Remote Sensing in Human Health: A 10-Year Bibliometric Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Bibliographic Database
2.2. Search Strategy and Validity
2.3. Software and Data Analysis
2.4. Statistics and Ethical Considerations
3. Results
3.1. General Information
3.2. Trends and Citations
3.3. Geographical Distribution
3.4. Authorship Pattern and Collaboration
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Beck, L.R.; Lobitz, B.M.; Wood, B.L. Remote sensing and human health: New sensors and new opportunities. Emerg. Infect. Dis. 2000, 6, 217–227. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). World Malaria Report 2015; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Masuoka, P.M.; Claborn, D.M.; Andre, R.G.; Nigro, J.; Gordon, S.W.; Klein, T.A.; Kim, H.C. Use of IKONOS and Landsat for malaria control in the Republic of Korea. Remote Sens. Environ. 2003, 88, 187–194. [Google Scholar] [CrossRef]
- Li, Z.C.; Roux, E.; Dessay, N.; Girod, R.; Stefani, A.; Nacher, M.; Moiret, A.; Seyler, F. Mapping a knowledge-based Malaria hazard index related to Landscape using remote sensing: application to the cross-border area between French Guiana and Brazil. Remote Sens. 2016, 8, 319. [Google Scholar] [CrossRef]
- Stanforth, A.; Moreno-Madriñán, M.A.; Ashby, J. Exploratory analysis of dengue fever Niche variables within the Río Magdalena Watershed. Remote Sens. 2016, 8, 770. [Google Scholar] [CrossRef]
- Peckham, R.; Sinha, R. Satellites and the new war on infection: tracking Ebola in West Africa. Geoforum 2017, 80, 24–38. [Google Scholar] [CrossRef]
- Hamm, N.A.S.; Magalhães, R.J.S.; Archie, C.A.; Clements, C.A. Earth observation, spatial data quality, and neglected tropical diseases. PLoS Negl. Trop. Dis. 2015, 9, e0004164. [Google Scholar] [CrossRef] [PubMed]
- Ayres-Sampaio, D.; Teodoro, A.C.; Sillero, N.; Santos, C.; Fonseca, J.; Freitas, A. An investigation of the environmental determinants of asthma hospitalizations: An applied spatial approach. Appl. Geogr. 2014, 47, 10–19. [Google Scholar] [CrossRef]
- Oliveira, M.; Teodoro, A.C.; Freitas, A.; Bernardes, J.; Gonçalves, H. Spatio-temporal analysis of preterm birth in Portugal and its relation with environmental variables. Remote Sens. Technol. Appl. Urban Environ. 2016, 100080B. [Google Scholar] [CrossRef]
- Jerrett, M.; Turner, M.C.; Beckerman, B.S.; Pope, C.A.; van Donkelaar, A.; Martin, R.V.; Serre, M.; Crouse, D.; Gapstur, S.M.; Krewski, D.; et al. Comparing the health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure estimates. Environ. Health Perspect. 2017, 125, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Burnett, R.T.; Kwong, J.C.; Villeneuve, P.J.; Goldberg, M.S.; Brook, R.D. Risk of incident diabetes in relation to long-term exposure to fine particulate matter in Ontario, Canada. Environ. Health Perspect. 2013, 121, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Tian, S.; Zheng, Z.; Zhan, Q.; He, Y. Human activity influences on vegetation cover changes in Beijing, China, from 2000 to 2015. Remote Sens. 2017, 9, 271. [Google Scholar] [CrossRef]
- Sefeedpari, P.; Rafiee, S.; Akram, A.; Chau, K.; Pishgar-Komleh, S.H. Prophesying egg production based on energy consumption using multi-layered adaptive neural fuzzy inference system approach. Comput. Electron. Agric. 2016, 131, 10–19. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, M.; Qing, X.; Li, G.; Tian, C. Bibliometric analysis on global remote sensing research during 2010–2015. SPRS Int. J. Geo-Inf. 2017, 6, 332. [Google Scholar] [CrossRef]
- DeShazo, J.P.; LaVallie, D.L.; Wolf, F.M. Publication trends in the medical informatics literature: 20 years of “Medical Informatics” in MeSH. BMC Med. Inform. Decis. Mak. 2009, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Ugolini, D.; Bonassi, S.; Cristaudo, A.; Leoncini, G.; Ratto, G.B.; Neri, M. Temporal trend, geographic distribution, and publication quality in asbestos research. Environ. Sci. Pollut. Res. 2014. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.H.; Liu, X.J.; Nguyen, T.; He, Q.Q.; Hong, S. Global remote sensing research trends during 1991–2010: A bibliometric analysis. Scientometrics 2013, 96, 203–219. [Google Scholar] [CrossRef]
- Vijaylakshmi, S.; Ambuja, R. Growth of Remote Sensing Literature: A Bibliometric Analysis. J. Adv. Libr. Inf. Sci. 2013, 2, 157–165. [Google Scholar]
- What Content Is Included in Scopus? Available online: https://www.elsevier.com/solutions/scopus/content (accessed on 12 July 2017).
- GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar]
- Sustainable Development Knowledge Plataform. Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 14 July 2015).
- Semenza, J.C.; Menne, B. Climate change and infectious diseases in Europe. Lancet Infect. Dis. 2009, 9, 365–375. [Google Scholar] [CrossRef]
- Tanser, F.C.; Sueur, D. The application of geographical information systems to important public health problems in Africa. Int. J. Health Geogr. 2002, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Kamel-Boulos, M.N.; Roudsari, A.V.; Carson, E.R. Health Geomatics: An Enabling suite of technologies in health and healthcare. J. Biomed. Inform. 2001, 34, 195–219. [Google Scholar] [CrossRef]
- Mullner, R.M.; Chung, K.; Croke, K.G.; Mensah, E.K. Geographic information systems in public health and medicine. J. Med. Syst. 2004, 28, 215–221. [Google Scholar] [CrossRef] [PubMed]
Keyword | Occurrences as Index or Author Keywords n (%) |
---|---|
Malaria | 142 (27.3) |
Dengue | 34 (6.5) |
Schistosomiasis | 24 (4.6) |
Cholera | 16 (3.1) |
Cardiovascular disease | 15 (2.9) |
Asthma | 14 (2.7) |
Schistosomiasis japonica | 10 (1.9) |
Chagas disease | 9 (1.7) |
Obesity | 6 (1.2) |
Pregnancy | 2 (0.4) |
Year | Articles (%) | ACLO | ACLO % | ACY | Total-Citations | Median (Q1–Q3) of Citations |
---|---|---|---|---|---|---|
2007 | 29 (5.6) | 28 | 96.6% | 95.8 | 1051 | 30.5 (17.5–52.5) |
2008 | 38 (7.3) | 37 | 97.4% | 138.7 | 1248 | 22.0 (9.5–39) |
2009 | 39 (7.5) | 36 | 92.3% | 144.3 | 1176 | 21.5 (10.5–38.5) |
2010 | 42 (8.1) | 42 | 100% | 117.4 | 823 | 15.5 (8–26) |
2011 | 39 (7.5) | 39 | 100% | 110.7 | 664 | 9.0 (8–22) |
2012 | 50 (9.6) | 49 | 98.0% | 192.4 | 990 | 11.0 (6.5–28) |
2013 | 64 (12.3) | 59 | 92.2% | 169.5 | 725 | 9.0 (5–14) |
2014 | 70 (13.5) | 66 | 94.3% | 209.0 | 633 | 7.0 (3–12) |
2015 | 80 (15.4) | 69 | 86.3% | 266.5 | 533 | 4.0 (2–7) |
2016 | 69 (13.3) | 47 | 68.1% | 191.0 | 191 | 3.0 (1–5) |
References | Title | Number of Citations |
---|---|---|
Gilbert et al. (2008) | Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia | 196 |
Kraemer et al. (2015) | The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus | 186 |
Reid et al. (2009) | Mapping community determinants of heat vulnerability | 180 |
De Magny et al. (2008) | Environmental signatures associated with cholera epidemics | 136 |
Delfino et al. (2009) | The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003 | 116 |
Vittor et al. (2009) | Linking deforestation to malaria in the Amazon: Characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi | 114 |
Bejon et al. (2010) | Stable and unstable malaria hotspots in longitudinal cohort studies in Kenya | 110 |
Kloog et al. (2008) | Light at night co-distributes with incident breast but not lung cancer in the female population of Israel | 99 |
Chan et al. (2008) | Increasing cardiopulmonary emergency visits by long-range transported Asian dust storms in Taiwan | 94 |
Gilbert et al. (2007) | Avian influenza, domestic ducks and rice agriculture in Thailand | 93 |
Institution | Articles (%) |
---|---|
Swiss Tropical and Public Health Institute, Switzerland | 31 (6.0) |
University of Basel, Switzerland | 22 (4.2) |
Johns Hopkins University, United States | 22 (4.2) |
University of California, United States | 20 (3.8) |
University of Florida, United States | 13 (2.5) |
University of Oxford, United Kingdom | 13 (2.5) |
National Institutes of Health, United States | 12 (2.3) |
Emory University, United States | 12 (2.3) |
Columbia University, United States | 11 (2.1) |
University of Maryland, United States | 10 (1.9) |
Kenya Medical Research Institute, Kenya | 10 (1.9) |
Nagasaki University, Japan | 10 (1.9) |
University of Miami, United States | 10 (1.9) |
Journal | Articles (%) |
---|---|
Malaria Journal | 39 (7.5) |
International Journal of Health Geographics | 34 (6.5) |
PLoS ONE | 32 (6.2) |
Geospatial Health | 31 (6.0) |
PLoS Neglected Tropical Diseases | 17 (3.3) |
American Journal of Tropical Medicine and Hygiene | 16 (3.1) |
Acta Tropica | 13 (2.5) |
Environmental Health Perspectives | 11 (2.1) |
Parasites and Vectors | 11 (2.1) |
Environmental Research | 10 (1.9) |
Geospatial health | 10 (1.9) |
Standard Competition Ranking (SCR) | Author | Articles (%) | Total Articles in Scopus within the Study Period | % of Articles from Total |
---|---|---|---|---|
1st | Vounatsou P. | 22 (4.2) | 129 | 17.1 |
2nd | Utzinger J. | 19 (3.7) | 429 | 4.4 |
3rd | Vignolles C. | 13 (2.5) | 25 | 52.0 |
4th | Machault V. | 9 (1.7) | 20 | 45.0 |
5th | Kumar V. | 8 (1.5) | 84 | 9.5 |
5th | Lacaux J.-P. | 8 (1.5) | 25 | 32.0 |
5th | Martin R.V. | 8 (1.5) | 133 | 6.0 |
5th | Shields T. | 8 (1.5) | 36 | 22.2 |
5th | Moss W.J. | 8 (1.5) | 113 | 7.1 |
10th | Bhunia G.S. | 7 (1.3) | 19 | 36.8 |
10th | Gilbert M. | 7 (1.3) | 74 | 9.5 |
10th | Kesari S. | 7 (1.3) | 28 | 25.0 |
10th | Raso G. | 7 (1.3) | 57 | 12.3 |
10th | Scholte R.G.C. | 7 (1.3) | 18 | 38.9 |
10th | van Donkelaar A. | 7 (1.3) | 85 | 8.2 |
10th | Das P. | 7 (1.3) | 264 | 2.7 |
10th | N’Goran E.K. | 7 (1.3) | 109 | 6.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viana, J.; Santos, J.V.; Neiva, R.M.; Souza, J.; Duarte, L.; Teodoro, A.C.; Freitas, A. Remote Sensing in Human Health: A 10-Year Bibliometric Analysis. Remote Sens. 2017, 9, 1225. https://doi.org/10.3390/rs9121225
Viana J, Santos JV, Neiva RM, Souza J, Duarte L, Teodoro AC, Freitas A. Remote Sensing in Human Health: A 10-Year Bibliometric Analysis. Remote Sensing. 2017; 9(12):1225. https://doi.org/10.3390/rs9121225
Chicago/Turabian StyleViana, João, João Vasco Santos, Rui Manuel Neiva, Júlio Souza, Lia Duarte, Ana Cláudia Teodoro, and Alberto Freitas. 2017. "Remote Sensing in Human Health: A 10-Year Bibliometric Analysis" Remote Sensing 9, no. 12: 1225. https://doi.org/10.3390/rs9121225
APA StyleViana, J., Santos, J. V., Neiva, R. M., Souza, J., Duarte, L., Teodoro, A. C., & Freitas, A. (2017). Remote Sensing in Human Health: A 10-Year Bibliometric Analysis. Remote Sensing, 9(12), 1225. https://doi.org/10.3390/rs9121225