]
- Velpuri, N.M.; Senay, G.B.; Singh, R.K.; Bohms, S.; Verdin, J.P. A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET. Remote Sens. Environ. 2013, 139, 35–49. [Google Scholar] [CrossRef]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef] [Green Version]
- Benali, A.; Carvalho, A.; Nunes, J.; Carvalhais, N.; Santos, A. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ. 2012, 124, 108–121. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Wang, W.; Liang, S.; Meyers, T. Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens. Environ. 2008, 112, 623–635. [Google Scholar] [CrossRef]
- Zhu, W.; Lű, A.; Jia, S. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens. Environ. 2013, 130, 62–73. [Google Scholar] [CrossRef]
- Vancutsem, C.; Ceccato, P.; Dinku, T.; Connor, S.J. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 2010, 114, 449–465. [Google Scholar] [CrossRef]
- Lin, S.; Moore, N.J.; Messina, J.P.; DeVisser, M.H.; Wu, J. Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 128–140. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Allen, R. Evaluation of Procedures for Estimating Mean Monthly Solar Radiation from Air Temperature; FAO: Rome, Italy, 1995. [Google Scholar]
- Wan, Z. MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD); Institute for Computational Earth System Science: Santa Barbara, CA, USA, 1999; Volume 75. [Google Scholar]
- Mu, Q.; Zhao, M.; Running, S.W. MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3); Algorithm Theoretical Basis Document, Collection; Numerical Terradynamic Simulation Group: Missoula, MT, USA, 2013; Volume 5. [Google Scholar]
- Knyazikhin, Y.; Glassy, J.; Privette, J.; Tian, Y.; Lotsch, A.; Zhang, Y.; Wang, Y.; Morisette, J.; Votava, P.; Myneni, R. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15) Algorithm Theoretical Basis Document; Theoretical Basis Document; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1999; Volume 20771.
- Yuan, H.; Dai, Y.; Xiao, Z.; Ji, D.; Shangguan, W. Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling. Remote Sens. Environ. 2011, 115, 1171–1187. [Google Scholar] [CrossRef]
- Strahler, A.H.; Muller, J.; Lucht, W.; Schaaf, C.; Tsang, T.; Gao, F.; Li, X.; Lewis, P.; Barnsley, M.J. MODIS BRDF/albedo product: Algorithm theoretical basis document version 5.0. MODIS Doc. 1999, 23, 42–47. Available online: dratmos.geog.umd.edu/files/pdf/MODIS_BRDF.pdf (accessed on 3 November 2017).
- Lewis, P.; Barnsley, M. Influence of the sky radiance distribution on various formulations of the earth surface albedo. In Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, ISPRS, CNES, Val d’Isere, France, 17–21 January 1994; pp. 707–715. [Google Scholar]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Strahler, A.; Muchoney, D.; Borak, J.; Friedl, M.; Gopal, S.; Lambin, E.; Moody, A. MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD) Version 5.0. 1999. Available online: https://pdfs.semanticscholar.org/8c83/49d66f9d663d7e7ccf9e0632edde719a1892.pdf (accessed on 3 November 2017).
- O’Callaghan, J.F.; Mark, D.M. The extraction of drainage networks from digital elevation data. Comput. Vis. Graph. Image Process. 1984, 28, 323–344. [Google Scholar] [CrossRef]
- Stackhouse, P.; Whitlock, C. Surface Meteorology and Solar Energy (SSE) Release 6.0 Methodology, NASA SSE 6.0; Earth Science Enterprise Program; National Aeronautic and Space Administration(NASA): Langley, WA, USA, 2009.
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Running, S.W.; Kimball, J.S. Satellite-Based Analysis of Ecological Controls for Land-Surface Evaporation Resistance. In Encyclopedia of Hydrological Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.-L. Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 2004, 25, 261–274. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar]
- Richardson, C. Weather simulation for crop management models. Trans. ASAE 1985, 28, 1602–1606. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Wang, S.; Yuan, G.; Yang, Y.; Cao, M. Evapotranspiration of a tropical rain forest in Xishuangbanna, southwest China. Hydrol. Process. 2010, 24, 2405–2416. [Google Scholar] [CrossRef]
- Running, S.W.; Thornton, P.E.; Nemani, R.; Glassy, J.M. Global terrestrial gross and net primary productivity from the Earth Observing System. In Methods in Ecosystem Science; Springer: Berlin, Germany, 2000; pp. 44–57. [Google Scholar]
- Heinsch, F.A.; Reeves, M.; Votava, P.; Kang, S.; Milesi, C.; Zhao, M.; Glassy, J.; Jolly, W.M.; Loehman, R.; Bowker, C.F. GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm. MOD17 User’s Guide. 2003. Available online: www.academia.edu/download/36531869/MOD17UsersGuide.pdf (accessed on 7 November 2017).
- Vallet-Coulomb, C.; Legesse, D.; Gasse, F.; Travi, Y.; Chernet, T. Lake evaporation estimates in tropical Africa (Lake Ziway, Ethiopia). J. Hydrol. 2001, 245, 1–18. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Glassy, J.M.; Running, S.W. Validating Diurnal Climatology Logic of the MT-CLIM Model Across a Climatic Gradient in Oregon. Ecol. Appl. 1994, 4, 248–257. [Google Scholar] [CrossRef]
- Kimball, J.; Running, S.; Nemani, R. An improved method for estimating surface humidity from daily minimum temperature. Agric. For. Meteorol. 1997, 85, 87–98. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Hungerford, R.D. Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can. J. For. Res. 1987, 17, 472–483. [Google Scholar] [CrossRef]
- Stone, P.; Chow, S.; Quirr, W. The July climate and a comparison of the January and July climates simulated by the GISS general circulation model. Mon. Weather Rev. 1977, 105, 170–194. [Google Scholar] [CrossRef]
- Myneni, R.; Hoffman, S.; Knyazikhin, Y.; Privette, J.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ. 2005, 94, 244–255. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Zhang, Y.; El-Saleous, N.; Knyazikhin, Y.; Vermote, E.; Myneni, R.B. Investigation of product accuracy as a function of input and model uncertainties: Case study with SeaWiFS and MODIS LAI/FPAR algorithm. Remote Sens. Environ. 2001, 78, 299–313. [Google Scholar] [CrossRef]
- Los, S.; Pollack, N.; Parris, M.; Collatz, G.; Tucker, C.; Sellers, P.; Malmström, C.; DeFries, R.; Bounoua, L.; Dazlich, D. A global 9-year biophysical land surface dataset from NOAA AVHRR data. J. Hydrometeorol. 2000, 1, 183–199. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Ruimy, A.; Kergoat, L.; Bondeau, A.; Intercomparison, T.; Model, P.O. Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light-use efficiency. Glob. Chang. Biol. 1999, 5, 56–64. [Google Scholar] [CrossRef]
- Sellers, P.J.; Tucker, C.J.; Collatz, G.J.; Los, S.O.; Justice, C.O.; Dazlich, D.A.; Randall, D.A. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Clim. 1996, 9, 706–737. [Google Scholar] [CrossRef]
- Jarvis, P.; Leverenz, J. Productivity of temperate, deciduous and evergreen forests. In Physiological Plant Ecology IV; Springer: Berlin, Germany, 1983; pp. 233–280. [Google Scholar]
- Aubin, I.; Beaudet, M.; Messier, C. Light extinction coefficients specific to the understory vegetation of the southern boreal forest, Quebec. Can. J. For. Res. 2000, 30, 168–177. [Google Scholar] [CrossRef]
- Dingman, S.L. Physical Hydrology; Waveland Press: Long Grove, IL, USA, 2015. [Google Scholar]
- Allen, R.G.; Jensen, M.E.; Wright, J.L.; Burman, R.D. Operational estimates of reference evapotranspiration. Agron. J. 1989, 81, 650–662. [Google Scholar] [CrossRef]
- Carlson, T.N. Modeling stomatal resistance: An overview of the 1989 workshop at the Pennsylvania State University. Agric. For. Meteorol. 1991, 54, 103–106. [Google Scholar] [CrossRef]
- Jang, K.; Kang, S.; Kim, J.; Lee, C.B.; Kim, T.; Kim, J.; Hirata, R.; Saigusa, N. Mapping evapotranspiration using MODIS and MM5 four-dimensional data assimilation. Remote Sens. Environ. 2010, 114, 657–673. [Google Scholar] [CrossRef]
- Wang, H.; Jia, G.; Zhang, A.; Miao, C. Assessment of Spatial Representativeness of Eddy Covariance Flux Data from Flux Tower to Regional Grid. Remote Sens. 2016, 8, 742. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Z.; Song, L.; Zhao, Q.; Ge, Y.; Xu, T.; Ma, Y.; Zhu, Z.; Jia, Z.; Zhang, F. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric. For. Meteorol. 2016, 230, 97–113. [Google Scholar] [CrossRef]
- Knipper, K.; Hogue, T.; Scott, R.; Franz, K. Evapotranspiration Estimates Derived Using Multi-Platform Remote Sensing in a Semiarid Region. Remote Sens. 2017, 9, 184. [Google Scholar] [CrossRef]
- Scott, R.L. Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems. Agric. For. Meteorol. 2010, 150, 219–225. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Tabari, H.; Aeini, A.; Talaee, P.H.; Some’e, B.S. Spatial distribution and temporal variation of reference evapotranspiration in arid and semi-arid regions of Iran. Hydrol. Process. 2012, 26, 500–512. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Strahler, A.H.; Chopping, M.J.; Román, M.O.; Shuai, Y.; Woodcock, C.E.; Hollinger, D.Y.; Fitzjarrald, D.R. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ. 2014, 140, 60–77. [Google Scholar] [CrossRef]
- Cescatti, A.; Marcolla, B.; Vannan, S.K.S.; Pan, J.Y.; Román, M.O.; Yang, X.; Ciais, P.; Cook, R.B.; Law, B.E.; Matteucci, G. Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sens. Environ. 2012, 121, 323–334. [Google Scholar] [CrossRef]
- Yang, W.; Tan, B.; Huang, D.; Rautiainen, M.; Shabanov, N.V.; Wang, Y.; Privette, J.L.; Huemmrich, K.F.; Fensholt, R.; Sandholt, I. MODIS leaf area index products: From validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1885–1898. [Google Scholar] [CrossRef]
- Chen, C.; Knyazikhin, Y.; Park, T.; Yan, K.; Lyapustin, A.; Wang, Y.; Yang, B.; Myneni, R.B. Prototyping of LAI and FPAR Retrievals from MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) Data. Remote Sens. 2017, 9, 370. [Google Scholar] [CrossRef]
- Yan, K.; Park, T.; Yan, G.; Liu, Z.; Yang, B.; Chen, C.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison. Remote Sens. 2016, 8, 460. [Google Scholar] [CrossRef]
- Ganguly, S.; Samanta, A.; Schull, M.A.; Shabanov, N.V.; Milesi, C.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Generating vegetation leaf area index Earth system data record from multiple sensors. Part 2: Implementation, analysis and validation. Remote Sens. Environ. 2008, 112, 4318–4332. [Google Scholar] [CrossRef]
- Yoon, Y.; Beighley, E.; Lee, H.; Pavelsky, T.; Allen, G. Estimating flood discharges in reservoir-regulated river basins by integrating synthetic SWOT satellite observations and hydrologic modeling. J. Hydrol. Eng. 2015, 21, 05015030. [Google Scholar] [CrossRef]
- Nagler, P.L.; Cleverly, J.; Glenn, E.; Lampkin, D.; Huete, A.; Wan, Z. Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sens. Environ. 2005, 94, 17–30. [Google Scholar] [CrossRef]
- Hashimoto, H.; Dungan, J.L.; White, M.A.; Yang, F.; Michaelis, A.R.; Running, S.W.; Nemani, R.R. Satellite-based estimation of surface vapor pressure deficits using MODIS land surface temperature data. Remote Sens. Environ. 2008, 112, 142–155. [Google Scholar] [CrossRef]
- Tsuruta, K.; Kosugi, Y.; Takanashi, S.; Tani, M. Inter-annual variations and factors controlling evapotranspiration in a temperate Japanese cypress forest. Hydrol. Process. 2016, 30, 5012–5026. [Google Scholar] [CrossRef]
Quantity | MODIS ID | Temporal Resolution | Spatial Resolution | Reference |
---|---|---|---|---|
ET | MOD16 | Daily, 8-day, and Monthly | 30 s | [33] |
Land Surface Temperature (LST) | MOD11C1 MOD11C3 MYD11C1 MYD11C3 | Daily and monthly | 0.05 degrees | [32] |
Leaf Area Index (LAI) | MCD15A2 | 8-day composite | 1 km | [34,35] |
FPAR | MCD15A2 | 8-day composite | 1 km | [34] |
Albedo (α) | MCD43C3 | 16-day composite | 0.05 degrees | [36] |
Aerosol Optical Depth (AOD) | MOD08 MYD08 | Monthly | 1 degree | [37,38] |
Land Cover (LC) | MCD12C1 | Annual | 0.05 degrees | [39] |
Digital Elevation Model (DEM) | n/a | n/a | 0.05 degrees | [40] |
Wind Speed (u) | n/a | Mean Monthly | 1 degree | [41] |
ET Components | Modifications to PM Equation * |
---|---|
Evaporation from Canopy | |
Transpiration from Vegetation | |
Evaporation from Saturation Soil Surfaces | |
Evaporation from Moist Soil Surfaces | |
Evaporation from Open-Water | where u (m s−1) is wind speed 2 m above surface [51]. |
LC | ENF | EBF | DNF | DBF | MF | CSH | OSH | WL | SV | Grass | Crop | Urban | Barren |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tmin_open (°C) | 8.31 | 9.09 | 10.44 | 9.94 | 9.50 | 8.61 | 8.80 | 11.39 | 11.39 | 12.02 | 12.02 | 12.02 | 12.02 |
Tmin_close (°C) | −8.00 | −8.00 | −8.00 | −6.00 | −7.00 | −8.00 | −8.00 | −8.00 | −8.00 | −8.00 | −8.00 | −8.00 | −8.00 |
VPDclose (Pa) | 3000 | 4000 | 3500 | 2900 | 2900 | 4300 | 4400 | 3500 | 3600 | 4200 | 4500 | 4200 | 4200 |
VPDopen (Pa) | 650 | 1000 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 |
gl_sh (m s−1) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.04 | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 |
gl_e_wv (m s−1) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.04 | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 |
Cl (m s−1) | 0.0024 | 0.0024 | 0.0024 | 0.0024 | 0.0024 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 |
RBLmin (s m−1) | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
RBLmax (s m−1) | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 | 95 |
k | 0.613 | 0.464 | 0.668 | 0.599 | 0.617 | 0.552 | 0.64 | 0.485 | 0.489 | 0.594 | 0.587 | 0.601 | 0.596 |
Observed Daily ET | Estimated Daily ET | RMSE | MAE | R | S | ||
---|---|---|---|---|---|---|---|
In-situ data driven results | min | 0.44 | 0.44 | 0.42 | 0.30 | 0.33 | 0.47 |
max | 3.15 | 2.83 | 1.07 | 0.78 | 0.92 | 0.94 | |
median | 1.06 | 1.12 | 0.71 | 0.52 | 0.82 | 0.83 | |
mean | 1.25 | 1.23 | 0.69 | 0.51 | 0.76 | 0.80 | |
MODIS data driven results (daily LST) | min | 0.43 | 0.45 | 0.47 | 0.32 | 0.03 | 0.40 |
max | 3.28 | 2.68 | 1.33 | 1.01 | 0.88 | 0.91 | |
median | 1.27 | 1.07 | 0.80 | 0.56 | 0.77 | 0.79 | |
mean ± se | 1.43 | 1.24 ± 0.04 | 0.81 | 0.59 | 0.68 | 0.74 | |
MODIS data driven results (monthly LST) | min | 0.44 | 0.25 | 0.44 | 0.30 | 0.26 | 0.20 |
max | 3.15 | 2.82 | 1.17 | 0.90 | 0.86 | 0.91 | |
median | 1.06 | 1.02 | 0.75 | 0.56 | 0.75 | 0.78 | |
mean ± se | 1.25 | 1.16 ± 0.04 | 0.77 | 0.56 | 0.72 | 0.70 |
Land Cover | Min | Max | Range | Mean | Standard Deviation |
---|---|---|---|---|---|
ENF | −1.7 | 2.4 | 4.1 | −0.20 | 0.17 |
EBF | −2.9 | 2.6 | 5.5 | −0.97 | 0.49 |
DNF | −0.7 | 0.8 | 1.5 | −0.36 | 0.10 |
DBF | −1.4 | 2.3 | 3.7 | −0.14 | 0.50 |
MF | −2.1 | 2.7 | 4.8 | −0.34 | 0.21 |
CSH | −2.6 | 1.7 | 4.3 | 0.03 | 0.35 |
OSH | −3.2 | 4.5 | 7.7 | −0.16 | 0.24 |
WL | −2.4 | 2.8 | 5.2 | −0.01 | 0.51 |
SV | −2.1 | 2.7 | 4.8 | 0.03 | 0.46 |
Grass | −3.2 | 3.7 | 6.9 | −0.23 | 0.38 |
Crop | −2.4 | 3.8 | 6.2 | −0.14 | 0.30 |
Urban | −2.9 | 3.6 | 6.5 | −0.05 | 0.42 |
Barren | −3.8 | 5.0 | 8.8 | −0.08 | 0.40 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raoufi, R.; Beighley, E. Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature. Remote Sens. 2017, 9, 1138. https://doi.org/10.3390/rs9111138
Raoufi R, Beighley E. Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature. Remote Sensing. 2017; 9(11):1138. https://doi.org/10.3390/rs9111138
Chicago/Turabian StyleRaoufi, Roozbeh, and Edward Beighley. 2017. "Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature" Remote Sensing 9, no. 11: 1138. https://doi.org/10.3390/rs9111138
APA StyleRaoufi, R., & Beighley, E. (2017). Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature. Remote Sensing, 9(11), 1138. https://doi.org/10.3390/rs9111138