Improved DisTrad for Downscaling Thermal MODIS Imagery over Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
Remote Sensing Data
3. Thermal Downscaling Method
3.1. Original DisTrad
- (1)
- A least-squares fit is performed between the MODIS/Terra land surface temperature product (dependent variable) and the upscaled impervious percentage map (independent variable), which was derived by spatial averaging of the 30 m impervious percentage map:
- (2)
- Calculate the estimated land surface temperature at the low resolution (the resolution of the observed land surface temperature product—MODIS resolution) and the estimated land surface temperature at the high resolution (target resolution for downscaling). The overbar symbol of T is used to indicate an estimated temperature based on a least-squares equation:
- (3)
- Calculate the temperature estimation residuals (), as the difference between the observed (original) MODIS/Terra land surface temperatures product () and the estimated temperature () at the low resolution, resulting from Equation (2):
- (4)
- The final step is to add the temperature estimation residuals at 960 m resolution (Equation (4)) to the estimated land surface temperature at the high resolution . Therefore, these residuals are resampled to match the sharpening target resolution (in this example, 60 m), represented by in Equation (5). The sharpened temperature image is finally obtained using Equation (5):
3.2. Improved DisTrad
3.3. Improving Impervious Percentage-LST Relationship
3.4. Evaluation Methods
4. Results and Discussion
4.1. MODIS and ETM Relationship
4.2. Impervious Percentage-MODIS/Terra Relationship
4.3. Parameterization of the Temperature Estimation Residuals
4.4. Evaluation of Downscaled Products
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, Y.; Hiyama, T.; Yamaguchi, Y. Scaling of land surface temperature using satellite data: A case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sens. Environ. 2006, 105, 115–128. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C. Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Remote Sens. Environ. 2009, 113, 2592–2605. [Google Scholar] [CrossRef]
- Xu, H.; Ding, F.; Wen, X. Urban Expansion and Heat Island Dynamics in the Quanzhou Region, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 74–79. [Google Scholar] [CrossRef]
- Mensink, C.; Lewyckyj, N.; Janssen, L. A new concept for air quality modeling in street canyons. Water Air Soil Pollut. Focus 2002, 2, 339–349. [Google Scholar] [CrossRef]
- Lo, C.; Quattrochi, D.; Luvall, J. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int. J. Remote Sens. 1997, 18, 287–304. [Google Scholar] [CrossRef]
- Nichol, J. High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-based study. J. Appl. Meteorol. 1996, 35, 135–146. [Google Scholar] [CrossRef]
- Tucker, C.J.; D’Souza, G.; Belward, A.S.; Malingreau, J.-P. (Eds.) Advances in the Use of NOAA AVHRR Data for Land Applications; Springer: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Zhou, J.; Zhang, X.; Zhan, W.; Zhang, H. Land surface temperature retrieval from MODIS data by integrating regression models and the genetic algorithm in an arid region. Remote Sens. 2014, 6, 5344–5367. [Google Scholar] [CrossRef]
- Sòria, G.; Sobrino, J.A. ENVISAT/AATSR derived land surface temperature over a heterogeneous region. Remote Sens. Environ. 2007, 111, 409–422. [Google Scholar] [CrossRef]
- Coppo, P.; Smith, D.; Nieke, J. Sea and Land Surface Temperature Radiometer on Sentinel-3. In Optical Payloads for Space Missions; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 701–714. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Tan, K.; Liao, Z.; Du, P.; Wu, L. Land surface temperature retrieval from Landsat 8 data and validation with geosensor network. Front. Earth Sci. 2016. [Google Scholar] [CrossRef]
- Wang, K.; Liang, S. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites. Remote Sens. Environ. 2009, 113, 1556–1565. [Google Scholar] [CrossRef]
- Rahman, M.T.; Aldosary, A.S.; Mortoja, M.G. Modeling future land cover changes and their effects on the land surface temperatures in the Saudi Arabian eastern coastal city of Dammam. Land 2017, 6, 36. [Google Scholar] [CrossRef]
- Liu, H.; Weng, Q. An examination of the effect of landscape pattern, land surface temperature, and socioeconomic conditions on WNV dissemination in Chicago. Earth Environ Sci. Environ. Mon. Assess. 2009, 159, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 898–905. [Google Scholar]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.; Hook, S.; Kahle, A. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 583–594. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P.; Michishita, R.; Sasagawa, T. Assessment of Multi-Resolution and Multi-Sensor Data for Urban Surface Temperature Retrieval. Remote Sens. Environ. 2006, 104, 211–225. [Google Scholar] [CrossRef]
- Zhukov, B.; Oertel, D.; Lanzl, F.; Reinhackel, G. Unmixing-based multisensor multiresolution image fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1212–1226. [Google Scholar] [CrossRef]
- Kustas, W.; Norman, J.; Anderson, M.; French, A. Estimating subpixel surface temperatures and energy fluxes from the vegetation index—Radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.; Anderson, M.; Li, F.; Neale, C. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar] [CrossRef]
- Liu, D.; Pu, R. Downscaling thermal infrared radiance for subpixel land surface temperature retrieval. Sensors 2008, 8, 2695–2706. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, A.; Kleissl, J.; Luvall, J.; Rickman, R. High-resolution urban thermal sharpener (HUTS). Remote Sens. Environ. 2011, 115, 1772–1780. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Essa, W.; Verbeiren, B.; van der Kwast, J.; Batelaan, O. Evaluation of DisTrad Thermal Sharpening for Urban Areas. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 163–172. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, T.; Wang, K.; Cheng, Z. Scaling of impervious surface area and vegetation as indicators to urban land surface temperature using satellite data. Int. J. Remote Sens. 2009, 30, 841–859. [Google Scholar] [CrossRef]
- Liu, P.; Du, P.; Wen, C.; Xia, J. Evaluation of urban heat environment using multi-algorithm and multi-scale images. In Proceedings of the Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009. [Google Scholar]
- Essa, W.; Verbeiren, B.; van der Kwast, J.; Batelaan, O. Downscaling of thermal images over urban areas using the land surface temperature—Impervious percentage relationship. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 95–108. [Google Scholar] [CrossRef]
- Van de Voorde, T.; Jacquet, W.; Canters, F. Mapping form and function in urban areas: An approach based on urban metrics and continuous impervious surface data. Landsc. Urban Plan. 2011, 102, 143–155. [Google Scholar] [CrossRef]
- Eswar, R.; Sekhar, M.; Bhattacharya, B.K. Disaggregation of LST over India: Comparative analysis of different vegetation indices. Int. J. Remote Sens. 2016, 37, 1035–1054. [Google Scholar] [CrossRef]
- Gao, L.; Zhan, W.; Huang, F.; Zhu, X.; Zhou, J.; Quan, J.; Du, P.; Li, M. Disaggregation of remotely sensed land surface temperature: A simple yet flexible index (SIFI) to assess method performances. Remote Sens. Environ. 2017, 200, 206–219. [Google Scholar] [CrossRef]
- Mukherjee, S. Multi-Resolution Technique for Disaggregation of Thermal Image Using Vegetation Index. Master’s Thesis, ITC International Institute for Geo-Information Science and Earth Observation of the University of Twente, Twente, The Netherlands, 2008; 85p. [Google Scholar]
- Agam, N.; Kustas, W.; Anderson, M.; Li, F.; Colaizzi, P. Utility of thermal sharpening over Texas high plains irrigated agricultural fields. J. Geophys. Res. 2007, 112, 19110–19120. [Google Scholar] [CrossRef]
- Gao, F.; Kustas, W.; Anderson, M. A data mining approach for sharpening thermal satellite imagery over land. Remote Sens. 2012, 4, 3287–3319. [Google Scholar] [CrossRef]
- Bisquert, M.; Sánchez, J.M.; Caselles, V. Evaluation of Disaggregation Methods for Downscaling MODIS Land Surface Temperature to Landsat Spatial Resolution in Barrax Test. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9. [Google Scholar] [CrossRef]
- Bechtel, B.; Zakšek, K.; Hoshyaripour, G. Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany. Remote Sens. 2012, 4, 3184–3200. [Google Scholar] [CrossRef]
- Merlin, O.; Duchemin, O.; Hagolle, O.; Jacob, F.; Coudert, B.; Chehbouni, G.; Dedieu, G.; Garatuza, J.; Kerr, Y. Disaggregation of MODIS surface temperature over an agricultural area using a time series of Formosat-2 images. Remote Sens. Environ. 2010, 114, 2500–2512. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Torn, R.D.; Kustas, W.P.; Basara, J.B. A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales. J. Hydrometeorol. 2004, 5, 343–363. [Google Scholar] [CrossRef]
- Bindhu, V.M.; Narasimhan, B.; Sudheer, K.P. Development and Verification of a Non-Linear Disaggregation Method (Nl-Distrad) to Downscale MODIS Land Surface Temperature to the Spatial Scale of Landsat Thermal Data to Estimate Evapotranspiration. Remote Sens. Environ. 2013, 135, 118–129. [Google Scholar] [CrossRef]
- Van de Voorde, T.; van der Kwast, J.; Uljee, I.; Engelen, G.; Canters, F. Improving the calibration of the MOLAND urban growth model with land-use information derived from a time-series of medium resolution remote sensing data. In Proceedings of the International Conference on Computational Science and Its Applications, Fukuoka, Japan, 23–26 March 2010; Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O., Eds.; Springer: Berlin, Germany, 2010; pp. 89–104. [Google Scholar]
- Wan, Z. Collection-5 MODIS Land Surface Temperature Products Users’ Guide; University of California: Santa Barbara, CA, USA, 2007. [Google Scholar]
- Inamdar, A.K.; French, A. Disaggregation of GOES land surface temperatures using surface emissivity. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Ma, Y.; Kuang, Y.; Huang, N. Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM + imagery. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 110–118. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z. Scale Issues in Remote Sensing: A Review on Analysis, Processing and Modeling. Sensors 2009, 9, 1768–1793. [Google Scholar] [CrossRef] [PubMed]
- Lam, N.; Quattrochi, D. On the issues of scale, resolution, and fractal analysis in the mapping sciences. Prof. Geogr. 1992, 44, 88–98. [Google Scholar] [CrossRef]
- Bian, L. Multiscale Nature of Spatial Data in Scaling up Environmental Models. In Scale in Remote Sensing and GIS; Quattrochi, D.A., Goodchild, M.F., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2002; pp. 13–26. [Google Scholar]
- Cao, C.Y.; Lam, N. Understanding the scale and resolution effects in remote sensing and GIS. In Scale in Remote Sensing and GIS; Quattrochi, D.A., Goodchild, M.F., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1997; pp. 57–72. [Google Scholar]
- Bierkens, M.; Finke, P.; De Willigen, P. Upscaling and Downscaling Methods for Environmental Research; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Bauer, M.E.; Doyle, J.K.; Heinert, N.J. Impervious surface mapping using satellite remote sensing. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 2334–2336. [Google Scholar]
- Norman, J.M.; Becker, F. Terminology in thermal infrared remote sensing of natural surfaces. Agric. For. Meteorol. 1995, 77, 153–166. [Google Scholar] [CrossRef]
- Norman, J.M.; Divakarla, M.; Goel, N.S. Algorithms for exacting information from remote Thermal-IR observations of the Earth’s surface. Remote Sens. Environ. 1995, 51, 157–168. [Google Scholar] [CrossRef]
- Rubio, E.; Caselles, V.; Badenas, C. Emissivity measurements of several soils and vegetation types in the 8–14 μm wave band: Analysis of two field methods. Remote Sens. Environ. 1997, 59, 490–521. [Google Scholar] [CrossRef]
- Van der Kwast, J. Quantification of Top Soil Moisture Patterns: Evaluation of Field Methods, Process-Based Modelling, Remote Sensing and an Integrated Approach. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2009; 311p. [Google Scholar]
- Li, F.; Jackson, T.; Kustas, W.; Schmugge, T.; French, A.; Cosh, M.; Bindlish, R. Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote Sens. Environ. 2004, 92, 521–534. [Google Scholar] [CrossRef]
- Guo, L.J.; Moore, J.M. Pixel block intensity modulation: Adding spatial detail to TM band 6 thermal imagery. Int. J. Remote Sens. 1998, 19, 2477–2491. [Google Scholar] [CrossRef]
- Van de Voorde, T.; Demarchi, L.; Canters, F. Multi-temporal spectral unmixing to characterize urban change in the Greater Dublin area. In Proceedings of the Remote Sensing for a Changing Europe, Istanbul, Turkey, 2–7 June 2008; IOS Press: Amsterdam, The Netherlands, 2008; pp. 276–283. [Google Scholar]
- Ye, Z.; Gong, H.; Zhao, W. Sub-pixel urban area thermal pattern analysis using ASTER and SPOT-5. In Proceedings of the Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009. [Google Scholar]
- Kustas, W.; Norman, J.M. Evaluating the effects of subpixel heterogeneity on pixel average fluxes. Remote Sens. Environ. 2000, 74, 327–342. [Google Scholar] [CrossRef]
Sensor-Platform | Reference | Spatial Resolution (m) | Spectral Resolution (μm) | Temporal Resolution (Day) |
---|---|---|---|---|
AVHRR–NOAA 1 | [7] | 1100 | Band 4: 10.3–11.3 Band 5: 11.5–12.5 | 0.5 |
MODIS–Terra | [8] | 1000 | Band 31–36: 10.78–14.39 | 1 to 2 |
AATSAR 2–Envisat | [9] | 1000 | Band 11, Band 12 | 35 |
Sentinel-3A | [10] | 1000 | Bands S7-S9: 3.74–12.00 Level-2 LST product | 27 |
TM–Landsat 5 | [11] | 120 | Band 6: 10.4–12.5 | 16 |
OLI & TIRS 3–Landsat 8 | [12] | 100 | Band 10: 10.60–11.19 Band 11: 11.50–12.51 | 16 |
ASTER 4–Terra | [13] | 90 | Band 10–band 14: 8.125–11.65 | 16 |
ETM+–Landsat 7 | [14] | 60 | Band 6: 10.4–12.5 | 16 |
MODIS/Terra Temperature Products | Collection Version | Acquisition Time | Acquisition Date | MODIS 24 May 2001 Original Temperatures (°C) | |||
Min | Max | Value Range | Mean | ||||
MOD11_L2 (5 min) | V4 | 11:45–11:50 | 24-05-01 | 14.39 | 32.55 | 18.16 | 27.53 |
MOD11_L2 (5 min) | V5 | 11:45–11:50 | 24-05-01 | 21.55 | 32.51 | 10.96 | 27.95 |
MOD11A1 (1 day) | V4 | 11.17–22:33 | 24-05-01 | 3.29 | 27.05 | 23.76 | 22.10 |
MOD11A1 (1 day) | V5 | 00:00–23:59 | 24-05-01 | 7.35 | 29.91 | 22.56 | 24.14 |
MOD11A2 (8 days) | V4 | 00:00–23:59 | (17-24)-05-01 | 9.41 | 29.11 | 19.7 | 24.59 |
MOD11A2 (8 days) | V5 | 00:00–23:59 | (17-24)-05-01 | 7.59 | 29.61 | 22.02 | 25.05 |
Landsat 7 ETM+ | Collection Version | Acquisition Time | Acquisition Date | Landsat 7 ETM+ 24 May 2001 Temperatures (°C) | |||
Min | Max | Value Range | Mean | ||||
Band 6 converted to LST | 11:30 | 24-05-01 | 23.59 | 38.83 | 15.24 | 32.97 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essa, W.; Verbeiren, B.; Van der Kwast, J.; Batelaan, O. Improved DisTrad for Downscaling Thermal MODIS Imagery over Urban Areas. Remote Sens. 2017, 9, 1243. https://doi.org/10.3390/rs9121243
Essa W, Verbeiren B, Van der Kwast J, Batelaan O. Improved DisTrad for Downscaling Thermal MODIS Imagery over Urban Areas. Remote Sensing. 2017; 9(12):1243. https://doi.org/10.3390/rs9121243
Chicago/Turabian StyleEssa, Wiesam, Boud Verbeiren, Johannes Van der Kwast, and Okke Batelaan. 2017. "Improved DisTrad for Downscaling Thermal MODIS Imagery over Urban Areas" Remote Sensing 9, no. 12: 1243. https://doi.org/10.3390/rs9121243
APA StyleEssa, W., Verbeiren, B., Van der Kwast, J., & Batelaan, O. (2017). Improved DisTrad for Downscaling Thermal MODIS Imagery over Urban Areas. Remote Sensing, 9(12), 1243. https://doi.org/10.3390/rs9121243