Detection of Asian Dust Storm Using MODIS Measurements
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Moderate Resolution Imaging Spectroradiometer (MODIS)
2.1.2. Ozone Monitoring Instrument (OMI)
2.1.3. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
2.2. Methodology
2.2.1. Algorithm Development
2.2.2. Training Process and Flowchart
3. Results and Discussion
3.1. Algorithm Test Cases
3.2. Validation of Dust Storm Detection with OMI
3.3. Validation of Dust Storm Detection with CALIOP
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Estellés, V.; Martínez-Lozano, J.A.; Utrillas, M.P.; Campanelli, M. Columnar aerosol properties in Valencia (Spain) by ground-based Sun photometry. J. Geophys. Res. Atmos. 2007. [Google Scholar] [CrossRef]
- Li, Z.; Khananian, A.; Fraser, R.H.; Cihlar, J. Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1859–1870. [Google Scholar] [CrossRef]
- Kelly, J.T.; Chuang, C.C.; Wexler, A.S. Influence of dust composition on cloud droplet formation. Atmos. Environ. 2007, 41, 2904–2916. [Google Scholar] [CrossRef]
- Dunion, J.P.; Velden, C.S. The impact of the Saharan Air Layer on Atlantic tropical cyclone activity. Bull. Am. Meteorol. Soc. 2004, 85, 353–365. [Google Scholar] [CrossRef]
- Wu, L.; Braun, S.A.; Qu, J.J.; Hao, X. Simulating the formation of Hurricane Isabel (2003) with AIRS data. Geophys. Res. Lett. 2006. [Google Scholar] [CrossRef]
- Carlson, T.N. Atmospheric Turbidity in Saharan Dust Outbreaks as Determined by Analyses of Satellite Brightness Data. Mon. Weather Rev. 1979, 107, 322–335. [Google Scholar] [CrossRef]
- Norton, C.C.; Mosher, F.R.; Hinton, B.; Martin, D.W.; Santek, D.; Kuhlow, W. A model for calculating desert aerosol turbidity over the oceans from geostationary satellite data. J. Appl. Meteorol. 1980, 19, 633–644. [Google Scholar] [CrossRef]
- Miller, S.D. A consolidated technique for enhancing desert dust storms with MODIS. Geophys. Res. Lett. 2003. [Google Scholar] [CrossRef]
- Legrand, M.; Cautenet, G.; Buriez, J.C. Thermal impact of Saharan Dust over land. Part II: Application to Satellite IR Remote Sensing. J. Appl. Meteorol. 1992, 31, 181–193. [Google Scholar] [CrossRef]
- Legrand, M.; Desbois, M.; Vovor, K. Satellite Detection of Saharan Dust: Optimized Imaging during Nighttime. J. Clim. 1988, 1, 256–264. [Google Scholar] [CrossRef]
- Legrand, M.; Bertrand, J.J.; Desbois, M.; Menenger, L.; Fouquart, Y. The potential of infrared satellite data for the retrieval of Saharan-dust optical depth over Africa. J. Appl. Meteorol. 1989, 28, 309–318. [Google Scholar] [CrossRef]
- Legrand, M.; Plana-Fattori, A.; N’doumé, C. Satellite detection of dust using the IR imagery of Meteosat: 1. Infrared difference dust index. J. Geophys. Res. 2001, 106, 18251. [Google Scholar] [CrossRef]
- Ackerman, S.A. Using the radiative temperature difference at 3.7 and 11 μm to tract dust outbreaks. Remote Sens. Environ. 1989, 27, 129–133. [Google Scholar] [CrossRef]
- Ackerman, S. A Remote sensing aerosols using satellite infrared observations. J. Geophys. Res. Atmos. 1997, 102, 17069–17079. [Google Scholar] [CrossRef]
- Qu, J.J.; Hao, X.; Kafatos, M.; Wang, L. Asian dust storm monitoring combining terra and aqua MODIS SRB measurements. IEEE Geosci. Remote Sens. Lett. 2006, 3, 484–486. [Google Scholar] [CrossRef]
- Hao, X. Saharan dust storm detection using moderate resolution imaging spectroradiometer thermal infrared bands. J. Appl. Remote Sens. 2007, 1, 13510. [Google Scholar] [CrossRef]
- Han, T.; Li, Y.; Han, H.; Zhang, Y.; Wang, Y. Automatic detection of dust storm in the Northwest of China using decision tree classifier based on MODIS visible bands data. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 29 July 2005; pp. 3603–3606. [Google Scholar]
- Ackerman, S.; Strabala, K.; Menzel, P.; Frey, R.; Moeller, C.; Gumley, L.; Baum, B.; Seemann, S.W.; Zhang, H. Discriminating Clear-Sky from Cloud with MODIS Algorithm Theoretical Basis Document (MOD35). Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.385.4885 (accessed on 30 June 2017).
- Barnes, W.L.; Xiong, X.; Salomonson, V.V. Status of Terra MODIS and Aqua MODIS. Adv. Space Res. 2003, 32, 2099–2106. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Barnes, W.; Xiong, J.; Kempler, S.; Masuoka, E. An overview of the Earth Observing System MODIS instrument and associated data systems performance. In Proceedings of the 2002 IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 1174–1176. [Google Scholar]
- Xiong, X.; Chiang, K.; Esposito, J.; Guenther, B.; Barnes, W. MODIS on-orbit calibration and characterization. Metrologia 2003, 40, S89–S92. [Google Scholar] [CrossRef]
- Zhang, W.; Gu, X.; Xu, H.; Yu, T.; Zheng, F. Assessment of OMI near-UV aerosol optical depth over Central and East Asia. J. Geophys. Res. Atmos. 2016, 121, 382–398. [Google Scholar] [CrossRef]
- Levelt, P.F.; van Den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Visser, H.; de Vries, J.; Stammes, P.; Lundell, J.O.V.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Ahmad, S.P.; Levelt, P.F.; Bhartia, P.K.; Hilsenrath, E.; Leppelmeier, G.W.; Johnson, J.E. Atmospheric products from the ozone monitoring instrument (OMI). Soc. Photo-Opt. Instrum. Eng. Conf. Ser. 2003, 5151, 619–630. [Google Scholar] [CrossRef]
- Redemann, J.; Livingston, J.; Russell, P.; Johnson, R. Comparison of Airborne Sunphotometer and Satellite Sensor Retrievals of Aerosol Optical Depth during MILAGRO/INTEX-B. Available online: http://adsabs.harvard.edu/abs/2007AGUFM.A12A..01L (accessed on 30 June 2017).
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Li, S.; Chen, L.; Xiong, X.; Tao, J.; Su, L.; Han, D.; Liu, Y. Retrieval of the haze optical thickness in North China Plain using MODIS data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2528–2540. [Google Scholar] [CrossRef]
- Herman, J.R.; Bhartia, P.K.; Torres, O.; Hsu, C.; Seftor, C.; Celarier, E. Global distribution of UV—Absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res. 1997, 102, 16911–16922. [Google Scholar] [CrossRef]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products form Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 2007, 112, D24S47. [Google Scholar] [CrossRef]
FPA 1 | Band | CW 2 | Bandwidth 3 | Ltyp 4 | Primary Use |
---|---|---|---|---|---|
RSB | 1 | 645 nm | 620–670 | 21.8 | Land/Cloud/Aerosols Boundaries |
2 | 858 nm | 841–876 | 24.7 | Land/Cloud/Aerosols Boundaries | |
3 | 469 nm | 459–479 | 35.3 | Land/Cloud/Aerosols Boundaries | |
4 | 555 nm | 545–565 | 29.0 | Land/Cloud/Aerosols Boundaries | |
5 | 1240 nm | 1230–1250 | 5.4 | Land/Cloud/Aerosols Boundaries | |
6 | 1640 nm | 1628–1652 | 7.3 | Land/Cloud/Aerosols Boundaries | |
7 | 2130 nm | 2105–2155 | 1.0 | Land/Cloud/Aerosols Boundaries | |
8 | 412 nm | 405–420 | 44.9 | Ocean Color/Phytoplankton/Biogeochemistry | |
9 | 443 nm | 438–448 | 41.9 | Ocean Color/Phytoplankton/Biogeochemistry | |
10 | 488 nm | 483–493 | 32.1 | Ocean Color/Phytoplankton/Biogeochemistry | |
11 | 531 nm | 526–536 | 27.9 | Ocean Color/Phytoplankton/Biogeochemistry | |
12 | 551 nm | 546–556 | 21.0 | Ocean Color/Phytoplankton/Biogeochemistry | |
13 | 667 nm | 662–672 | 9.5 | Ocean Color/Phytoplankton/Biogeochemistry | |
14 | 678 nm | 673–683 | 8.7 | Ocean Color/Phytoplankton/Biogeochemistry | |
15 | 748 nm | 743–753 | 10.2 | Ocean Color/Phytoplankton/Biogeochemistry | |
16 | 869 nm | 862–877 | 6.2 | Ocean Color/Phytoplankton/Biogeochemistry | |
17 | 905 nm | 890–920 | 10.0 | Atmospheric Water Vapor | |
18 | 936 nm | 931–941 | 3.6 | Atmospheric Water Vapor | |
19 | 940 nm | 915–965 | 15.0 | Atmospheric Water Vapor | |
26 | 1375 nm | 1360–1390 | 6.0 | Cirrus Clouds Water Vapor | |
TEB | 20 | 3.75 μm | 3.660–3.840 | 300 | Surface/Cloud Temperature |
21 | 3.96 μm | 3.929–3.989 | 335 | Surface/Cloud Temperature | |
22 | 3.96 μm | 3.929–3.989 | 300 | Surface/Cloud Temperature | |
23 | 4.05 μm | 4.020–4.080 | 300 | Surface/Cloud Temperature | |
24 | 4.47 μm | 4.433–4.498 | 250 | Atmospheric Temperature | |
25 | 4.52 μm | 4.482–4.549 | 275 | Atmospheric Temperature | |
27 | 6.72 μm | 6.535–6.895 | 240 | Water Vapor | |
28 | 7.33 μm | 7.175–7.475 | 250 | Water Vapor | |
29 | 8.55 μm | 8.400–8.700 | 300 | Water Vapor | |
30 | 9.73 μm | 9.580–9.880 | 250 | Ozone | |
31 | 11.03 μm | 10.78–11.28 | 300 | Surface/Cloud Temperature | |
32 | 12.02 μm | 11.77–12.27 | 300 | Surface/Cloud Temperature | |
33 | 13.34 μm | 13.18–13.48 | 260 | Cloud Top Altitude | |
34 | 13.64 μm | 13.48–13.78 | 250 | Cloud Top Altitude | |
35 | 13.94 μm | 13.78–14.08 | 240 | Cloud Top Altitude | |
36 | 14.24 μm | 14.08–14.38 | 220 | Cloud Top Altitude |
MODIS | Year | Julian/Calendar | Time | MODIS | Year | Julian/Calendar | Time |
---|---|---|---|---|---|---|---|
Aqua | 2002 | 234-08/22 | 06:50 | Terra | 2001 | 096-04/06 | 03:40 |
Aqua | 2002 | 239-08/27 | 07:10 | Terra | 2001 | 098-04/08 | 05:05 |
Aqua | 2002 | 290-10/17 | 07:40 | Terra | 2001 | 100-04/10 | 06:30 |
Aqua | 2002 | 299-10/26 | 07:50 | Terra | 2002 | 106-04/16 | 05:15 |
Aqua | 2003 | 107-04/17 | 07:00 | Terra | 2002 | 113-04/23 | 05:20 |
Aqua | 2003 | 108-04/18 | 07:45 | Terra | 2002 | 114-04/24 | 06:05 |
Aqua | 2004 | 120-04/30 | 07:40 | Terra | 2003 | 107-04/17 | 05:25 |
Aqua | 2005 | 030-01/30 | 07:15 | Terra | 2004 | 329-11/24 | 05:05 |
Aqua | 2005 | 118-04/28 | 06:25 | Terra | 2004 | 330-11/25 | 05:45 |
Aqua | 2005 | 173-06/22 | 06:30 | Terra | 2005 | 030-01/30 | 05:35 |
Aqua | 2005 | 176-06/25 | 07:00 | Terra | 2005 | 155-06/04 | 05:05 |
Aqua | 2006 | 100-04/10 | 06:05 | Terra | 2005 | 17606/25 | 05:25 |
Aqua | 2006 | 101-04/11 | 06:50 | Terra | 2006 | 045-02/14 | 05:05 |
Aqua | 2006 | 103-04/13 | 06:40 | Terra | 2006 | 100-04/10 | 04:30 |
Aqua | 2006 | 113-04/23 | 07:15 | Terra | 2006 | 101-04/11 | 05:10 |
Aqua | 2006 | 207-07/26 | 07:30 | Terra | 2006 | 102-04/12 | 04:15 |
Aqua | 2007 | 089-03/30 | 06:00 | Terra | 2006 | 105-04/15 | 04:45 |
Aqua | 2007 | 090-03/31 | 05:00 | Terra | 2006 | 120-04/30 | 05:40 |
Aqua | 2007 | 106-04/16 | 08:20 | Terra | 2006 | 124-05/04 | 05:20 |
Aqua | 2007 | 113-04/23 | 06:45 | Terra | 2007 | 090-03/31 | 03:20 |
Aqua | 2007 | 113-04/23 | 08:25 | Terra | 2007 | 091-04/01 | 05:45 |
Aqua | 2007 | 130-05/10 | 07:30 | Terra | 2007 | 092-04/02 | 04:50 |
Aqua | 2007 | 131-05/11 | 08:10 | Terra | 2007 | 106-04/16 | 05:00 |
Terra | 2001 | 061-03/02 | 06:25 | Terra | 2007 | 113-04/23 | 05:05 |
Terra | 2001 | 064-03/05 | 03:40 | Terra | 2007 | 120-04/30 | 03:30 |
Terra | 2001 | 094-04/04 | 05:30 | Terra | 2007 | 130-05/10 | 05:50 |
Terra | 2001 | 096-04/06 | 03:35 | Terra | 2007 | 131-05/11 | 04:55 |
MODIS | Year | Julian/Calendar | Time | MODIS | Year | Julian/Calendar | Time |
---|---|---|---|---|---|---|---|
Aqua | 2002 | 239-08/27 | 07:10 | Terra | 2001 | 064-03/05 | 03:40 |
Aqua | 2003 | 107-04/17 | 07:00 | Terra | 2001 | 094-04/04 | 05:30 |
Aqua | 2003 | 108-04/18 | 07:45 | Terra | 2001 | 096-04/06 | 03:35 |
Aqua | 2004 | 070-03/10 | 04:35 | Terra | 2001 | 096-04/06 | 03:40 |
Aqua | 2004 | 087-03/27 | 05:15 | Terra | 2001 | 09704/07 | 02:40 |
Aqua | 2004 | 087-03/27 | 05:20 | Terra | 2001 | 098-04/-8 | 03:25 |
Aqua | 2004 | 119-04/28 | 05:20 | Terra | 2001 | 238-08/26 | 05:25 |
Aqua | 2004 | 120-04/29 | 07:40 | Terra | 2002 | 006-01/06 | 05:40 |
Aqua | 2005 | 118-04/28 | 04:45 | Terra | 2002 | 097-04/07 | 02:00 |
Aqua | 2005 | 118-04/28 | 06:25 | Terra | 2002 | 097-04/07 | 03:40 |
Aqua | 2005 | 119-04/29 | 03:50 | Terra | 2002 | 113-04/23 | 05:20 |
Aqua | 2005 | 119-04/29 | 05:20 | Terra | 2002 | 120-04/30 | 05:25 |
Aqua | 2005 | 120-04/30 | 02:55 | Terra | 2004 | 330-11/25 | 04:10 |
Aqua | 2005 | 121-05/01 | 03:35 | Terra | 2004 | 330-11/25 | 05:45 |
Aqua | 2005 | 173-06/22 | 04:55 | Terra | 2005 | 118-04/28 | 04:45 |
Aqua | 2006 | 043-02/12 | 06:10 | Terra | 2005 | 119-04/29 | 02:10 |
Aqua | 2006 | 096-04/06 | 04:45 | Terra | 2005 | 119-04/29 | 03:50 |
Aqua | 2006 | 100-04/10 | 06:05 | Terra | 2005 | 120-04/30 | 01:15 |
Aqua | 2006 | 102-04/12 | 04:15 | Terra | 2005 | 120-04/30 | 02:25 |
Aqua | 2006 | 107-04/17 | 04:35 | Terra | 2005 | 173-06/22 | 03:15 |
Aqua | 2006 | 108-04/18 | 05:15 | Terra | 2005 | 177-06/26 | 06:05 |
Aqua | 2006 | 109-04/19 | 04:20 | Terra | 2005 | 198-07/17 | 04:45 |
Aqua | 2006 | 113-04/23 | 07:15 | Terra | 2005 | 310-11/06 | 03:05 |
Aqua | 2006 | 149-05/29 | 05:10 | Terra | 2006 | 091-04/01 | 03:00 |
Aqua | 2006 | 149-05/29 | 05:15 | Terra | 2006 | 097-04/07 | 02:15 |
Aqua | 2007 | 083-03/24 | 04:55 | Terra | 2006 | 102-04/12 | 04:15 |
Aqua | 2007 | 089-03/30 | 05:55 | Terra | 2006 | 107-04/17 | 02:55 |
Aqua | 2007 | 089-03/30 | 06:00 | Terra | 2006 | 120-04/30 | 05:40 |
Aqua | 2007 | 090-03/31 | 05:00 | Terra | 2006 | 124-05/04 | 05:20 |
Aqua | 2007 | 106-03/16 | 08:20 | Terra | 2007 | 090-03/31 | 03:20 |
Aqua | 2007 | 113-03/23 | 06:45 | Terra | 2007 | 091-04/01 | 05:45 |
Terra | 2001 | 106-03/16 | 06:25 | Terra | 2007 | 120-04/30 | 01:55 |
Terra | 2001 | 061-03/02 | 03:40 | Terra | 2007 | 120-04/30 | 03:30 |
Dark Clear Pixels | Bright Clear Pixels | ||||||
---|---|---|---|---|---|---|---|
MODIS | Year | Julian/Calendar | Time | MODIS | Year | Julian/Calendar | Time |
Aqua | 2004 | 087-03/27 | 05:15 | Aqua | 2002 | 239-08/27 | 07:10 |
Aqua | 2004 | 119-04/28 | 05:10 | Terra | 2001 | 238-08/26 | 05:25 |
Aqua | 2006 | 097-04/07 | 05:35 | Terra | 2001 | 298-10/25 | 05:50 |
Aqua | 2006 | 098-04/08 | 04:40 | Terra | 2001 | 300-10/27 | 05:35 |
Aqua | 2006 | 149-05/29 | 05:10 | Terra | 2002 | 006-01/06 | 05:40 |
Terra | 2001 | 079-03/20 | 02:55 | Terra | 2002 | 120-04/30 | 05:25 |
Terra | 2001 | 107-04/17 | 03:20 | Terra | 2006 | 119-04/29 | 05:00 |
Terra | 2002 | 091-04/01 | 02:40 | Terra | 2006 | 124-05/04 | 05:20 |
Terra | 2005 | 118-04/18 | 03:10 | Terra | 2006 | 133-05/13 | 05:10 |
Terra | 2005 | 119-04/19 | 02:10 | Terra | 2007 | 113-04/23 | 05:05 |
Terra | 2005 | 173-06/22 | 03:15 | Terra | 2007 | 130-05/10 | 0550 |
Terra | 2005 | 310-11/06 | 03:05 | Terra | 2007 | 131-05/11 | 04:55 |
Terra | 2007 | 120-04/30 | 03:30 |
Class Type | Threshold Test | Bright Surfaces | Dark Surfaces | ||
---|---|---|---|---|---|
Value | Error (%) | Value | Error (%) | ||
Dust over land | BT 3.7–BT 11 | 25 K | 2.8 | 20 K | 2.6 |
Ln (R1) | −1.2 | 2.3 | −1.6 | 4.4 | |
Cloud | BT 12–BT 11 | 0 K | 0.31.9 | 0 K | 0.8 |
(R7 − R3)/(R3 + R7) | 0.0 | 1.9 | 0.0 | 12.5 | |
Total 1 | 1 6.0 | 1 17.7 |
MODIS Dust Image | |||
---|---|---|---|
Non-Dust Pixels | Dust Pixels | ||
OMI UVAI image | Non-dust pixels (UVAI ≤ 1.2) | 6871 | |
Dust pixels (UVAI > 1.2) | 49,918 | 137,554 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Zhang, W.; Qu, J.J. Detection of Asian Dust Storm Using MODIS Measurements. Remote Sens. 2017, 9, 869. https://doi.org/10.3390/rs9080869
Xie Y, Zhang W, Qu JJ. Detection of Asian Dust Storm Using MODIS Measurements. Remote Sensing. 2017; 9(8):869. https://doi.org/10.3390/rs9080869
Chicago/Turabian StyleXie, Yong, Wenhao Zhang, and John J. Qu. 2017. "Detection of Asian Dust Storm Using MODIS Measurements" Remote Sensing 9, no. 8: 869. https://doi.org/10.3390/rs9080869
APA StyleXie, Y., Zhang, W., & Qu, J. J. (2017). Detection of Asian Dust Storm Using MODIS Measurements. Remote Sensing, 9(8), 869. https://doi.org/10.3390/rs9080869