Agricultural Expansion and Intensification in the Foothills of Mount Kenya: A Landscape Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Assessing Land Cover and Land Use Change since the Late 1980s
2.2.1. Satellite Data Preprocessing
2.2.2. Land Cover and Land Use Classification and Change Analysis
2.2.3. A Landscape Mosaic Approach to Capture the Intensification of Agricultural Land Use
- Natural landscape: Natural vegetation cover classes (bare land, savannah grassland, bush- and shrubland, and forest) cover more than 80% of the context area (I1)
- Agropastoralism: Savannah grassland covers a greater share of the context area than rainfed cropland, but cropland covers at least 5% of the context area (I2)
- Rainfed farming: Rainfed cropland and irrigated cropland together cover more than 20% of the context area, but the share of rainfed cropland is larger than that of irrigated cropland (I3)
- Irrigated farming: Rainfed cropland and irrigated cropland together cover more than 20% of the context area, but the share of irrigated cropland is larger than that of rainfed cropland (I4)
- Large-scale commercial farming: Greenhouses and waterbodies together cover more than 3% of the context area (I5)
- High forest cover: Forest covers at least 20% of the context area (FO)
- Mostly bush- and shrubland: Bush- and shrubland and savannah grassland together cover a larger share of the context area than forest (BS)
- Little woody biomass: Bare land covers at least 20% of the context area (BA)
- No woody biomass: All areas that do not fall in one of the above categories, e.g., monoculture cropland (NO)
3. Results
3.1. Land Cover and Land Use Changes in the Study Area
3.2. Landscape Changes in the Study Area
3.3. Changes in Tree Cover and Woody Biomass
3.4. Landscape Changes in Protected Areas
4. Discussion
5. Conclusions
- Rainfed and irrigated cropland expanded by 47,752 ha, mainly at the expense of savannah grassland, bush- and shrubland, and forest, which showed overall losses of 46,105 ha, 11,837 ha, and 605 ha, respectively. This amounts to a 30% decrease in natural habitats in the study area over the last 30 years. The conversion to rainfed cropland mainly happened between 1987 and 2002, although it continued on after that at a much lower level. The intensity of agricultural land use began to increase between 2002 and 2016, as further humid forest, bush- and shrubland, and grassland areas along rivers, as well as rainfed cropland areas were converted into irrigated cropland. Not only large-scale producers, but also many smallholders have begun to practice irrigated farming. In addition, the area has seen a rapid development of high-input commercial greenhouse horticulture farming (since 2002, greenhouses increased by 604 ha and irrigation water reservoirs by 73 ha).
- Natural wildlife habitats continue to shrink. Agricultural expansion and intensification affects not only non-protected areas, but also private ranches and wildlife reserves as well as small forest reserves in the study area. However, Mount Kenya National Park and National Forest remained fairly stable. The overall forested area has decreased only slightly thanks to a number of afforestation projects near the boundary of Mount Kenya National Park and National Forest.
- The massive reduction in natural habitats and the intensification of agriculture have diverse impacts on biodiversity. While the observed reduction in natural habitats has reduced biodiversity at the regional level, the observed increase in agroforestry farming has increased it locally. The changes also affect land degradation. Potential future consequences of agricultural intensification include soil erosion and—unless fertilizer is applied—a decline in the soil’s organic matter, degradation of the soil structure, and a reduction in major nutrients.
- Water availability defines the spatial pattern of agricultural expansion and intensification in the study area. Water has always been a scarce resource in the region. Agricultural intensification and the expansion of horticulture agribusinesses further increase pressure on this limited natural resource. Furthermore, the observed changes have also heightened pressure on pasture and idle land due to the decrease in natural and agropastoral landscapes. As a result, conflicts between pastoralists, smallholder farmers, large-scale ranches, and wildlife might further increase, particularly during the dry seasons and in years of extreme drought.
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Mustard, J.F.; Defries, R.S.; Fisher, T.; Moran, E. Land-use and land-cover change pathways and impacts. In Land Change Science; Springer: Dordrecht, The Netherlands, 2012; pp. 411–429. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Bongers, F.; Tennigkeit, T. Degraded Forests in Eastern Africa: Management and Restoration; Routledge: London, UK, 2010. [Google Scholar]
- Brink, A.B.; Bodart, C.; Brodsky, L.; Defourney, P.; Ernst, C.; Donney, F.; Lupi, A.; Tuckova, K. Anthropogenic pressure in East Africa—Monitoring 20 years of land cover changes by means of medium resolution satellite data. Int. J. Appl. Earth Obs. Geoinform. 2014, 28, 60–69. [Google Scholar] [CrossRef]
- Niamir-Fuller, M.; Kerven, C.; Reid, R.; Milner-Gulland, E. Co-existence of wildlife and pastoralism on extensive rangelands: Competition or compatibility? Pastor. Res. Policy Pract. 2012, 2, 1–14. [Google Scholar] [CrossRef]
- Maitima, J.M.; Mugatha, S.M.; Reid, R.S.; Gachimbi, L.N.; Majule, A.; Lyaruu, H.; Pomery, D.; Mathai, S.; Mugisha, S. The linkages between land use change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 2009, 3, 310–325. [Google Scholar]
- Cotula, L.; International Institute for Environment and Development; Food and Agriculture Organization of the United Nations; International Fund for Agricultural Development. Land Grab or Development Opportunity? Agricultural Investment and International Land Deals in Africa; IIED: London, UK; FAO: Rome, Italy; IFAD: Rome, Italy, 2009. [Google Scholar]
- Notter, B.; MacMillan, L.; Viviroli, D.; Weingartner, R.; Liniger, H.-P. Impacts of environmental change on water resources in the Mt. Kenya region. J. Hydrol. 2007, 343, 266–278. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Livestock and Fisheries, Government of Kenya, National Horticultural Policy. Available online: http://extwprlegs1.fao.org/docs/pdf/ken147935.pdf (accessed on 3 July 2017).
- Wiesmann, U. Sustainable Regional Development in Rural Africa: Conceptual Framework and Case Studies from Kenya; Geographica Bernensia: Bern, Switzerland, 1998. [Google Scholar]
- Bond, J. Conflict, Development and Security at the Agro–Pastoral–Wildlife Nexus: A Case of Laikipia County, Kenya. J. Dev. Stud. 2014, 50, 991–1008. [Google Scholar] [CrossRef]
- Muriithi, F.K.; Yu, D. Understanding the Impact of Intensive Horticulture Land-Use Practices on Surface Water Quality in Central Kenya. Environments 2015, 2, 521–545. [Google Scholar] [CrossRef]
- Ulrich, A. Export-Oriented Horticultural Production in Laikipia, Kenya: Assessing the Implications for Rural Livelihoods. Sustainability 2014, 6, 336–347. [Google Scholar] [CrossRef]
- Ulrich, A.; Ifejika Speranza, C.; Roden, P.; Kiteme, B.; Wiesmann, U.; Nüsser, M. Small-scale farming in semi-arid areas: Livelihood dynamics between 1997 and 2010 in Laikipia, Kenya. J. Rural Stud. 2012, 28, 241–251. [Google Scholar] [CrossRef]
- Roden, P.; Bergmann, C.; Ulrich, A.; Nüsser, M. Tracing divergent livelihood pathways in the drylands: A perspective on two spatially proximate locations in Laikipia County, Kenya. J. Arid Environ. 2016, 124, 239–248. [Google Scholar] [CrossRef]
- McCord, P.F.; Cox, M.; Schmitt-Harsh, M.; Evans, T. Crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near Mount Kenya. Land Use Policy 2015, 42, 738–750. [Google Scholar] [CrossRef]
- Ogalleh, S.; Vogl, C.; Eitzinger, J.; Hauser, M. Local Perceptions and Responses to Climate Change and Variability: The Case of Laikipia District, Kenya. Sustainability 2012, 4, 3302–3325. [Google Scholar] [CrossRef]
- Wiesmann, U. Socioeconomic Viewpoints on Highland-Lowland Systems: A Case Study on the Northwest Side of Mount Kenya. Mt. Res. Dev. 1992, 12, 375–381. [Google Scholar] [CrossRef]
- Kohler, T.; Wiesmann, U.M. Kleinbäuerliche Besiedlung und die Ausprägung von Haushaltsstrategien am Mount Kenya. In Welt der Alpe—Gebirge der Welt; Jeanneret, F., Wastl-Walter, D., Wiesmann, U., Schwyn, M., Eds.; Haupt Verlag: Bern, Switzerland, 2003; pp. 185–196. [Google Scholar]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Wu, Z. An automated cropland classification algorithm (ACCA) for Tajikistan by combining Landsat, MODIS, and secondary data. Remote Sens. 2012, 4, 2890–2918. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Levers, C.; Baumann, M.; Hostert, P. Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.; Rao, M.N.; Mohammed, I.A.; Whitbread, A.M. Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time-series data. Int. J. Digit. Earth 2016, 9, 981–1003. [Google Scholar] [CrossRef] [Green Version]
- Teluguntla, P.; Thenkabail, P.S.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Oliphant, A.; Poehnelt, J.; Yadav, K.; Rao, M.; Massey, R. Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data. Int. J. Digit. Earth 2016, 10, 1–34. [Google Scholar] [CrossRef]
- Müller, H.; Rufin, P.; Griffiths, P.; Barros Siqueira, A.J.; Hostert, P. Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens. Environ. 2015, 156, 490–499. [Google Scholar] [CrossRef]
- Jin, N.; Tao, B.; Ren, W.; Feng, M.; Sun, R.; He, L.; Zhuang, W.; Yu, Q. Mapping Irrigated and Rainfed Wheat Areas Using Multi-Temporal Satellite Data. Remote Sens. 2016, 8, 207. [Google Scholar] [CrossRef]
- Knauer, K.; Gessner, U.; Fensholt, R.; Forkuor, G.; Kuenzer, C. Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: the role of population growth and implications for the environment. Remote Sens. 2017, 9, 132. [Google Scholar] [CrossRef]
- Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Arai, E.; del Bon Espirito-Santo, F.; Freitas, R.; Morisette, J. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 14637–14641. [Google Scholar] [CrossRef] [PubMed]
- Kontgis, C.; Schneider, A.; Ozdogan, M. Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data. Remote Sens. Environ. 2015, 169, 255–269. [Google Scholar] [CrossRef]
- Maron, M.; Fitzsimons, J.A. Agricultural intensification and loss of matrix habitat over 23 years in the West Wimmera, south-eastern Australia. Biol. Conserv. 2007, 135, 587–593. [Google Scholar] [CrossRef] [Green Version]
- Edlinger, J.; Conrad, C.; Lamers, J.; Khasankhanova, G.; Koellner, T. Reconstructing the spatio-temporal development of irrigation systems in Uzbekistan using Landsat time series. Remote Sens. 2012, 4, 3972–3994. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Reenberg, A. Land systems research in Denmark: Background and perspectives. Geogr. Tidsskr. Dan. J. Geogr. 2006, 106, 1–6. [Google Scholar] [CrossRef]
- Dubreuil, V.; Laques, A.-É.; Nédélec, V.; Arvor, D.; Gurgel, H. Paysages et fronts pionniers amazoniens sous le regard des satellites: L’exemple du Mato Grosso. L’Espace Géographique 2008, 37, 57–74. [Google Scholar] [CrossRef]
- Arvor, D.; Dubreuil, V.; Simões, M.; Bégué, A. Mapping and spatial analysis of the soybean agricultural frontier in Mato Grosso, Brazil, using remote sensing data. GeoJournal 2013, 78, 833–850. [Google Scholar] [CrossRef]
- Gutman, G.; Janetos, A.C.; Justice, C.O.; Moran, E.F.; Mustard, J.F.; Rindfuss, R.R.; Skole, D.; Turner, B.L., II; Cochrane, M.A. Land Change Science: Observing, Monitoring and Understanding Trajectories of Change on the Earth’s Surface; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Kuemmerle, T.; Erb, K.; Meyfroidt, P.; Müller, D.; Verburg, P.H.; Estel, S.; Haberl, H.; Hostert, P.; Jepsen, M.R.; Kastner, T.; et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 2013, 5, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Berger, P. Rainfall and Agroclimatology of the Laikipia Plateau, Kenya; Geographica Bernensia: Berne, Switzerland, 1989. [Google Scholar]
- Liniger, H.; Gikonyo, J.; Kiteme, B.; Wiesmann, U. Assessing and Managing Scarce Tropical Mountain Water Resources: The Case of Mount Kenya and the Semiarid Upper Ewaso Ng’iro Basin. Mt. Res. Dev. 2005, 25, 163–173. [Google Scholar] [CrossRef]
- Aeschbacher, J.; Liniger, H.; Weingartner, R. River water shortage in a highland-lowland system: A case study of the impacts of water abstraction in the Mount Kenya region. Mt. Res. Dev. 2005, 25, 155–162. [Google Scholar] [CrossRef]
- Kohler, T. Land Use in Transition: Aspects and Problems of Small Scale Farming in a New Environment: The Example of Laikipia District, Kenya; Geographica Bernensia: Bern, Switzerland, 1987. [Google Scholar]
- KNBS—Kenya National Bureau of Statistics. Available online: https://www.knbs.or.ke/ (accessed on 6 June 2017).
- Lanari, N.; Liniger, H.; Kiteme, B.P. Commercial Horticulture in Kenya: Adapting to Water Scarcity; University of Bern: Bern, Switzerland, 2016. [Google Scholar]
- Griffiths, P.; Müller, D.; Kuemmerle, T.; Hostert, P. Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ. Res. Lett. 2013, 8, 1–12. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Baumann, M.; Radeloff, V.C.; Abrudan, I.V.; Lieskovsky, J.; Munteanu, C.; Ostapowicz, K.; Hostert, P. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens. Environ. 2014, 151, 72–88. [Google Scholar] [CrossRef]
- Kiteme, B.P.; Liniger, H.; Notter, B.; Wiesmann, U.; Kohler, T. Dimensions of Global Change in African Mountains: The Example of Mount Kenya. In International Human Dimensions Programme on Global Environmental Change: Mountain Regions: Laboratories for Adaptation; Rechkemmer, A., Ed.; IHDP: Bonn, Germany, 2008; Volume 2, pp. 18–23. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Jakimow, B.; Oldenburg, C.; Rabe, A.; Waske, B.; van der Linden, S.; Hostert, P. Manual for Application: ImageRF (1.1). Available online: http://dev.geo.hu-berlin.de/enmap-box/documentation/applications/imageRF/help/imageRF_Manual.pdf (accessed on 31 July 2017).
- Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer: New York, NY, USA, 2001. [Google Scholar]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping tree canopy cover and aboveground biomass in Sudano-Sahelian woodlands using Landsat 8 and random forest. Remote Sens. 2015, 7, 10017–10041. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Cheng, X.; Wang, L. A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ZiYuan-3 stereo satellite imagery. Remote Sens. 2016, 8, 514. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, LA, USA, 2008. [Google Scholar]
- Pontius, R.G.; Huffaker, D.; Denman, K. Useful techniques of validation for spatially explicit land-change models. Ecol. Model. 2004, 179, 445–461. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Messerli, P.; Heinimann, A.; Epprecht, M. Finding homogeneity in heterogeneity—A new approach to quantifying landscape mosaics developed for the Lao PDR. Hum. Ecol. 2009, 37, 291–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hett, C.; Castella, J.-C.; Heinimann, A.; Messerli, P.; Pfund, J.-L. A landscape mosaics approach for characterizing swidden systems from a REDD+ perspective. Appl. Geogr. 2012, 32, 608–618. [Google Scholar] [CrossRef]
- Zaehringer, J.G.; Hett, C.; Ramamonjisoa, B.; Messerli, P. Beyond deforestation monitoring in conservation hotspots: Analysing landscape mosaic dynamics in north-eastern Madagascar. Appl. Geogr. 2016, 68, 9–19. [Google Scholar] [CrossRef]
- Cumming, D.H.; Fenton, M.B.; Rautenbach, I.L.; Taylor, R.D.; Cumming, G.S.; Cumming, M.S.; Dunlop, J.M.; Ford, A.G.; Hovorka, M.D.; Johnston, D.S. Elephants, woodlands and biodiversity in southern Africa. S. Afr. J. Sci. 1997, 93, 231–236. [Google Scholar]
- Mbow, C.; Van Noordwijk, M.; Luedeling, E.; Neufeldt, H.; Minang, P.A.; Kowero, G. Agroforestry solutions to address food security and climate change challenges in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 61–67. [Google Scholar] [CrossRef]
- Gebreeyesus, M.; Sonobe, T. Global Value Chains and Market Formation Process in Emerging Export Activity: Evidence from Ethiopian Flower Industry. J. Dev. Stud. 2012, 48, 335–348. [Google Scholar] [CrossRef]
- Xia, Y.; Deng, X.; Zhou, P.; Shima, K.; da Silva, J.A.T. The World Floriculture Industry: Dynamics of production and markets. In Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues; Available online: http://www.globalsciencebooks.info/Books/images/FOPBVolume5Outline.pdf (accessed on 31 July 2017).
- Whitaker, M.; Kolavalli, S. Floriculture in Kenya. In Technology, Adaptation, and Exports—How Some Developing Countries Got it Right; Chandra, V., Ed.; The World Bank: Washington, DC, USA, 2006; pp. 335–367. [Google Scholar]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol. 2011, 17, 974–989. [Google Scholar] [CrossRef] [Green Version]
- Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576–587. [Google Scholar] [CrossRef]
- White, E.V.; Roy, D.P. A contemporary decennial examination of changing agricultural field sizes using Landsat time series data. Geo Geogr. Environ. 2015, 2, 33–54. [Google Scholar] [CrossRef] [PubMed]
- Kibichii, S.; Shivoga, W.A.; Muchiri, M.; Miller, S.N. Macroinvertebrate assemblages along a land-use gradient in the upper River Njoro watershed of Lake Nakuru drainage basin, Kenya. Lakes Reserv. Res. Manag. 2007, 12, 107–117. [Google Scholar] [CrossRef]
- Otiang’a-Owiti, G.E.; Oswe, I.A. Human impact on lake ecosystems: The case of Lake Naivasha, Kenya. Afr. J. Aquat. Sci. 2007, 32, 79–88. [Google Scholar] [CrossRef]
- Nyakundi, W.O.; Magoma, G.; Ochora, J.; Nyende, A.B. Survey of pesticide use and application patterns among farmers: A case study from selected horticultural farms in Rift Valley and Central provinces, Kenya. In Proceedings of the 2010 JKUAT Scientific Technological and Industrialization Conference, Nairobi, Kenya, 17–19 November 2010; pp. 618–630. [Google Scholar]
- Meersohn Meinecke, S.M.; Pandey, A.; Thant, A.M.; Madalinska, A.; Sørensen, C.; Wilson, M. Crop Production and Livelihood Strategies in a Resettlement Village in Kenya. Available online: http://www.tropentag.de/2012/abstracts/full/371.pdf (accessed on 31 July 2017).
- Zaehringer, J.G.; Wambugu, G.; Kiteme, B.P.; Eckert, S. Large-scale agricultural investments on the western slopes of Mount Kenya: Perceived impacts on small-scale farmers’ land use and the environment. Ecol. Soc. 2007. submitted. [Google Scholar]
Land Cover and Land Use Class | Description | |
---|---|---|
Bare land | Bare soil including dirt roads, rock outcrops, and sand | |
Cropland | Rainfed cropland | Plots of varying size covered with crops or ploughed |
Irrigated cropland | Plots showing a high amount of green vegetation cover during dry seasons | |
Savannah grassland | Grassland interspersed with bushes, shrubs, and trees at a low to medium density, and fallows with a vegetation cover | |
Bush- and shrubland | Areas with a bush and shrub cover of medium to high density and an understory that is bare or covered with grass or dry matter | |
Forest | Natural or plantation forests, including riparian forests, and very densely grown bush- and shrubland with a high amount of green vegetation | |
Waterbodies | Small and shallow natural waterbodies and larger artificial reservoirs for irrigation | |
Settlements | Settlements, large buildings, tarmac | |
Greenhouses | Glass or plastic greenhouses |
Net Changes | 1987–2002 | 2002–2016 | 1987–2016 | |||
---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | |
Rainfed cropland | 28,740 | 11.6 | 2079 | 0.8 | 29,438 | 11.9 |
Bare land | 228 | 0.1 | 1026 | 0.4 | 3351 | 1.4 |
Waterbodies | 24 | 0.0 | 73 | 0.0 | 97 | 0.0 |
Irrigated cropland | 8882 | 3.6 | 9515 | 3.9 | 18,315 | 7.4 |
Savannah grassland | −41,023 | −16.6 | −6030 | −2.5 | −46,105 | −18.7 |
Forest | 8509 | 3.4 | −605 | −0.2 | 7816 | 3.2 |
Settlements | 306 | 0.1 | 31 | 0.0 | 322 | 0.1 |
Greenhouses | 21 | 0.0 | 604 | 0.2 | 624 | 0.3 |
Bush- and shrubland | −5689 | −2.3 | −6693 | −2.7 | −11,837 | −4.8 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eckert, S.; Kiteme, B.; Njuguna, E.; Zaehringer, J.G. Agricultural Expansion and Intensification in the Foothills of Mount Kenya: A Landscape Perspective. Remote Sens. 2017, 9, 784. https://doi.org/10.3390/rs9080784
Eckert S, Kiteme B, Njuguna E, Zaehringer JG. Agricultural Expansion and Intensification in the Foothills of Mount Kenya: A Landscape Perspective. Remote Sensing. 2017; 9(8):784. https://doi.org/10.3390/rs9080784
Chicago/Turabian StyleEckert, Sandra, Boniface Kiteme, Evanson Njuguna, and Julie Gwendolin Zaehringer. 2017. "Agricultural Expansion and Intensification in the Foothills of Mount Kenya: A Landscape Perspective" Remote Sensing 9, no. 8: 784. https://doi.org/10.3390/rs9080784
APA StyleEckert, S., Kiteme, B., Njuguna, E., & Zaehringer, J. G. (2017). Agricultural Expansion and Intensification in the Foothills of Mount Kenya: A Landscape Perspective. Remote Sensing, 9(8), 784. https://doi.org/10.3390/rs9080784