Landslide Mapping and Characterization through Infrared Thermography (IRT): Suggestions for a Methodological Approach from Some Case Studies
Abstract
:1. Introduction
2. Theoretical Principles
IRT Theory
3. Materials and Methods
4. Results
4.1. Mapping Potentially Unstable Rock Wedges (Case Study 1)
4.2. Multi-Temporal IRT Survey for Complex Fracture Pattern Mapping in Active Rock Slide (Case Study 2)
4.3. Multitemporal IRT Survey for Seepage and Ledge-Niche Systems Detection (Case Study 3)
4.4. Aerial IRT Surveys for Landslide Ponds-Drainage Network Mapping (Case Study 4)
4.5. Remote Landslide 3D Mapping for Emergency Management (Case Study 5)
5. Discussion
5.1. IRT Applied to Unstable Slopes Mapping and Characterization
5.2. IRT Surveying Technical and Logistical Contraints
5.3. IRT Benefits and Disadvantages
- Remote sensing: no direct contact is required between the camera and the investigated scenario, therefore permitting the measurement of hazardous areas safely.
- Visibility: no external source of illumination is necessary, both diurnal and nocturnal operations are possible. Thermal radiation can also penetrate smoke and mist better than visible radiation.
- Large monitoring capacity: IRT is capable of simultaneously measuring temperature in correspondence to different points within a scenario.
- Portability and versatility: IRT cameras are lightweight and can be easily carried. This allows to choose different fixed installations leading to different field of views and spatial resolution of the investigated scenario.
- Easy and fast data collection and processing: the recorded data can be easily collected, monitored and processed on laptops using dedicated imaging software, therefore allowing the measurements’ repeatability.
- Fast response rate: thermal imaging equipment used with a multi-temporal approach can detect and monitor rapid thermal fluctuations.
- Orientation of the slope with respect to solar illumination: the slope aspect has an influence on the intensity and the time of exposure of the solar illumination which affects the slope. Surface temperature differences will be greater in sun-exposed surfaces.
- Orientation and distance of the slope with respect to the operator: IRT camera field of view and the thermograms’ spatial resolution strongly depend on the distance between the target and the object. Logistical problematics may impede a picture of the whole investigated scenario. The slope surface orientation with respect to the viewer also influences the amount of emitted and reflected thermal radiation measured by the sensor (the more the line of sight is perpendicular to the surface the higher the measured thermal radiation).
- Dependence on weather conditions: high surface temperature differences are more easily detectable during warm spring and summer seasons. IRT camera measurements are negatively affected by strong wind (due to air convection) and rain (due to evaporation and subsequent cooling). The multi-temporal approach is not always suitable when it is necessary to acquire data as fast as possible.
- Bureaucratic restrictions: airborne thermal measurements are also affected by bureaucratic issues because flights are not allowed over prohibited, restricted or temporarily forbidden areas for safety reasons, particularly during emergencies.
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Guzzetti, F. Landslide hazard assessment and risk evaluation: Limits and prospectives. In Proceedings of the 4th EGS Plinius Conference, Mallorca, Spain, 2–4 October 2002. [Google Scholar]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, M.; Santangelo, M.; Chang, K.T. Landslide inventory maps: New tools for an old problem. Earth Sci. Rev. 2012, 112, 1–25. [Google Scholar] [CrossRef]
- Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron. Disasters 2017, 4, 9. [Google Scholar] [CrossRef]
- Chandler, J. Effective application of automated digital photogrammetry for geomorphological research. Earth Surf. Process. Landf. 1999, 24, 51–63. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, S.; Zhan, Z. Digital Terrestrial Photogrammetry with Photo Total Station; International Archives of Photogrammetry and Remote Sensing: Istanbul, Turkey, 2004; pp. 232–236. [Google Scholar]
- Sturzenegger, M.; Stead, D. Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat. Hazards Earth Syst. Sci. 2009, 9, 267–287. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef]
- Frohlich, C.; Mettenleiter, M. Terrestrial laser scanning: New perspectives in 3D surveying. In Laser Scanners for Forest and Landscape Assessment; Part 8, W2; Thies, M., Koch, B., Spiecker, H., Weinacker, H., Eds.; International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences: Freiburg, Germany, 2004; Volume 36. [Google Scholar]
- Abellán, A.; Oppikofer, T.; Jaboyedoff, M.; Rosser, N.J.; Lim, M.; Lato, M.J. Terrestrial laser scanning of rock slope instabilities. Earth Surf. Process. Landf. 2014, 39, 80–97. [Google Scholar] [CrossRef]
- Tarchi, D.; Casagli, N.; Fanti, R.; Leva, D.; Luzi, G.; Pasuto, A.; Pieraccini, M.; Silvano, S. Landslide monitoring by using ground-based SAR interferometry: An example of application to the Tessina landslide in Italy. Eng. Geol. 2003, 1, 15–30. [Google Scholar] [CrossRef]
- Fidolini, F.; Pazzi, V.; Frodella, W.; Morelli, S.; Fanti, R. Geomorphological characterization, monitoring and modeling of the Monte Rotolon complex landslide (Recoaro Terme, Italy). Eng. Geol. Soc. Territ. 2015, 2, 1311–1315. [Google Scholar]
- Frodella, W.; Ciampalini, A.; Bardi, F.; Salvatici, T.; Di Traglia, F.; Basile, G.; Casagli, N. A method for assessing and managing landslide residual hazard in urban areas. Landslides 2017, 1–15. [Google Scholar] [CrossRef]
- Teza, G.; Marcato, G.; Castelli, E.; Galgaro, A. IRTROCK: A matlab toolbox for contactless recognition of surface and shallow weakness traces of a rock mass by infrared thermography. Comput. Geosci. 2012, 45, 109–118. [Google Scholar] [CrossRef]
- Wu, J.H.; Lin, H.M.; Lee, D.H.; Fang, S.C. Integrity assessment of rock mass behind the shotcreted slope using thermography. Eng. Geol. 2005, 80, 164–173. [Google Scholar] [CrossRef]
- Gigli, G.; Frodella, W.; Garfagnoli, F.; Morelli, S.; Mugnai, F.; Menna, F.; Casagli, N. 3-D geomechanical rock mass characterization for the evaluation of rockslide susceptibility scenarios. Landslides 2014, 11, 131–140. [Google Scholar] [CrossRef]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano surveillance using infrared cameras. Earth Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Maldague, X. Theory and Practice of Infrared Technology for Non-Destructive Testing; John-Wiley & Sons: Hoboken, NJ, USA, 2001; 684p. [Google Scholar]
- Shannon, H.R.; Sigda, J.M.; Van Dam, R.L.; Hendrickx, J.M.; McLemore, V.T. Thermal camera imaging of rock piles at the Questa Molybdenum Mine, Questa, New Mexico. In Proceedings of the 22nd America Society of Mining and Reclamation Annual National Conference, Breckenridge, CO, USA, 19–23 June 2005; pp. 1015–1028. [Google Scholar]
- Barla, G.; Antolini, F.; Gigli, G. 3D Laser scanner and thermography for tunnel discontinuity mapping. Geomech. Tunn. 2016, 9, 29–36. [Google Scholar] [CrossRef]
- Campbell, C.W.; El Latif, A.; Foster, J.W. Application of thermography to karst hydrology. J. Cave Karst Stud. 1996, 58, 163–167. [Google Scholar]
- Neale, C.M.U.; Sivarajan, S.; Akasheh, O.Z.; Jaworowski, C.; Heasler, H. Monitoring geothermal activity in Yellowstone National Park using airborne thermal infrared remote sensing. In Proceedings of the SPIE 7472, Remote Sensing for Agriculture, Ecosystems, and Hydrology XI, Berlin, Germany, 31 August–3 September 2009. [Google Scholar]
- Neale, C.M.; Sivarajan, S.; Masih, A.; Jaworowski, C.; Heasler, H. Thermal remote sensing of snow cover to identify the extent of hydrothermal areas in Yellowstone National Park. In Proceedings of the SPIE 8531, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV, Edinburgh, UK, 24–27 September 2012; Volume 8531, pp. 853110–853116. [Google Scholar]
- Hardgrove, C.; Moersch, J.; Whisner, S. Thermal imaging of alluvial fans: A new technique for remote classification of sedimentary features. Earth Planet. Sci. Lett. 2009, 285, 124–130. [Google Scholar] [CrossRef]
- Hardgrove, C.; Moersch, J.; Whisner, S. Thermal imaging of sedimentary features on alluvial fans. Planet. Space Sci. 2010, 58, 482–508. [Google Scholar] [CrossRef]
- Price, J. The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Resour. Res. 1980, 16, 787–795. [Google Scholar] [CrossRef]
- Coppola, A.; Basile, A.; Menenti, M.; Buonanno, M.; Colin, J.; De Mascellis, R.; Esposito, M.; Lazzaro, U.; Magliulo, V.; Manna, P. Spatial distribution and structure of remotely sensed surface water content estimated by a thermal inertia approach. In Remote Sensing for Environmental Monitoring and Change Detection. Proceedings of Symposium HS3007 at IUGG, Perugia, Italy, July 2007; International Association of Hydrological Sciences (IAHS)—IAHS Publ.: Oxfordshire, UK, 2007; Volume 316, pp. 1–12. [Google Scholar]
- Eccel, E.; Arman, G.; Zottele, F.; Gioli, B. Thermal infrared remote sensing for high resolution minimum temperature mapping. Ital. J. Agrometeorol. 2008, 13, 52–61. [Google Scholar]
- Moran, M.S.; Peters-Lidard, C.D.; Watts, J.M.; McElroy, S. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can. J. Remote Sens. 2004, 30, 805–826. [Google Scholar] [CrossRef]
- Wilson, J.; Tian, G.; Mukriz, I.; Almond, D. PEC thermography for imaging multiple cracks from rolling contact fatigue. NDT E Int. 2011, 44, 505–512. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M.; Squillace, A.; Giorleo, G. Non-destructive control of industrial materials by means of lock-in thermography. Meas. Sci. Technol. 2002, 13, 1583. [Google Scholar] [CrossRef]
- Clark, M.R.; McCann, D.M.; Forde, M.C. Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT E Int. 2003, 36, 265–275. [Google Scholar] [CrossRef]
- Tavukçuoğlu, A.; Düzgüneş, A.; Caner-Saltik, E.N.; Demirci, Ş. Use of IR thermography for the assessment of surface-water drainage problems in a historical building, Agzikarahan (Aksaray), Turkey. NDT E Int. 2005, 38, 402–410. [Google Scholar] [CrossRef]
- Meola, C. Infrared thermography of masonry structures. Infrared Phys. Technol. 2006, 49, 228–233. [Google Scholar] [CrossRef]
- Cabrelles, M.; Galcerá, S.; Navarro, S.; Lerma, J.L.; Akasheh, T.; Haddad, N. Integration of 3D laser scanning, photogrammetry and thermography to record architectoral monuments. In Proceedings of the 22nd CIPA Symposium, Kyoto, Japan, 11–15 October 2009. [Google Scholar]
- Aggelis, D.G.; Kordatos, E.Z.; Soulioti, D.V.; Matikas, T.E. Combined use of thermography and ultrasound for the characterization of subsurface cracks in concrete. Constr. Build. Mater. 2010, 24, 1888–1897. [Google Scholar] [CrossRef]
- Nolesini, T.; Frodella, W.; Bianchini, S.; Casagli, N. Detecting Slope and Urban Potential Unstable Areas by Means of Multi-Platform Remote Sensing Techniques: The Volterra (Italy) Case Study. Remote Sens. 2016, 8, 746. [Google Scholar] [CrossRef]
- Fuad Khan, F.; Bolhassani, M.; Kontsos, A.; Hamid, A.; Bartoli, I. Modeling and experimental implementation of infrared thermography on concrete masonry structures. Infrared Phys. Technol. 2015, 69, 228–237. [Google Scholar] [CrossRef]
- Bison, P.; Grinzato, E.; Pasuto, A.; Silvano, S. Thermal IR remote sensing in landslides survey. In Proceedings of the 6th International IAEG Congress, Rotterdam, The Netherlands, 6–10 August 1990; pp. 873–878. [Google Scholar]
- Fiorillo, F.; Tulipano, L. Alcune applicazioni dell’infrarosso termico a tematiche geoapplicative. Geol. Romana 1992, 30, 395–402. [Google Scholar]
- Squarzoni, C.; Galgaro, A.; Teza, G.; Acosta, C.A.T.; Pernito, M.A.; Bucceri, N. Terrestrial laser scanner and infrared thermography in rock fall prone slope analysis. Geophys. Res. Abstr. 2008, 10. EGU2008-A-09254, EGU General Assembly 2008. [Google Scholar]
- Martino, S.; Mazzanti, P. Integrating geomechanical surveys and remote sensing for sea cliff slope stability analysis: The Mt. Pucci case study (Italy). Nat. Hazards Earth Syst. Sci. 2014, 14, 831. [Google Scholar] [CrossRef]
- Baroň, I.; Bečkovský, D.; Míča, L. Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs. Landslides 2014, 11, 15–27. [Google Scholar] [CrossRef]
- Teza, G.; Marcato, G.; Pasuto, A.; Galgaro, A. Integration of laser scanning and thermal imaging in monitoring optimization and assessment of rockfall hazard: A case history in the Carnic Alps (Northeastern Italy). Nat. Hazards 2015, 76, 1535–1549. [Google Scholar] [CrossRef]
- Gigli, G.; Intrieri, E.; Lombardi, L.; Nocentini, M.; Frodella, W.; Balducci, M.; Venanti, L.D.; Casagli, N. Event scenario analysis for the design of rockslide countermeasures. J. Mt. Sci. 2014, 11. [Google Scholar] [CrossRef]
- Adorno, V.; Barnobi, L.; La Rosa, F.; Leotta, A.; Paratore, M. Contributo della tecnologia laser scanner e termografia IR nella caratterizzazione geomeccanica di un costone roccioso. In Proceedings of the 13th ASITA National Conference, Bari, Italy, 1–4 December 2009. [Google Scholar]
- Frodella, W.; Morelli, S.; Fidolini, F.; Pazzi, V.; Fanti, R. Geomorphology of the Rotolon landslide (Veneto Region, Italy). J. Maps 2014, 10, 394–401. [Google Scholar] [CrossRef]
- Frodella, W.; Fidolini, F.; Morelli, S.; Pazzi, V. Application of Infrared Thermography for landslide mapping: The Rotolon DSGDS case study. Rend. Online Soc. Geol. Ital. 2015, 35, 144–147. [Google Scholar] [CrossRef]
- Frodella, W.; Morelli, S.; Pazzi, V. Infrared Thermographic surveys for landslide mapping and characterization: The Rotolon DSGSD (Norther Italy) case study. Ital. J. Eng. Geol. Environ. 2017. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G.; Rapisarda, F.; Cubito, A.; Di Maria, G. Integrated geostructural, seismic and infrared thermography surveys for the study of an unstable rock slope in the Peloritani Chain (NE Sicily). Eng. Geol. 2015, 195, 225–235. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Zampelli, S.P.; Cubito, A.; Calcaterra, D. InfraRed Thermography proposed for the estimation of the Cooling Rate Index in the remote survey of rock masses. Int. J. Rock Mech. Min. Sci. 2016, 83, 182–196. [Google Scholar] [CrossRef]
- Whitworth, M.C.Z.; Giles, D.P.; Murphy, W. Airborne remote sensing for landslide hazard assessment: A case study on the Jurassic escarpment slopes of Worcestershire, UK. Q. J. Eng. Geol. Hydrogeol. 2005, 38, 285–300. [Google Scholar] [CrossRef]
- Stumpf, A.; Kerle, N.; Malet, J.P. Passive optical sensors. In Review of Techniques for Landslide Detection, Fast Characterization, Rapid Mapping and Long-Term Monitoring; Michoud, C., Abellán, A., Derron, M.-H., Jaboyedoff, M., Eds.; Deliverable 4.1 of the European Project SAFELAND: Sognsveien, Norway, 2010; Available online: http://www.safeland-fp7.eu (accessed on 24 June 2017).
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 6th ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Bhowmik, M.K.; Saha, K.; Majumder, S.; Majumder, G.; Saha, A.; Sarma, A.N.; Bhattacharjee, D.; Basu, D.K.; Nasipuri, M. Thermal infrared face recognition a biometric identification technique for robust security system. In Reviews, Refinements and New Ideas in Face Recognition; InTech: Rijeka, Croatia, 2011; pp. 113–138. [Google Scholar]
- Dhar, N.K.; Sood, A.K.; Dat, R. Advances in Infrared Detector Array Technology; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Incropera, P.F.; De Witt, D.P. Introduction to Heat Transfer; John Wiley: Hoboken, NJ, USA, 1985; pp. 654–746. [Google Scholar]
- Rees, W.G. Physical Principles of Remote Sensing, 2nd ed.; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Jones, H.G. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ. 1999, 22, 1043–1055. [Google Scholar] [CrossRef]
- Ballestracci, R.; Nougier, J. Detection by infrared thermography and modelling of an ice capped geothermal system in Kerguelen archipelago. J. Volcanol. Geotherm. Res. 1984, 20, 85–99. [Google Scholar] [CrossRef]
- Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Technol. 2011, 54, 136–154. [Google Scholar] [CrossRef]
- FLIR Systems Inc., ThermaCAM SC620 Technical Specifications. 2009. Available online: http://www.flir.com/cs/emea/en/view/?id=41965 (accessed on 5 June 2017).
- FLIR Systems Inc., Reporter Professional 9. 2012. Available online: http://www.flir.com/cs/emea/en/view/?id=42405 (accessed on 5 June 2017).
- FLIR Systems Inc., ResearchIR 3.4. sp3. 2013. Available online: http://support.flir.com/DsDownload/Assets/T198206_en_40.pdf (accessed on 5 June 2017).
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides: Investigation and Mitigation: Sp. Rep. 247, Transportation Research Board, National Research Council; Turner, A.K., Schuster, R.L., Eds.; National Academy Press: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- FLIR Systems Inc. ThermaCAM SC620 User’s Manual; FLIR Systems Inc.: Wilsonville, OR, USA, 2009. [Google Scholar]
- Avdelidis, N.P.; Moropoulou, A. Emissivity considerations in building thermography. Elsevier Sci. Energy Build. 2003, 35, 663–667. [Google Scholar] [CrossRef]
- Kotthaus, S.; Smith, T.E.; Wooster, M.J.; Grimmond, C.S.B. Derivation of an urban materials spectral library through emittance and reflectance spectroscopy. ISPRS J. Photogramm. Remote Sens. 2014, 94, 194–212. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sens. Environ. 1992, 42, 83–106. [Google Scholar] [CrossRef]
- Riscan Pro 2.0. Data Sheet of Riscan Pro 2.0. Available online: http://www.riegl.com/uploads/tx_pxpriegldownloads/11_DataSheet_RiSCAN-PRO_2016-09-19_01.pdf (accessed on 5 June 2017).
- Intrieri, E.; Gigli, G.; Mugnai, F.; Fanti, R.; Casagli, N. Design and implementation of a landslide early warning system. Eng. Geol. 2012, 147, 124–136. [Google Scholar] [CrossRef]
- Graziani, A.; Rotonda, T.; Tommasi, P. Stability and deformation mode of a rock slide along interbeds reactivated by rainfall. In Proceedings of the 1st Italian Workshop on Landslides, Napoli, Naples, Italy, 8–10 June 2009; Volume 1, pp. 62–71. [Google Scholar]
- Frodella, W.; Ciampalini, A.; Gigli, G.; Lombardi, L.; Raspini, F.; Nocentini, M.; Scardigli, C.; Casagli, N. Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy). Geomorphology 2016, 264, 80–94. [Google Scholar] [CrossRef]
- Nesci, O.; Savelli, D.; Diligenti, A.; Marinangeli, D. Geomorphological sites in the northern marche (Italy). Examples from autochton anticline ridges and from Val Marecchia allochton. Ital. J. Quat. Sci. 2005, 18, 79–91. [Google Scholar]
- Ribacchi, R.; Tommasi, P. Preservation and protection of the historical town of San Leo (Italy). In Proceedings of the IAEG International Symposium on Engineering Geology of Ancient Works, Monuments and Hitorical Sites, Athens, Greece, 19–23 September 1988; Volume 1, pp. 55–64. [Google Scholar]
- ISRM (International Society for Rock Mechanics and Rock Engineering). Commission on the standardization of laboratory and field test. Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abs. 1978, 15, 319–368. [Google Scholar]
- Bardi, F.; Raspini, F.; Frodella, W.; Lombardi, L.; Nocentini, M.; Gigli, G.; Morelli, S.; Corsini, A.; Casagli, N. Monitoring the Rapid-Moving Reactivation of Earth Flows by Means of GB-InSAR: The April 2013 Capriglio Landslide (Northern Appennines, Italy). Remote Sens. 2017, 9, 165. [Google Scholar] [CrossRef]
- Bardi, F.; Raspini, F.; Frodella, W.; Lombardi, L.; Nocentini, M.; Gigli, G.; Morelli, S.; Corsini, A.; Casagli, N. Remote Sensing Mapping and Monitoring of the Capriglio Landslide (Parma Province, Northern Italy). Adv. Cult. Living Landslides 2017, 3, 231–238, Advances in Landslide Technology. [Google Scholar]
- Lombardi, L.; Nocentini, M.; Frodella, W.; Nolesini, T.; Bardi, F.; Intrieri, E.; Ferrigno, F.; Solari, L.; Carlà, T.; Casagli, N. The Calatabiano landslide (southern Italy): Preliminary GB-InSAR monitoring data and remote 3D mapping. Landslides 2016, 14, 685–696. [Google Scholar] [CrossRef]
- Nolesini, T.; Frodella, W.; Lombardi, L.; Nocentini, M.; Bardi, F.; Intrieri, E.; Carlà, T.; Solari, L.; Dotta, G.; Ferrigno, F.; et al. Remote 3D Mapping and GB-InSAR Monitoring of the Calatabiano Landslide (Southern Italy). Adv. Cult. Living Landslides 2017, 3, 277–284, Advances in Landslide Technology. [Google Scholar]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic landslide hazard assessment at the basin scale. Geomorphology 2005, 72, 272–299. [Google Scholar] [CrossRef]
- Parker, R.N.; Densmore, A.L.; Rosser, N.J.; de Michele, M.; Li, Y.; Huang, R.; Whadcoat, S.; Petley, D.N. Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nat. Geosci. 2011, 4, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Brunsden, D. Landslide types, mechanisms, recognition, identification. In Landslides in the South Wales Coalfield, Proceedings Symposium; Morgan, C.S., Ed.; The Polytechnic of Wales: South Wales, UK, 1985; pp. 19–28. [Google Scholar]
- Santangelo, M.; Cardinali, M.; Rossi, M.; Mondini, A.C.; Guzzetti, F. Remote landslide mapping using a laser rangefinder binocular and GPS. Nat. Hazards Earth Syst. Sci. 2010, 10, 2539–2546. [Google Scholar] [CrossRef] [Green Version]
- Hungr, O.; Evans, S.G. The occurrence and classification of massive rock slope failure. Felsbau 2004, 22, 16–23. [Google Scholar]
- Margielewski, W.; Urban, J. Crevice-type caves as initial forms of rock landslide development in the Flysch Carpathians. Geomorphology 2003, 54, 325–338. [Google Scholar] [CrossRef]
- Hungr, O. Mobility of Rock Avalanches; Report of the International Research Institute for Earth Science and Disaster Prevention; National Research Institute for Earth Science and Disaster Prevention: Tsukuba, Japan, 1990; Volume 46, pp. 11–19.
- Legros, F. The mobility of long-runout landslides. Eng. Geol. 2002, 63, 301–331. [Google Scholar] [CrossRef]
- Baum, R.L.; Godt, J.W. Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 2010, 7, 259–272. [Google Scholar] [CrossRef]
- Rubio, E.; Caselles, V.; Badenas, C. Emissivity measurements of several soils and vegetation types in the 8–14 μm wave band: Analysis of two field methods. Remote Sens. Environ. 1997, 59, 490–521. [Google Scholar] [CrossRef]
- Buongiorno, M.F.; Realmuto, V.J.; Fawzi, D. Recovery of spectral emissivity from thermal infrared multispectral scanner imagery acquired over a mountainous terrain: A case study from Mount Etna Sicily. Remote Sens. Environ. 2002, 79, 123–133. [Google Scholar] [CrossRef]
- Dash, P.; Göttsche, F.M.; Olesen, F.S.; Fisher, H. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. Int. J. Remote Sens. 2002, 23, 2563–2594. [Google Scholar] [CrossRef]
- Merucci, L.; Bogliolo, M.P.; Buongiorno, M.F.; Teggi, S. Spectral emissivity and temperature maps of the Solfatara crater from DAIS hyperspectral images. Ann. Geophys. 2006, 49. [Google Scholar] [CrossRef]
- Ball, M.; Pinkerton, H. Factors affecting the accuracy of thermal imaging cameras in volcanology. J. Geophys. Res. 2006, 111, B11203. [Google Scholar] [CrossRef]
Feature | Unit | Value |
---|---|---|
Detector size | Pixel | 640 × 480 |
Spectral range | µm | [7.5, 13] |
Temperature range | C° | [−40, +500] |
Thermal accuracy | C° | ±2 |
Thermal sensitivity | mK | 40 |
Field of view (FOV) | (°) | 24 × 18 |
Lens | (°) | 24 |
Spatial resolution | mrad | 0.65 |
Minimum focus distance | m | 0.3 |
Image frequency | Hz | 30 |
Case Study N° | Study Site Region | Landslide Type | Lithology | Slope Aspect | Sensor-Target Mean Distance (m) | Image IFOV (cm) | Air Temperature (C°)/Relative Humidity (%) | ε | Survey Type |
---|---|---|---|---|---|---|---|---|---|
1 | Piemonte | Rock slide | Dolostones-limestones | SE | 500 | 33.3 | 25–33/40–53 | 0.94 | Multi-temporal 8 h (heating phase) |
2 | Umbria | Rock slide | Micritic limestones | N | 1000 | 66.6 | 17–41/20–54 | 0.95 | Multi-temporal 48 h |
3 | Emilia Romagna | Rock fall | Organogenic calcirudites-calcarenites | N | 300 | 19.5 | 21–36/39–58 | 0.95 | Multi-temporal 48 h |
4 | Emilia Romagna | Roto-translational slide-flow | Muddy matrix with heterogeneous clasts | E-SE | 300 | 19.5 | 24/52 | 0.92 | IR image sequence (heating phase) |
5 | Sicily | Roto-translational slide/flow | Sandy-loamy matrix with heterogeneous clasts | SE | 500 | 33.3 | 21/45 | 0.93 | Multi-temporal (heating phase) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frodella, W.; Gigli, G.; Morelli, S.; Lombardi, L.; Casagli, N. Landslide Mapping and Characterization through Infrared Thermography (IRT): Suggestions for a Methodological Approach from Some Case Studies. Remote Sens. 2017, 9, 1281. https://doi.org/10.3390/rs9121281
Frodella W, Gigli G, Morelli S, Lombardi L, Casagli N. Landslide Mapping and Characterization through Infrared Thermography (IRT): Suggestions for a Methodological Approach from Some Case Studies. Remote Sensing. 2017; 9(12):1281. https://doi.org/10.3390/rs9121281
Chicago/Turabian StyleFrodella, William, Giovanni Gigli, Stefano Morelli, Luca Lombardi, and Nicola Casagli. 2017. "Landslide Mapping and Characterization through Infrared Thermography (IRT): Suggestions for a Methodological Approach from Some Case Studies" Remote Sensing 9, no. 12: 1281. https://doi.org/10.3390/rs9121281