Identification of Hazard and Risk for Glacial Lakes in the Nepal Himalaya Using Satellite Imagery from 2000–2015
Abstract
:1. Introduction
2. Methods
2.1. Glacial Lake Survey
2.2. Hazard Parameters
2.3. Downstream Impacts
2.4. Classification of Hazard, Downstream Impacts, and Risk
3. Results
3.1. Glacial Lake Survey
3.2. Hazard
3.3. Downstream Impacts
3.4. Risk
4. Discussion
4.1. Glacial Lake Survey
4.2. Hazard
4.3. Downstream Impacts
4.4. Risk
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65/66, 31–47. [Google Scholar] [CrossRef]
- Wang, X.; Yao, T.; Gao, Y.; Yang, X.; Kattel, D.B. A first-order method to identify potentially dangerous glacial lakes in a region of the southeastern Tibetan Plateau. Mt. Res. Dev. 2011, 31, 122–130. [Google Scholar] [CrossRef]
- Emmer, A.; Cochachin, A. The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, North American Cordillera and Himalaya. AUC Geogr. 2013, 48, 5–15. [Google Scholar] [CrossRef]
- Falatkova, K. Temporal analysis of GLOFs in high-mountain regions of Asia and assessment of their causes. AUC Geogr. 2016, 51, 145–154. [Google Scholar] [CrossRef]
- Westoby, M.J.; Glasser, N.F.; Brasington, J.; Hambrey, M.J.; Quincey, D.J.; Reynolds, J.M. Modelling outburst floods from moraine-dammed glacial lakes. Earth-Sci. Rev. 2014, 134, 137–159. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Tweed, F.S. A global assessment of the societal impacts of glacier outburst floods. Glob. Planet. Chang. 2016, 144, 1–16. [Google Scholar] [CrossRef]
- Buchroithner, M.F.; Jentsch, G.; Wanivenhaus, B. Monitoring of recent geological events in the Khumbu area (Himalaya, Nepal) by digital processing of Landsat MSS Data. Rock Mech. 1982, 15, 181–197. [Google Scholar] [CrossRef]
- Vuichard, D.; Zimmermann, M. The 1985 catastrophic drainage of a moraine-dammed lake, Khumbu Himal, Nepal: Cause and consequences. Mt. Res. Dev. 1987, 7, 91–110. [Google Scholar] [CrossRef]
- Osti, R.; Bhattarai, T.N.; Miyake, K. Causes of catastrophic failure of Tam Pokhari moraine dam in the Mt. Everest region. Nat. Hazards 2011, 58, 1209–1223. [Google Scholar] [CrossRef]
- Reynolds, J.M. Glacial hazard assessment at Tsho Rolpa, Rolwaling, Central Nepal. Q. J. Eng. Geol. Hydrogeol. 1999, 32, 209–214. [Google Scholar] [CrossRef]
- Gardelle, J.; Arnaud, Y.; Berthier, E. Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob. Planet. Chang. 2011, 75, 47–55. [Google Scholar] [CrossRef]
- Nie, Y.; Liu, Q.; Liu, S. Glacial lake expansion in the central Himalayas by Landsat images, 1990–2010. PLoS ONE 2013, 8, e83973. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef]
- Song, C.; Sheng, Y.; Wang, J.; Ke, L.; Madson, A.; Nie, Y. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas. Geomorphology 2016, 280, 30–38. [Google Scholar] [CrossRef]
- Benn, D.I.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L.I.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Sci. Rev. 2012, 114, 156–174. [Google Scholar] [CrossRef]
- Miles, E.S.; Willis, I.C.; Arnold, N.S.; Steiner, J.; Pellicciotti, F. Spatial, seasonal and interannual variability of supraglacial ponds in the Langtang Valley of Nepal, 1999–2013. J. Glaciol. 2016, 63, 88–105. [Google Scholar] [CrossRef]
- Watson, C.S.; Quincey, D.J.; Carrivick, J.L.; Smith, M.W. The dynamics of supraglacial ponds in the Everest region, central Himalaya. Glob. Planet. Chang. 2016, 142, 14–27. [Google Scholar] [CrossRef]
- Watanabe, T.; Ives, J.D.; Hammond, J.E. Rapid growth of a glacial lake in Khumbu Himal, Himalaya: Prospects for a catastrophic flood. Mt. Res. Dev. 1994, 14, 329–340. [Google Scholar] [CrossRef]
- Thompson, S.S.; Benn, D.I.; Dennis, K.; Luckman, A. A rapidly growing moraine-dammed glacial lake on Ngozumpa Glacier, Nepal. Geomorphology 2012, 145–146, 1–11. [Google Scholar] [CrossRef]
- Thompson, S.; Benn, D.I.; Mertes, J.; Luckman, A. Stagnation and mass loss on a Himalayan debris-covered glacier: Processes, patterns and rates. J. Glaciol. 2016, 62, 467–485. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Ding, Y.; Guo, W.; Jiang, Z.; Lin, J.; Han, Y. An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data. Nat. Hazards Earth Syst. Sci. 2012, 12, 3109–3122. [Google Scholar] [CrossRef]
- Petrov, M.A.; Sabitov, T.Y.; Tomashevskaya, I.G.; Glazirin, G.E.; Chernomorets, S.S.; Savernyuk, E.A.; Tutubalina, O.V.; Petrakov, D.A.; Sokolov, L.S.; Dokukin, M.D.; et al. Glacial lake inventory and lake outburst potential in Uzbekistan. Sci. Total Environ. 2017, 592, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Mool, P.K.; Bajracharya, S.R.; Joshi, S.P. Inventory of Glaciers, Glacial Lakes and Glacial Lake Outburst Floods, Nepal; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2001; Volume 363. [Google Scholar]
- International Centre for Integrated Mountain Development (ICIMOD). Glacial Lakes and Glacial Lake Outburst Floods in Nepal; ICIMOD: Kathmandu, Nepal, 2011. [Google Scholar]
- Mool, P.K.; Wangda, D.; Bajracharya, S.R.; Kunzang, K.; Gurung, D.R.; Joshi, S.P. Inventory of Glaciers, Glacial Lakes and Glacial Lake Outburst Floods, Bhutan; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2001; Volume 227. [Google Scholar]
- Worni, R.; Huggel, C.; Stoffel, M. Glacial lakes in the Indian Himalayas from an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes. Sci. Total Environ. 2013, 468–469, S71–S84. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.K.; Linsbauer, A.; Randhawa, S.S.; Huggel, C.; Rana, P.; Kumari, A. Glacial lake outburst flood risk in Himachal Pradesh, India: An integrative and anticipatory approach considering current and future threats. Nat. Hazards 2015, 1741–1763. [Google Scholar] [CrossRef]
- Fujita, K.; Sakai, A.; Takenaka, S.; Nuimura, T.; Surazakov, A.B.; Sawagaki, T.; Yamanokuchi, T. Potential flood volume of Himalayan glacial lakes. Nat. Hazards Earth Syst. Sci. 2012, 13, 1827–1839. [Google Scholar] [CrossRef]
- Rounce, D.R.; McKinney, D.C.; Lala, J.M.; Byers, A.C.; Watson, C.S. A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya. Hydrol. Earth Syst. Sci. 2016, 20, 3455–3475. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Bolch, T.; Buchroithner, M.F.; Peters, J.; Baessler, M.; Bajracharya, S. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat. Hazards Earth Syst. Sci. 2008, 8, 1329–1340. [Google Scholar] [CrossRef]
- Fujita, K.; Sakai, A.; Nuimura, T.; Yamaguchi, S.; Sharma, R.R. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in-situ surveys and multi-temporal ASTER imagery. Environ. Res. Lett. 2009, 4, 045205. [Google Scholar] [CrossRef]
- Frey, H.; Machguth, H.; Huss, M.; Huggel, C.; Bajracharya, S.; Bolch, T.; Kulkarni, A.; Linsbauer, A.; Salzmann, N.; Stoffel, M. Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods. Cryosphere 2014, 8, 2313–2333. [Google Scholar] [CrossRef]
- Linsbauer, A.; Frey, H.; Haeberli, W.; Machguth, H.; Azam, M.F.; Allen, S. Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya-Karakoram region. Ann. Glaciol. 2016, 57, 119–130. [Google Scholar] [CrossRef]
- Nuimura, T.; Sakai, A.; Taniguchi, K.; Nagai, H.; Lamsal, D.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S.; et al. The GAMDAM glacier inventory: A quality controlled inventory of Asian glaciers. Cryosphere 2015, 9, 849–864. [Google Scholar] [CrossRef]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Bris, R.LE.; et al. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef]
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C.; et al. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 5.0. In Global Land Ice Measurements from Space; Digital Media: Boulder, CO, USA, 2015. [Google Scholar]
- Yamada, T. Glacier Lake and Its Outburst Flood in the Nepal Himalaya; Japanase Society of Snow and Ice: Tokyo, Japan, 1998; pp. 1–96. [Google Scholar]
- ASTER GDEM Validation Team. ASTER Global Digital Elevation Model Version 2 Summary of Validation Results. 2011. Available online: https://lpdaacaster.cr.usgs.gov/GDEM/Summary_GDEM2_validation_report_final.pdf (access on 1 February 2015).
- Alean, J. Ice avalanches: Some empirical information about their formation and reach. J. Glaciol. 1985, 31, 324–333. [Google Scholar] [CrossRef]
- Shea, J.M.; Immerzeel, W.W.; Wagnon, P.; Vincent, C.; Bajracharya, S. Modelling glacier change in the Everest region, Nepal Himalaya. Cryosphere 2015, 9, 1105–1128. [Google Scholar] [CrossRef]
- Huggel, C.; Haeberli, W.; Kääb, A.; Bieri, D.; Richardson, S. An assessment procedure for glacial hazards in the Swiss Alps. Can. Geotech. J. 2004, 41, 1068–1083. [Google Scholar] [CrossRef]
- Huggel, C.; Zgraggen-Oswald, S.; Haeberli, W.; Kääb, A.; Polkvoj, A.; Galushkin, I.; Evans, S.G. The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: Assessment of extraordinary avalanche formation and mobility, and application of Quick-Bird satellite imagery. Nat. Hazards Earth Syst. Sci. 2005, 5, 173–187. [Google Scholar] [CrossRef]
- Worni, R.; Huggel, C.; Clague, J.J.; Schaub, Y.; Stoffel, M. Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective. Geomorphology 2014, 224, 161–176. [Google Scholar] [CrossRef]
- Somos-Valenzuela, M.A.; Chisolm, R.E.; Rivas, D.S.; Portocarrero, C.; McKinney, D.C. Modeling a glacial lake outburst flood process chain: The case of Lake Palcacocha and Huaraz, Peru. Hydrol. Earth Syst. Sci. 2016, 20, 2519–2543. [Google Scholar] [CrossRef]
- Bolch, T.; Peters, J.; Yegorov, A.; Pradhan, B.; Buchroithner, M.; Blagoveshchensky, V. Identification of potentially dangerous glacial lakes in the northern Tien Shan. Nat. Hazards 2011, 59, 1691–1714. [Google Scholar] [CrossRef]
- Dahal, R.K.; Hasegawa, S.; Nonomura, A.; Yamanaka, M.; Dhakal, S.; Paudyal, P. Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 2008, 102, 496–510. [Google Scholar] [CrossRef]
- Collins, B.D.; Gibson, R.W. Assessment of Existing and Potential Landslide Hazards Resulting from the April 25, 2015 Gorkha, Nepal Earthquake Sequence; Open-File Report 2015-1142; U.S. Geological Survey: Reston, VI, USA, 2015.
- Watson, C.S.; Carrivick, J.; Quincey, D. An improved method to represent DEM uncertainty in glacial lake outburst flood propagation using stochastic simulations. J. Hydrol. 2015, 529, 1373–1389. [Google Scholar] [CrossRef]
- Somos-Valenzuela, M.A.; McKinney, D.C.; Byers, A.C.; Rounce, D.R.; Portocarrero, C.; Lamsal, D. Assessing downstream flood impacts due to a potential GLOF from Imja Tsho in Nepal. Hydrol. Earth Syst. Sci. 2015, 19, 1401–1412. [Google Scholar] [CrossRef]
- Reynolds, J.M. Assessing glacial hazards for hydro development in the Himalayas, Hindu Kush and Karakoram. Hydropower Dams 2014, 2, 60–65. [Google Scholar]
- Uddin, K.; Shrestha, H.L.; Murthy, M.S.R.; Bajracharya, B.; Shrestha, B.; Gilani, H.; Pradhan, S.; Dangol, B. Development of 2010 national land cover database for the Nepal. J. Environ. Manag. 2015, 148, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Garrard, R.; Kohler, T.; Price, M.F.; Byers, A.C.; Sherpa, A.R.; Maharjan, G.R. Land use and land cover change in Sagarmatha National Park, a World Heritage Site in the Himalayas of eastern Nepal. Mt. Res. Dev. 2016, 36, 299–310. [Google Scholar] [CrossRef]
- Huggel, C.; Kääb, A.; Haeberli, W.; Teysseire, P.; Paul, F. Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Can. Geotech. J. 2002, 39, 316–330. [Google Scholar] [CrossRef]
- Cook, S.J.; Quincey, D.J. Estimating the volume of Alpine glacial lakes. Earth Surf. Dyn. 2015, 3, 559–575. [Google Scholar] [CrossRef]
- Emmer, A.; Vilímek, V. Review article: Lake and breach hazard assessment for moraine-dammed lakes: An example from the Cordillera Blanca (Peru). Nat. Hazards Earth Syst. Sci. 2013, 13, 1551–1565. [Google Scholar] [CrossRef]
- United Nations Development Programme (UNDP). Community Based Glacier Lake Outburst and Flood Risk Reduction in Nepal; Project Document; UNDP Environmental Finance Services: Kathmandu, Nepal, 2013. [Google Scholar]
- Wang, X.; Ding, Y.; Liu, S.; Jiang, L.; Wu, K.; Jiang, Z.; Guo, W. Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010. Environ. Res. Lett. 2013, 8, 044052. [Google Scholar] [CrossRef]
- Rounce, D.R.; Byers, A.C.; Byers, E.A.; McKinney, D.C. Brief communication: Observations of a glacier outburst flood from Lhotse Glacier, Everest Area, Nepal. Cryosphere 2017, 11, 443–449. [Google Scholar] [CrossRef]
Study | Region | Study Period | Lake Expansion |
---|---|---|---|
Gardelle et al. (2011) [11] | West Nepal | 1990–2000, 2000–2009 | +30%, +7% |
Everest | 1990–2000, 2000–2009 | +13%, +20% | |
Nie et al. (2013) [12] | Central Himalaya | 1990–010 | +17% |
Nie et al. (2017) [13] | Central Himalaya | 1990–2015 | +23% |
Song et al. (2017) [14] | Himalayas (>0.5 km2) | 2000–2014 | +37% |
Lake Data | Classification | Hazard Data | Downstream Impacts | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
This Study ID | ICIMOD (2011) ID | Common Name | Longitude (°) | Latitude (°) | Elev (m.a.s.l) | 2015 Area (km2) | Hazard | Impact | Risk | Max PFV (mcm) | Average SLA Angle (°) | Ice Core | Avalanche (mcm) | Rockfall (mcm) | Up-Stream GLOF (mcm) | Buildings | Bridges | Agriculture (km2) | Hydropower Systems |
54 | kotak_gl_0009 | Tsho Rolpa | 86.477 | 27.862 | 4526 | 1.52 | 2 | 3 | 3 | 66.3 | 17.4 | 1 | 0.0 | 0.7 | 1.4 | 258 | 10 | 0.68 | 2 |
19 | koaru_gl_0009 | Barun | 87.097 | 27.798 | 4535 | 1.64 | 2 | 2 | 2 | 1.5 | 7.2 | 1 | 0.7 | 0.7 | 1.5 | 33 | 4 | 0.76 | 0 |
25 | kodud_gl_0184 | Imja | 86.923 | 27.899 | 4998 | 1.26 | 1 | 2 | 1 | 0.4 | 5.4 | 1 | 0.0 | 0.4 | 0.0 | 134 | 8 | 0.28 | 0 |
49 | kodud_gl_0036 | Lumding | 86.614 | 27.779 | 4819 | 1.18 | 3 | 1 | 2 | 21.4 | 11.0 | 0 | 2.2 | 0.7 | 8.7 | 1 | 3 | 0.28 | 0 |
22 | kodud_gl_0242 | Chamlang South | 86.960 | 27.755 | 4952 | 0.84 | 3 | 1 | 2 | 9.3 | 10.7 | 1 | 1.6 | 0.7 | 0.0 | 4 | 3 | 0.09 | 0 |
69 | gamar_gl_0018 | Thulagi | 84.486 | 28.489 | 4009 | 0.88 | 1 | 3 | 2 | 0.7 | 6.5 | 1 | 0.0 | 0.7 | 0.0 | 267 | 25 | 0.95 | 3 |
6 | kotam_gl_0135 | Nagma | 87.867 | 27.870 | 4945 | 0.65 | 1 | 1 | 1 | 0.7 | 10.4 | 0 | 0.0 | 0.7 | 0.0 | 3 | 6 | 0.43 | 0 |
21 | kodud_gl_0241 | Chamlang North | 86.957 | 27.784 | 5218 | 0.86 | 3 | 1 | 2 | 29.6 | 19.4 | 0 | 0.7 | 0.7 | 0.0 | 4 | 3 | 0.03 | 0 |
- | kotam_gl_0191 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
79 | gakal_gl_0004 | - | 83.528 | 28.888 | 5589 | 0.29 | 2 | 2 | 2 | 0.2 | 7.7 | 0 | 0.2 | 0.1 | 0.0 | 382 | 5 | 0.29 | 0 |
42 | kodud_gl_0012 | Seto/Barun Pohkari | 87.082 | 27.845 | 4843 | 0.34 | 2 | 2 | 2 | 0.7 | 9.8 | 1 | 0.7 | 0.7 | 0.0 | 22 | 3 | 0.35 | 0 |
44 | kodud_gl_0238 | East Hongu 1 | 86.967 | 27.799 | 5402 | 0.21 | 1 | 1 | 1 | 2.6 | 7.3 | 1 | 0.0 | 0.4 | 2.6 | 4 | 3 | 0.03 | 0 |
68 | gabud_gl_0009 | - | 84.630 | 28.597 | 3625 | 0.24 | 2 | 2 | 2 | 0.7 | 10.0 | 0 | 0.2 | 0.7 | 0.0 | 62 | 6 | 0.14 | 0 |
31 | kodud_gl_0220 | Mera | 86.912 | 27.795 | 5238 | 0.17 | 2 | 1 | 1 | 2.4 | 12.4 | 1 | 0.0 | 0.0 | 0.0 | 4 | 3 | 0.03 | 0 |
20 | koaru_gl_0016 | Barun Upper Tsho | 87.096 | 27.830 | 5245 | 0.11 | 1 | 2 | 1 | 1.5 | 14.9 | 0 | 0.0 | 0.4 | 0.0 | 22 | 3 | 0.44 | 0 |
82 | gakal_gl_0008 | - | 83.673 | 29.046 | 5443 | 0.11 | 1 | 1 | 1 | 0.2 | 10.3 | 0 | 0.0 | 0.2 | 0.0 | 1 | 0 | 0.09 | 0 |
5 | kotam_gl_0111 | - | 87.750 | 27.817 | 4935 | 0.16 | 3 | 1 | 2 | 2.7 | 19.5 | 0 | 0.2 | 0.5 | 0.0 | 14 | 8 | 0.40 | 0 |
38 | kodud_gl_0239 | East Hongu 2 | 86.975 | 27.806 | 5505 | 0.16 | 3 | 1 | 2 | 2.6 | 12.6 | 0 | 0.7 | 0.3 | 0.0 | 3 | 3 | 0.02 | 0 |
73 | gakal_gl_0022 | - | 83.701 | 29.218 | 5427 | 0.42 | 1 | 1 | 1 | 0.2 | 1.7 | 0 | 0.0 | 0.2 | 0.2 | 2 | 4 | 0.00 | 0 |
77 | gakal_gl_0023 | - | 83.682 | 29.201 | 5488 | 0.21 | 1 | 1 | 1 | 0.2 | 7.6 | 0 | 0.0 | 0.2 | 0.0 | 2 | 4 | 0.00 | 0 |
23 | kodud_gl_0049 | Dig Tsho | 86.587 | 27.875 | 4367 | 0.38 | 2 | 2 | 2 | 0.7 | 9.0 | 0 | 0.4 | 0.7 | 0.0 | 137 | 3 | 0.39 | 0 |
41 | kodud_gl_0193 | - | 86.845 | 27.743 | 4347 | 0.25 | 3 | 2 | 3 | 2.3 | 14.7 | 0 | 0.4 | 0.7 | 0.0 | 22 | 3 | 0.86 | 0 |
27 | kodud_gl_0205 | - | 86.859 | 27.688 | 4762 | 0.28 | 3 | 1 | 2 | 6.0 | 20.4 | 1 | 0.4 | 0.5 | 0.0 | 17 | 5 | 1.04 | 0 |
43 | kodud_gl_0229 | Hongu 1 | 86.936 | 27.838 | 5217 | 0.23 | 2 | 1 | 1 | 4.6 | 14.5 | 1 | 0.0 | 0.2 | 12.7 | 3 | 3 | 0.01 | 0 |
This Study ID | Common Name | Latitude (°) | Longitude (°) | Elev (m.a.s.l.) | Area 2015 (km2) | Hazard | Impact | Risk | PFV (mcm) |
---|---|---|---|---|---|---|---|---|---|
86 | Phoksundo Tal | 82.948 | 29.196 | 3644 | 4.56 | 3 | 2 | 3 | 197.2 |
54 | Tsho Rolpa | 86.477 | 27.862 | 4526 | 1.52 | 2 | 3 | 3 | 66.3 |
99 | - | 82.415 | 29.754 | 4668 | 0.40 | 3 | 2 | 3 | 10.0 |
89 | - | 82.545 | 29.194 | 4682 | 0.33 | 3 | 2 | 3 | 7.8 |
21 | Chamlang North | 86.957 | 27.784 | 5218 | 0.86 | 3 | 1 | 2 | 29.6 |
49 | Lumding | 86.614 | 27.779 | 4819 | 1.18 | 3 | 1 | 2 | 21.4 |
22 | Chamlang South | 86.960 | 27.755 | 4952 | 0.84 | 3 | 1 | 2 | 9.3 |
27 | - | 86.859 | 27.688 | 4762 | 0.28 | 3 | 1 | 2 | 6.0 |
29 | - | 86.644 | 27.778 | 5156 | 0.28 | 3 | 1 | 2 | 6.0 |
83 | - | 84.472 | 28.663 | 4097 | 0.21 | 1 | 3 | 2 | 4.0 |
37 | - | 86.840 | 27.793 | 5300 | 0.21 | 2 | 2 | 2 | 4.0 |
59 | - | 85.169 | 28.293 | 4732 | 0.19 | 1 | 3 | 2 | 3.6 |
129 | - | 81.780 | 30.128 | 5009 | 0.62 | 1 | 1 | 1 | 18.5 |
26 | - | 86.929 | 27.850 | 4579 | 0.47 | 1 | 1 | 1 | 12.7 |
92 | - | 82.424 | 29.384 | 4445 | 0.44 | 2 | 1 | 1 | 11.6 |
50 | Lumding Teng | 86.621 | 27.790 | 5141 | 0.36 | 1 | 1 | 1 | 8.7 |
105 | - | 82.207 | 29.929 | 4564 | 0.31 | 2 | 1 | 1 | 6.9 |
90 | - | 82.564 | 29.249 | 4648 | 0.29 | 1 | 2 | 1 | 6.3 |
2 | - | 88.049 | 27.545 | 5028 | 0.25 | 2 | 1 | 1 | 5.3 |
108 | - | 82.197 | 29.994 | 4383 | 0.25 | 1 | 1 | 1 | 5.0 |
9 | - | 87.777 | 27.757 | 4690 | 0.24 | 1 | 1 | 1 | 4.8 |
80 | - | 83.186 | 28.958 | 5086 | 0.24 | 1 | 2 | 1 | 4.8 |
122 | - | 82.361 | 29.432 | 4401 | 0.23 | 1 | 2 | 1 | 4.6 |
43 | Hongu 1 | 86.936 | 27.838 | 5217 | 0.23 | 2 | 1 | 1 | 4.6 |
28 | West Hongu | 86.918 | 27.833 | 5346 | 0.31 | 1 | 1 | 1 | 4.4 |
30 | - | 86.938 | 27.857 | 5472 | 0.20 | 1 | 1 | 1 | 3.8 |
11 | - | 87.779 | 27.739 | 4704 | 0.19 | 2 | 1 | 1 | 3.4 |
10 | - | 87.784 | 27.745 | 4796 | 0.18 | 2 | 1 | 1 | 3.2 |
93 | - | 82.429 | 29.407 | 4416 | 0.18 | 1 | 1 | 1 | 3.2 |
94 | Jigilya Daha | 82.203 | 29.666 | 4379 | 0.17 | 2 | 1 | 1 | 3.1 |
53 | Thonak Cho | 86.681 | 27.976 | 4827 | 0.57 | 1 | 2 | 1 | 3.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rounce, D.R.; Watson, C.S.; McKinney, D.C. Identification of Hazard and Risk for Glacial Lakes in the Nepal Himalaya Using Satellite Imagery from 2000–2015. Remote Sens. 2017, 9, 654. https://doi.org/10.3390/rs9070654
Rounce DR, Watson CS, McKinney DC. Identification of Hazard and Risk for Glacial Lakes in the Nepal Himalaya Using Satellite Imagery from 2000–2015. Remote Sensing. 2017; 9(7):654. https://doi.org/10.3390/rs9070654
Chicago/Turabian StyleRounce, David R., C. Scott Watson, and Daene C. McKinney. 2017. "Identification of Hazard and Risk for Glacial Lakes in the Nepal Himalaya Using Satellite Imagery from 2000–2015" Remote Sensing 9, no. 7: 654. https://doi.org/10.3390/rs9070654
APA StyleRounce, D. R., Watson, C. S., & McKinney, D. C. (2017). Identification of Hazard and Risk for Glacial Lakes in the Nepal Himalaya Using Satellite Imagery from 2000–2015. Remote Sensing, 9(7), 654. https://doi.org/10.3390/rs9070654