A Long-Term Vegetation Recovery Estimation for Mt. Jou-Jou Using Multi-Date SPOT 1, 2, and 4 Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. SPOT Satellite Images
2.3. The Normalized Difference Vegetation Index (NDVI)
2.4. Landslide Area Extraction
2.5. Seasonality Adjustment
2.6. Estimation of Vegetation Recovery Rate (VRR)
2.7. Rainfall Data
3. Results and Discussion
3.1. SPOT Satellite Images
3.2. NDVI Analysis
3.3. VRR and Modified VRR
3.4. The Relationship between NDVI and Corresponding Precipitation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wilson, R.C.; Keefer, D.K. Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake. Bull. Seismol. Soc. Am. 1983, 73, 863–877. [Google Scholar]
- Sassa, K.; Fukuoka, H.; Scarascia-Mugnozza, G.; Evans, S. Earthquake-induced-landslides: Distribution, motion and mechanisms. Soils Found. 1996, 36, 53–64. [Google Scholar] [CrossRef]
- Harp, E.L.; Jibson, R.W. Inventory of Landslides Triggered by the 1994 Northridge, California Earthquake. 1995; U.S. Geological Survey Open-File Report 95-213. Available online: http://pubs.usgs.gov/of/1995/ofr-95-0213/ (accessed on 5 Jan 2017).
- Esposito, E.; Porfido, S.; Simonelli, A.L.; Mastrolorenzo, G.; Iaccarino, G. Landslides and other surface effects induced by the 1997 Umbria–Marche seismic sequence. Eng. Geol. 2000, 58, 353–376. [Google Scholar] [CrossRef]
- Carro, M.; De Amicis, M.; Luzi, L.; Marzorati, S. The application of predictive modeling techniques to landslides induced by earthquakes: The case study of the 26 September 1997 Umbria–Marche earthquake (Italy). Eng. Geol. 2003, 69, 139–159. [Google Scholar] [CrossRef]
- Khazai, B.; Sitar, N. Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events. Eng. Geol. 2004, 71, 79–95. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Yao, X.; Dai, F. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 2014, 11, 441–461. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Shyu, J.B.H. Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013. Geomorphology 2015, 248, 77–92. [Google Scholar] [CrossRef]
- Xu, C. Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies: Principles and case studies. Geosci. Front. 2015, 6, 825–836. [Google Scholar] [CrossRef]
- Hung, J.-J. Chi-Chi earthquake induced landslides in Taiwan. Earthq. Eng. Eng. Seismol. 2000, 2, 25–33. [Google Scholar]
- Wen-Neng, W.; Nakamura, H.; Tsuchiya, S.; Chih-Ching, C. Distributions of landslides triggered by the Chi-chi Earthquake in Central Taiwan on September 21, 1999. Landslides 2002, 38, 318–326. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Yang, M.-D.; Lin, B.-R.; Lin, P.-S. Risk assessment of debris flows in Songhe Stream, Taiwan. Eng. Geol. 2011, 123, 100–112. [Google Scholar] [CrossRef]
- Yang, M.-D.; Lin, J.-Y.; Yao, C.-Y.; Chen, J.-Y.; Su, T.-C.; Jan, C.-D. Landslide-induced levee failure by high concentrated sediment flow—A case of Shan-An levee at Chenyulan River, Taiwan. Eng. Geol. 2011, 123, 91–99. [Google Scholar] [CrossRef]
- Chen, S.-C.; Wu, C.-H. Slope stabilization and landslide size on Mt. 99 Peaks after Chichi Earthquake in Taiwan. Environ. Geol. 2006, 50, 623–636. [Google Scholar] [CrossRef]
- Yang, M.-D.; Sykes, R.M.; Merry, C.J. Estimation of algal biological parameters using water quality modeling and SPOT satellite data. Ecol. Model. 2000, 125, 1–13. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lo, H.-M.; Chou, W.-C.; Lin, W.-T. Vegetation recovery assessment at the Jou-Jou Mountain landslide area caused by the 921 Earthquake in Central Taiwan. Ecol. Model. 2004, 176, 75–81. [Google Scholar] [CrossRef]
- Lin, W.-T.; Chou, W.-C.; Lin, C.-Y.; Huang, P.-H.; Tsai, J.-S. Vegetation recovery monitoring and assessment at landslides caused by earthquake in Central Taiwan. For. Ecol. Manag. 2005, 210, 55–66. [Google Scholar] [CrossRef]
- Lin, C.-W.; Liu, S.-H.; Lee, S.-Y.; Liu, C.-C. Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan. Eng. Geol. 2006, 86, 87–101. [Google Scholar] [CrossRef]
- Lin, W.-T.; Lin, C.-Y.; Chou, W.-C. Assessment of vegetation recovery and soil erosion at landslides caused by a catastrophic earthquake: A case study in Central Taiwan. Ecol. Eng. 2006, 28, 79–89. [Google Scholar] [CrossRef]
- Yang, M.-D.; Sykes, R.M. Trophic-dynamic modeling in a shallow eutrophic river ecosystem. Ecol. Model. 1998, 105, 129–139. [Google Scholar] [CrossRef]
- Yang, X.; Lo, C.P. Relative radiometric normalization performance for change detection from multi-date satellite images. Photogramm. Eng. Remote Sens. 2000, 66, 967–980. [Google Scholar]
- Yang, M.-D.; Yang, Y.F.; Hsu, S.C. Application of remotely sensed data to the assessment of terrain factors affecting the Tsao-Ling landslide. Can. J. Remote Sens. 2004, 30, 593–603. [Google Scholar] [CrossRef]
- Tucker, C.J.; Goff, T.; Townshend, J. African land-cover classification using satellite data. Science 1985, 227, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.; Carr, A.S.; Dash, J. Remote sensing of vegetation cover dynamics and resilience across southern Africa. ITC J. 2014, 28, 131–139. [Google Scholar] [CrossRef]
- Yang, M.-D.; Merry, C.J.; Sykes, R.M. Integration of water quality modeling, remote sensing, and GIS. J. Am. Water Resour. Assoc. 1999, 35, 253–263. [Google Scholar] [CrossRef]
- Yang, M.-D.; Su, T.C.; Hsu, C.H.; Chang, K.C.; Wu, A.M. Mapping of the 26 December 2004 tsunami disaster by using FORMOSAT-2 images. Int. J. Remote Sens. 2007, 28, 3071–3091. [Google Scholar] [CrossRef]
- Yang, M.-D. A genetic algorithm (GA) based automated classifier for remote sensing imagery. Can. J. Remote Sens. 2007, 33, 203–213. [Google Scholar] [CrossRef]
- Sun, W.; Tian, Y.; Mu, X.; Zhai, J.; Gao, P.; Zhao, G. Loess Landslide Inventory Map Based on GF-1 Satellite Imagery. Remote Sens. 2017, 9, 314. [Google Scholar] [CrossRef]
- Chen, T.; Trinder, J.C.; Niu, R. Object-Oriented Landslide Mapping Using ZY-3 Satellite Imagery, Random Forest and Mathematical Morphology, for the Three-Gorges Reservoir, China. Remote Sens. 2017, 9, 333. [Google Scholar] [CrossRef]
- Magnusson, M.; Fransson, J.E. Combining airborne CARABAS-II VHF SAR data and optical SPOT-4 satellite data for estimation of forest stem volume. Can. J. Remote Sens. 2004, 30, 661–670. [Google Scholar] [CrossRef]
- Lin, P.-S.; Lin, J.-Y.; Hung, J.-C.; Yang, M.-D. Assessing debris-flow hazard in a watershed in Taiwan. Eng. Geol. 2002, 66, 295–313. [Google Scholar] [CrossRef]
- Bonì, R.; Bordoni, M.; Meisina, C.; Colombo, A.; Lanteri, L. Integration of Multi-Sensor A-DInSAR Data for Landslide Inventory Update; Springer: Cham, Germany, 2017; pp. 133–142. [Google Scholar]
- Calò, F.; Ardizzone, F.; Castaldo, R.; Lollino, P.; Tizzani, P.; Guzzetti, F.; Lanari, R.; Angeli, M.-G.; Pontoni, F.; Manunta, M. Enhanced landslide investigations through advanced DInSAR techniques: The Ivancich case study, Assisi, Italy. Remote Sens. Environ. 2014, 142, 69–82. [Google Scholar] [CrossRef]
- Herrera, G.; Gutiérrez, F.; García-Davalillo, J.; Guerrero, J.; Notti, D.; Galve, J.; Fernández-Merodo, J.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Ding, C.; Feng, G.; Li, Z.; Shan, X.; Du, Y.; Wang, H. Spatio-temporal error sources analysis and accuracy improvement in landsat 8 image ground displacement measurements. Remote Sens. 2016, 8, 937. [Google Scholar] [CrossRef]
- Sever, L.; Leach, J.; Bren, L. Remote sensing of post-fire vegetation recovery; a study using Landsat 5 TM imagery and NDVI in North-East Victoria. J. Spat. Sci. 2012, 57, 175–191. [Google Scholar] [CrossRef]
- Maynard, C.L.; Lawrence, R.L.; Nielsen, G.A.; Decker, G. Ecological site descriptions and remotely sensed imagery as a tool for rangeland evaluation. Can. J. Remote Sens. 2007, 33, 109–115. [Google Scholar] [CrossRef]
- Plank, S.; Twele, A.; Martinis, S. Landslide mapping in vegetated areas using change detection based on optical and polarimetric sar data. Remote Sens. 2016, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.-T.; Chou, W.-C.; Lin, C.-Y. Earthquake-induced landslide hazard and vegetation recovery assessment using remotely sensed data and a neural network-based classifier: A case study in central Taiwan. Nat. Hazards 2008, 47, 331–347. [Google Scholar] [CrossRef]
- Lin, C.-W.; Shieh, C.-L.; Yuan, B.-D.; Shieh, Y.-C.; Liu, S.-H.; Lee, S.-Y. Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: Example from the Chenyulan River watershed, Nantou, Taiwan. Eng. Geol. 2004, 71, 49–61. [Google Scholar] [CrossRef]
- Lin, W.-T.; Chou, W.-C.; Lin, C.-Y.; Huang, P.-H.; Tsai, J.-S. Study of landslides caused by the 1999 Chi-Chi earthquake, Taiwan, with multitemporal SPOT images. Can. J. Remote Sens. 2007, 33, 289–302. [Google Scholar] [CrossRef]
- Chou, W.-C.; Lin, W.-T.; Lin, C.-Y. Vegetation recovery patterns assessment at landslides caused by catastrophic earthquake: A case study in central Taiwan. Environ. Monit. Assess. 2009, 152, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.; Lee, C. Frequency-volume relation and prediction of rainfall-induced landslides. Eng. Geol. 2001, 59, 253–266. [Google Scholar] [CrossRef]
- Li, C.; Ma, T.; Zhu, X.; Li, W. The power–law relationship between landslide occurrence and rainfall level. Geomorphology 2011, 130, 221–229. [Google Scholar] [CrossRef]
- Chen, T.-S. Geographic information system analyses for landslide from the 921 earthquake at Mt-Jiujiufong. Endem. Species Res. 2005, 7, 69–87. [Google Scholar]
- Schott, J.R.; Salvaggio, C.; Volchok, W.J. Radiometric scene normalization using pseudoinvariant features. Remote Sens. Environ. 1988, 26. [Google Scholar] [CrossRef]
- Du, Y.; Teillet, P.M.; Cihlar, J. Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sens. Environ. 2002, 82, 123–134. [Google Scholar] [CrossRef]
- Ya’allah, S.M.; Saradjian, M.R. Automatic normalization of satellite images using unchanged pixels within urban areas. Inf. Fusion 2005, 6, 235–241. [Google Scholar] [CrossRef]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing; The Guilford Press: New York, NY, USA, 2011; pp. 483–484. [Google Scholar]
- Skianis, G.; Nikolakopoulos, K. Probability and performance of vegetation indices. Newsroom SPIE 2007. [Google Scholar] [CrossRef]
- Avery, T.E.; Berlin, G.L. Fundamentals of Remote Sensing and Airphoto Interpretation; Macmillan: New York, NY, USA, 2003. [Google Scholar]
- Chen, C.-W.; Oguchi, T.; Hayakawa, Y.S.; Saito, H.; Chen, H. Relationship between landslide size and rainfall conditions in Taiwan. Landslides 2017, 14, 1–6. [Google Scholar] [CrossRef]
- Hsu, H.-H.; Chou, C.; Wu, Y.-C.; Lu, M.-M.; Chen, C.-T.; Chen, Y.-M. Climate Change in Taiwan: Scientific Report 2011 (Summary); National Science Council: Taipei, Taiwan, 2011; p. 67. [Google Scholar]
- Tsai, H.P.; Yang, M. Relating Vegetation Dynamics to Climate Variables in Taiwan using 1982–2012 NDVI3g Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1624–1639. [Google Scholar] [CrossRef]
# | Image Date | SPOT Satellite | Time after Chi-Chi Earthquake | NDVI | ||
---|---|---|---|---|---|---|
Total Area | Non-Landslide Area | Landslide Area | ||||
1 | 1999/04/01 | 2 | −0.47 | 0.523 | 0.524 | 0.518 |
2 | 1999/09/27 | 1 | 0.02 | 0.278 | 0.367 | −0.044 |
3 | 2000/04/18 | 4 | 0.58 | 0.331 | 0.390 | 0.119 |
4 | 2001/01/02 | 1 | 1.28 | 0.286 | 0.340 | 0.090 |
5 | 2001/11/10 | 1 | 2.14 | 0.352 | 0.393 | 0.201 |
6 | 2002/10/17 | 2 | 3.07 | 0.387 | 0.419 | 0.272 |
7 | 2003/02/27 | 4 | 3.44 | 0.453 | 0.490 | 0.321 |
8 | 2003/07/10 | 2 | 3.80 | 0.467 | 0.511 | 0.309 |
9 | 2004/07/12 | 2 | 4.81 | 0.384 | 0.408 | 0.297 |
10 | 2005/11/24 | 2 | 6.18 | 0.411 | 0.439 | 0.312 |
11 | 2006/01/09 | 2 | 6.31 | 0.443 | 0.476 | 0.324 |
12 | 2008/03/09 | 2 | 8.47 | 0.424 | 0.448 | 0.337 |
13 | 2010/11/03 | 4 | 11.13 | 0.411 | 0.423 | 0.367 |
14 | 2011/03/13 | 4 | 11.48 | 0.431 | 0.448 | 0.367 |
# | Image Date | NDVI | VRR | NDVI Offset Value | Adjusted NDVI | Modified VRR | ||||
---|---|---|---|---|---|---|---|---|---|---|
Landslide Area | Total Area | Landslide Area | Total Area | Landslide Area | Total Area | Landslide Area | Total Area | |||
1 | 1999/04/01 | 0.518 | 0.523 | |||||||
2 | 1999/09/27 | −0.044 | 0.278 | 0 | 0 | 0.060 | 0.016 | 0.338 | 0 | 0 |
3 | 2000/04/18 | 0.119 | 0.331 | 0.290 | 0.215 | 0.037 | 0.156 | 0.368 | 0.346 | 0.340 |
4 | 2001/01/02 | 0.090 | 0.286 | 0.238 | 0.031 | 0.087 | 0.176 | 0.372 | 0.397 | 0.393 |
5 | 2001/11/10 | 0.201 | 0.352 | 0.436 | 0.300 | 0.034 | 0.235 | 0.385 | 0.540 | 0.538 |
6 | 2002/10/17 | 0.272 | 0.387 | 0.562 | 0.446 | 0.008 | 0.280 | 0.395 | 0.651 | 0.651 |
7 | 2003/02/27 | 0.321 | 0.453 | 0.649 | 0.715 | −0.063 | 0.258 | 0.390 | 0.598 | 0.598 |
8 | 2003/07/10 | 0.309 | 0.467 | 0.627 | 0.772 | −0.084 | 0.225 | 0.383 | 0.516 | 0.516 |
9 | 2004/07/12 | 0.297 | 0.384 | 0.606 | 0.432 | 0.019 | 0.315 | 0.403 | 0.740 | 0.740 |
10 | 2005/11/24 | 0.312 | 0.411 | 0.634 | 0.544 | −0.012 | 0.301 | 0.400 | 0.703 | 0.703 |
11 | 2006/01/09 | 0.324 | 0.443 | 0.654 | 0.673 | −0.049 | 0.275 | 0.394 | 0.640 | 0.640 |
12 | 2008/03/09 | 0.337 | 0.424 | 0.678 | 0.595 | −0.021 | 0.317 | 0.403 | 0.742 | 0.742 |
13 | 2010/11/03 | 0.367 | 0.411 | 0.731 | 0.541 | 0.004 | 0.371 | 0.415 | 0.877 | 0.877 |
14 | 2011/03/13 | 0.367 | 0.431 | 0.730 | 0.625 | −0.021 | 0.345 | 0.410 | 0.813 | 0.815 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.-D.; Chen, S.-C.; Tsai, H.P. A Long-Term Vegetation Recovery Estimation for Mt. Jou-Jou Using Multi-Date SPOT 1, 2, and 4 Images. Remote Sens. 2017, 9, 893. https://doi.org/10.3390/rs9090893
Yang M-D, Chen S-C, Tsai HP. A Long-Term Vegetation Recovery Estimation for Mt. Jou-Jou Using Multi-Date SPOT 1, 2, and 4 Images. Remote Sensing. 2017; 9(9):893. https://doi.org/10.3390/rs9090893
Chicago/Turabian StyleYang, Ming-Der, Su-Chin Chen, and Hui Ping Tsai. 2017. "A Long-Term Vegetation Recovery Estimation for Mt. Jou-Jou Using Multi-Date SPOT 1, 2, and 4 Images" Remote Sensing 9, no. 9: 893. https://doi.org/10.3390/rs9090893
APA StyleYang, M. -D., Chen, S. -C., & Tsai, H. P. (2017). A Long-Term Vegetation Recovery Estimation for Mt. Jou-Jou Using Multi-Date SPOT 1, 2, and 4 Images. Remote Sensing, 9(9), 893. https://doi.org/10.3390/rs9090893