Geomorphological Dating of Pleistocene Conglomerates in Central Slovenia Based on Spatial Analyses of Dolines Using LiDAR and Ground Penetrating Radar
Abstract
:1. Introduction
2. Geological Settings of Study Area and the Age of Quaternary Deposits
3. Methods
3.1. LiDAR and Morphometrical Analyses
3.2. Ground Penetrating Radar
The GPR Survey and Data Processing
4. Study Area and Test Sites
4.1. GPR Results and Defining the Appropriate Test Dolines for Morphometrical Analyses
4.2. Test Sites for Spatial Analyses
5. Results
5.1. The Circularity of the Doline Planar Shape
5.2 The Area of the Doline Planar Shape
5.3. Doline Depth
5.4. Doline Distribution
5.5. Typization of Karst Surface Morphology as a Tool for Dating Conglomerates
- Unconsolidated gravel: the surface is flat with no surface features (Figure 16a).
- Young conglomerate: the surface is flat and characterized by scarce shallow surface features. Shallow linear depressions appear as nearly unrecognizable irregularities. Sporadically, large but shallow dolines develop. In some cases, their location seems to be linked to linear depressions (Figure 16b).
- Middle conglomerate: the surface is rather flat and entirely covered by mainly uniform, funnel-like deep dolines (Figure 16c).
- Old conglomerate: the surface is irregular; the depressions come in all sizes, depths, and shapes (Figure 16d) and do not entirely cover the surface. The largest and deepest dolines occur here (Type 1), as well as small and shallow (Type 2), and double ones (Type 3).
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Šifrer, M. Kvartarni razvoj Dobrav na Gorenjskem (The Quarternary development of Dobrave in Upper Carniola (Gorenjska) Slovenia). Geografski Zbornik 1969, 11, 99–221. [Google Scholar]
- Žlebnik, L. Pleistocen Kranjskega, Sorškega in Ljubljanskega polja. Geologija 1971, 14, 5–51. [Google Scholar]
- Knez, M.; Šebela, S.; Gabrovšek, F. Geološke osnove ter jame (Geological settings and caves). In Udin Boršt; Kranjc, A., Ed.; Museo di Storia Naturale e Archeologia: Montebelluna, Italy, 2005; pp. 9–24. [Google Scholar]
- Ferrarese, F.; Sauro, U. The Montello Hill: The “classical karst” of the conglomerate rocks. Acta Carsol. 2005, 34, 439–448. [Google Scholar] [CrossRef]
- Telbisz, T.; Látos, T.; Deák, M.; Székely, B.; Koma, Z.; Standovár, T. The advantage of lidar digital terrain models in doline morphometry compared to topographic map based datasets—Aggtelek karst (Hungary) as an example. Acta Carsol. 2016, 45, 5–24. [Google Scholar] [CrossRef]
- Pardo-Igúzquiza, E.; Valsero, J.J.D.; Dowd, P.A. Automatic detection and delineation of karst terrain depressions and its application in geomorphological mapping and morphometrical analysis. Acta Carsol. 2013, 42, 17–24. [Google Scholar] [CrossRef]
- Carvalho, O.D.; Guimarães, R.; Montgomery, D.; Gillespie, A.; Gomes, R.T.; Martins, É.D.S.; Silva, N. Karst depression detection using ASTER, ALOS/PRISM and SRTM-Derived digital elevation models in the Bambuí Group, Brazil. Remote Sens. 2013, 6, 330–351. [Google Scholar] [CrossRef] [Green Version]
- Kobal, M.; Bertoncelj, I.; Pirotti, F.; Kutnar, L. Lidar processing for defining sinkhole characteristics under dense forest cover: A case study in the Dinaric mountains. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 113–118. [Google Scholar] [CrossRef]
- Jeanpert, J.; Genthon, P.; Maurizot, P.; Folio, J.-L.; Vendé-Leclerc, M.; Sérino, J.; Join, J.-L.; Iseppi, M. Morphology and distribution of dolines on ultramafic rocks from airborne LiDAR data: The case of southern Grande Terre in New Caledonia (SW Pacific). Earth Surf. Process. Landf. 2016, 41, 1854–1868. [Google Scholar] [CrossRef]
- Černatic-Gregorič, A.; Zega, M. The impact of human activities on dolines (sinkholes): Typical geomorphologic features on Karst (Slovenia) and possibilities of their preservation. Geogr. Pannonica 2010, 14, 109–117. [Google Scholar] [CrossRef]
- Breg Valjavec, M.; Zorn, M. Degraded karst relief: Waste-filled dolines. In Advances in Environmental Research, 1st ed.; Daniels, J.A., Ed.; Nova Science Publishers: New York, NY, USA, 2015; Volume 40, pp. 77–95. [Google Scholar]
- Gabrovšek, F. Jame v konglomeratu: Primer Udin Boršta, Slovenija. (Caves in conglomerate: Case of Udin Boršt, Slovenia). Acta Carsol. 2005, 34, 507–519. [Google Scholar]
- Gantar, J. Arneševa luknja. Acta Carsol. 1995, 1, 151–158. [Google Scholar]
- Šter, D. Udin Boršt in njegov kras. Proteus 1995, 57, 237–244. [Google Scholar]
- Lipar, M.; Ferk, M. Eogenetic caves in conglomerate: An example from Udin Boršt, Slovenia. Int. J. Speleol. 2011, 40, 53–64. [Google Scholar] [CrossRef]
- Ferk, M.; Lipar, M. Eogenetic caves in Pleistocene carbonate conglomerate in Slovenia. Acta Geogr. Slov. 2012, 52, 7–33. [Google Scholar] [CrossRef]
- Grad, K.; Ferjančič, L. Basic Geological Map of Yugoslavia, Sheet Kranj, L33–65; Federal Geological Survey of Beograd: Beograd, Serbia, 1976. [Google Scholar]
- Šifrer, M. Porečje Kamniške Bistrice v pleistocenu. (The basin of Kamniška Bistrica during the pleistocene period). Dela SAZU 1961, 10, 211. [Google Scholar]
- Meze, D. Porečje Kokre v pleistocenu. Geografski Zbornik 1974, 14, 98. [Google Scholar]
- Kuščer, D. Kvartarni savski zasipi in neotektonika. Geologija 1990, 33, 299–313. [Google Scholar] [CrossRef]
- Šercelj, A. Pelodne Analize Pleistocenskih in Holocenskih Sedimentov Ljubljanskega Barja; Razprave 9/9, 4 Raz.; SAZU: Ljubljana, Slovenia, 1966; pp. 431–472. [Google Scholar]
- Pavich, M.J.; Vidic, N. Application of paleomagnetic and 10Be analyses to chronostratigraphy of Alpine glacio–fluvial terraces, Sava River Valley, Slovenia. In Climate Change in Continental Isotope Records; Swart, P., Ed.; Geophysical Monograph: Washington, DC, USA, 1993; Volume 78, pp. 263–275. [Google Scholar]
- Vidic, N.J.; Lobnik, F. Rates of soil development of the chronosequence in the Ljubljana Basin, Slovenia. Geoderma 1997, 76, 35–64. [Google Scholar] [CrossRef]
- Vidic, N.J. Soil-age relationships and correlations: Comparison of chronosequences in the Ljubljana Basin, Slovenia and USA. Catena 1998, 34, 113–129. [Google Scholar] [CrossRef]
- Mihevc, A.; Bavec, M.; Häuselmann, P.; Fiebig, M. Dating of the Udin Boršt conglomerate terrace and implication for tectonic uplift in the northern part of the Ljubljana Basin (Slovenia). Acta Carsol. 2015, 44. [Google Scholar] [CrossRef]
- Penck, A.; Brückner, E. Die Alpen in Eiszeiten; Tauchnitz: Leipzig, Germany, 1909; p. 1199. (In German) [Google Scholar]
- Vidic, N.; Pavich, M.; Lobnik, F. Statistical analyses of soil properties on a quaternary terrace sequence in the upper Sava river valley, Slovenia, Yugoslavia. Geoderma 1991, 51, 189–211. [Google Scholar] [CrossRef]
- Doctor, D.H.; Young, J.A. An evaluation of automated GIS tools for delineating karst sinkholes and closed depressions from 1-meter lidar-derived digital elevation data. In Proceedings of the 13th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, National Cave and Karst Research Institute, Carlsbad, New Mexico, 6–10 May 2013; pp. 449–458. [Google Scholar]
- Obu, J.C.A.; Podobnikar, T. Algorithm for karst depression recognition using digital terrain models. Geod. Vestnik 2013, 57, 260–270. [Google Scholar] [CrossRef]
- Šušteršič, F. The Pure Karst Model. Cave Karst Sci. 1996, 23, 25–32. [Google Scholar]
- Triglav Čekada, M. Možnosti uporabe zračnega laserskega skeniranja (LiDAR) za geomorfološke študije. Geogr. Vestnik 2011, 83, 81–93. [Google Scholar]
- Bondesan, A.; Meneghel, M.; Sauro, U. Morphometrical analysis of dolines. Int. J. Speleol. 1992, 21, 1–55. [Google Scholar] [CrossRef]
- Šušteršič, F. Classic dolines of classical site. Acta Carsol. 1994, 23, 123–152. [Google Scholar]
- Ćalić, J. Uvala—Contribution to the Study of Karst Depressions (with Selected Examples from Dinarides and Carpatho-Balkanides). Ph.D. Thesis, University of Nova Gorica, Slovenia, 2009. [Google Scholar]
- Denizman, C. Morphometrical and spatial distribution parameters of karstic depressions, Lower Suwannee River Basin, Florida. J. Cave Karst Stud. 2003, 65, 29–35. [Google Scholar]
- Šegina, E.; Benac, Č.; Rubinić, J.; Knez, M. Morphometrical analyses of dolines—The problem of delineation and calculation of basic parameters. Acta Carsol. 2017, in press. [Google Scholar]
- LiDAR (Public Information of Slovenia, the Surveying and Mapping Authority of the Republic of Slovenia, LiDAR, 2015) ARSO, Ministry of the Environment. Available online: http://gis.arso.gov.si/evode/profile.aspx?id=atlas_voda_Lidar@Arso (accessed on 21 November 2017).
- Bric, V.; Berk, S.; Oven, K.; Triglav Čekada, M. Aerofotografiranje in Aerolasersko Skeniranje Slovenije; Slovensko združenje za geodezijo in geofiziko: Ljubljana, Slovenia, 2014; Volume 20, pp. 57–71. [Google Scholar]
- Mongus, D.; Horvat, D. Napredno orodje za obdelavo lidarskih podatkov. Geod. Vestnik 2015, 59, 153–158. [Google Scholar]
- Mongus, D.; Lukač, N.; Žalik, B. Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces. J. Photogramm. Remote Sens. 2014, 93, 145–156. [Google Scholar] [CrossRef]
- Mongus, D.; Žalik, B. Computationally efficient method for the generation of a digital terrain model from Airborne LiDAR data using connected operators. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 340–351. [Google Scholar] [CrossRef]
- Batayneh, A.T.; Abueladas, A.A.; Moumani, K.A. Use of ground-penetrating radar for assessment of potential sinkhole conditions: An example from Ghor al Haditha area, Jordan. Environ. Geol. 2002, 41, 977–983. [Google Scholar] [CrossRef]
- Delle Rose, M.; Leucci, G. Towards an integrated approach for characterization of sinkhole hazards in urban environments: The unstable coastal site of Casalabate, Lecce, Italy. J. Geophys. Eng. 2010, 7, 143–154. [Google Scholar] [CrossRef]
- Gómez-Ortiz, D.; Martín-Crespo, T. Assessing the risk of subsidence of a sinkhole collapse using ground penetrating radar and electrical resistivity tomography. Eng. Geol. 2012, 149–150, 1–12. [Google Scholar] [CrossRef]
- Rodriguez, V.; Gutiérrez, F.; Green, A.G.; Carbonel, D.; Horstmeyer, H.; Schmelzbach, C. Characterizing sagging and collapse sinkholes in a mantled karst by means of ground penetrating radar (GPR). Environ. Eng. Geosci. 2014, 20, 109–132. [Google Scholar] [CrossRef]
- Pueyo-Anchuela, Ó.; López Julián, P.L.; Casas-Sainz, A.M.; Liesa, C.L.; Pocoví-Juan, A.; Ramajo Cordero, J.; Perez Benedicto, J.A. Three dimensional characterization of complex mantled karst structures. Decision making and engineering solutions applied to a road overlying evaporite rocks in the Ebro Basin (Spain). Eng. Geol. 2015, 193, 158–172. [Google Scholar] [CrossRef]
- Margiotta, S.; Negri, S.; Parise, M.; Quarta, T.A.M. Karst geosites at risk of collapse: The sinkholes at Nociglia (Apulia, SE Italy). Environ. Earth Sci. 2016, 75, 1–10. [Google Scholar] [CrossRef]
- Zarroca, M.; Comas, X.; Gutiérrez, F.; Carbonel, D.; Linares, R.; Roqué, C.; Mozafari, M.; Guerrero, J.; Pellicer, X.M. The application of GPR and ERI in combination with exposure logging and retrodeformation analysis to characterize sinkholes and reconstruct their impact on fluvial sedimentation. Earth Surf. Process. Landf. 2016, 42, 1049–1064. [Google Scholar] [CrossRef]
- Jol, H.M. Ground Penetrating Radar: Theory and Applications, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2009; p. 524. [Google Scholar]
- Shih, S.F.; Doolittle, J.A. Using radar to investigate organic soil thickness in the Florida everglades. Soil Sci. Soc. Am. J. 1984, 48, 651–656. [Google Scholar] [CrossRef]
- Huisman, J.A.; Hubbard, S.S.; Redman, J.D.; Annan, A.P. Measuring soil water content with ground penetrating radar: A Review. Vadose Zone J. 2003, 2, 476–491. [Google Scholar] [CrossRef]
- Lunt, I.; Hubbard, S.; Rubin, Y. Soil moisture content estimation using ground-penetrating radar reflection data. J. Hydrol. 2005, 307, 254–269. [Google Scholar] [CrossRef]
- Simeoni, M.A.; Galloway, P.D.; O’Neil, A.J.; Gilkes, R.J. A procedure for mapping the depth to the texture contrast horizon of duplex soils in south-western Australia using ground penetrating radar, GPS and kriging. Aust. J. Soil Res. Aust. 2009, 47, 613–621. [Google Scholar] [CrossRef]
- Breiner, J.M.; Doolittle, J.A.; Horton, R.; Graham, R.C. Performance of ground-penetrating radar on granitic regoliths with different mineral composition. Soil Sci. 2011, 176, 435–440. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, H.; Doolittle, J. Soil layering and preferential flow impacts on seasonal changes of GPR signals in two contrasting soils. Geoderma 2014, 213, 560–569. [Google Scholar] [CrossRef]
- McNeill, J.D. Electrical Conductivity of Soils and Rock; Technical Note TN-5; Geonics Limited: Mississauga, ON, Canada, 1980; 22p. [Google Scholar]
- Olhoeft, G.R. Electrical properties from 10−3 to 10+9 Hz—Physics and chemistry. In Physics and chemistry of porous media II: Ridgefield, CT, 1986; Jayanth, R.B., Joel, K., Kenneth, W.W., Eds.; American Institute of Physics: Ridgefield, CT, USA, 1987; pp. 281–298. [Google Scholar]
- Doolittle, J.A.; Collins, M.E. A comparison of EM induction and GPR methods in areas of karst. Geoderma 1998, 85, 83–102. [Google Scholar] [CrossRef]
- Mala ProEx—Professional Explorer Control Unit. Operating Manual. Mala. Available online: http://www.guidelinegeo.com/wp-content/uploads/2016/07/MALA-ProEx-Control-Unit-Manual-v.2.0.pdf (accessed on 23 November 2017).
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics, 2nd ed.; Wiley: New York, NY, USA, 2011; p. 712. [Google Scholar]
- Šušteršič, F. A conceptual model of dinaric solution doline dynamics. Cave Karst Sci. 2017, 44, 66–75. [Google Scholar]
Locations of Test Sites | Relative Dating [2] | Absolute Dating [22,24] | ||
---|---|---|---|---|
Related Glaciations | Estimated Age (ka) | Uncertainty Intervals (ka) | ||
Gravel | / | Würm | Würm I, II, III (62, 44, 32) | (50–70, 40–50, 20–35) |
Young conglomerate | Podbrezje | Riss | Riss, 450 | 435–515 |
Middle conglomerate | Dobrava | Mindel | Mindel I, II (960, 980) | (780–1000, >780) |
Old conglomerate | Poljšica | Günz | Günz 1800 | >1000 |
Doline Characteristic | Parameter | Method | |
---|---|---|---|
Morphometrical analyses | The circularity of the planar shape | Circularity index (Ic) | Pcc = The circumference of the circumscribed circle Pd = The perimeter of the doline (Figure 2a) |
The size of the planar shape | A | The area of the doline planar shape (m2) (Figure 2b) | |
Depth | h | The vertical distance (m) between the highest elevation of the doline rim and the lowest elevation of the doline bottom (Figure 2c) | |
Distributive analyses | Density including the size of dolines | Density index (Id) | Ad = The area (m2) of the doline planar shape Av = The area (m2) of the zone where any location is closer to its associated doline than to any other doline (Voronoi polygon) |
Profile | Location | Type | Length (m) | Antenna Frequency |
---|---|---|---|---|
Profile 1 | Poljšica (old conglomerate) | cultivated doline | 46.4 | 50 MHz |
Profile 2 | Dobrava (middle conglomerate) | cultivated doline | 57.4 | 50 MHz |
Profile 3 | Podbrezje (young conglomerate) | soil/conglomerate | 79.5 | 250 MHz |
Profile 4 | Podbrezje (young conglomerate) | uncultivated doline | 64.4 | 250 MHz |
Podbrezje | Dobrava | Poljšica | |
---|---|---|---|
Relative age of conglomerate | Young | Middle | Old |
Area (m2) | 382 108 | 775 562 | 309 349 |
Number of identified dolines | 21 | 185 | 73 |
Young Conglomerate | Middle Conglomerate | Old Conglomerate | ||
---|---|---|---|---|
Surface features | shallow linear depressions, dolines | dolines | dolines | |
Dolines | volumetric shape | bowl-like | funnel-like | Type 1: funnel-like Type 2: bowl-like |
planar shape | highly circular | highly circular | Type 1: highly circular Type 2: irregular | |
planar size | uniform | uniform | Type 1: uniform Type 2: small | |
depth | shallow | Type 1: deep Type 2: shallow | Type 1: deep Type 2: shallow | |
slope | gentle | steep | Type 1: extremely steep Type 2: gentle | |
frequency | rare | numerous | moderate | |
uniformity | high | moderate | low | |
Distribution | sporadic | covering the entire surface | scattered |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čeru, T.; Šegina, E.; Gosar, A. Geomorphological Dating of Pleistocene Conglomerates in Central Slovenia Based on Spatial Analyses of Dolines Using LiDAR and Ground Penetrating Radar. Remote Sens. 2017, 9, 1213. https://doi.org/10.3390/rs9121213
Čeru T, Šegina E, Gosar A. Geomorphological Dating of Pleistocene Conglomerates in Central Slovenia Based on Spatial Analyses of Dolines Using LiDAR and Ground Penetrating Radar. Remote Sensing. 2017; 9(12):1213. https://doi.org/10.3390/rs9121213
Chicago/Turabian StyleČeru, Teja, Ela Šegina, and Andrej Gosar. 2017. "Geomorphological Dating of Pleistocene Conglomerates in Central Slovenia Based on Spatial Analyses of Dolines Using LiDAR and Ground Penetrating Radar" Remote Sensing 9, no. 12: 1213. https://doi.org/10.3390/rs9121213
APA StyleČeru, T., Šegina, E., & Gosar, A. (2017). Geomorphological Dating of Pleistocene Conglomerates in Central Slovenia Based on Spatial Analyses of Dolines Using LiDAR and Ground Penetrating Radar. Remote Sensing, 9(12), 1213. https://doi.org/10.3390/rs9121213