Is Skin Coloration Measured by Reflectance Spectroscopy Related to Intake of Nutrient-Dense Foods? A Cross-Sectional Evaluation in Australian Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Skin Coloration Measurement Using Reflectance Spectroscopy
2.4. Dietary Indices
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Association between Skin Coloration Overall b* (Skin Yellowness) and Diet Indices
4. Discussion
4.1. Implications for Research
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Arscott, S. Food sources of carotenoids. In Carotenoids and Human Health; Tanumihardjo, S., Ed.; Humana Press: Totowa, NJ, USA, 2013. [Google Scholar]
- Darvin, M.E.; Sterry, W.; Lademann, J.; Vergou, T. The role of carotenoids in human skin. Molecules 2011, 16, 10491–10506. [Google Scholar] [CrossRef]
- Alaluf, S.; Heinrich, U.; Stahl, W.; Tronnier, H.; Wiseman, S. Dietary carotenoids contribute to normal human skin color and UV photosensitivity. J. Nutr. 2002, 132, 399–403. [Google Scholar] [PubMed]
- Mayne, S.T.; Cartmel, B.; Scarmo, S.; Lin, H.Q.; Leffell, D.J.; Welch, E.; Ermakov, I.; Bhosale, P.; Bernstein, P.S.; Gellermann, W. Noninvasive assessment of dermal carotenoids as a biomarker of fruit and vegetable intake. Am. J. Clin. Nutr. 2010, 92, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Ermakov, I.; Gellermann, W. Optical detection methods for carotenoids in human skin. Arch. Biochem. Biophys. 2015, 572, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Jahns, L.; Johnson, L.K.; Mayne, S.T.; Cartmel, B.; Picklo, M.J.; Ermakov, I.; Gellermann, W.; Whigham, L.D. Skin and plasma carotenoid response to a provdied intervention diet high in vegetables and fruit: Uptake and depletion kinettics. Am. J. Clin. Nutr. 2014, 100, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Scarmo, S.; Cartmel, B.; Lin, H.; Leffell, D.J.; Welch, E.; Bhosale, P.; Bernstein, P.S.; Mayne, S.T. Significant correlations of dermal total carotenoids and lycopene with their respective plasma levels in healthy adults. Arch. Biochem. Biophys. 2010, 504, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, S.S.; Wengreen, H.J.; Lefevre, M.; Madden, G.J.; Gast, J. Skin carotenoids: A biomarker of fruit and vegetable intake in children. J. Acad. Nutr. Diet. 2014, 114, 1174–1180. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, S.S.; Wengreen, H.J.; Dew, J. Skin carotenoid response to a high-carotenoid juice in children: A randomized clinical trial. J. Acad. Nutr. Diet. 2015, 115, 1771–1778. [Google Scholar] [CrossRef] [PubMed]
- Pezdirc, K.; Hutchesson, M.J.; Whitehead, R.; Ozakinci, G.; Perrett, D.; Collins, C.E. Fruit, vegetable and dietary carotenoid intakes explain variation in skin-color in young caucasian women: A cross-sectional study. Nutrients 2015, 7, 5800–5815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephen, I.D.; Coetzee, V.; Perrett, D.I. Carotenoid and melanin pigment coloration affect perceived human health. Evol. Hum. Behav. 2011, 32, 216–227. [Google Scholar] [CrossRef]
- Whitehead, R.D.; Re, D.; Xiao, D.; Ozakinci, G.; Perrett, D.I. You are what you eat: Within-subject increases in fruit and vegetable consumption confer beneficial skin-color changes. PLoS ONE 2012, 7, e32988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezdirc, K.; Hutchesson, M.J.; Williams, R.L.; Rollo, M.E.; Burrows, T.L.; Wood, L.G.; Oldmeadow, C.; Collins, C.E. Consuming high-carotenoid fruit and vegetables influences skin yellowness and plasma carotenoids in young women: A single-blind randomized crossover trial. J. Acad. Nutr. Diet. 2016, 116, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Wirt, A.; Collins, C.E. Diet quality—What is it and does it matter? Public Health Nutr. 2009, 12, 2473–2492. [Google Scholar] [CrossRef] [PubMed]
- Ashton, L.M.; Williams, R.L.; Wood, L.; Schumacher, T.; Burrows, T.; Rollo, M.; Pezdirc, K.; Collins, C. Comparison of australian recommended food score (ARFS) and plasma carotenoid concentrations: A validation study in adults. Nutrients 2017, 9, 888. [Google Scholar] [CrossRef] [PubMed]
- Burrows, T.; Williams, R.; Rollo, M.; Wood, L.G.; Garg, M.; Jensen, M.; Collins, C. Plasma carotenoid levels as biomarkers of dietary carotenoid consumption: A systematic review of the validation studies. J. Nutr. Intermed. Metab. 2015, 2, 15–64. [Google Scholar] [CrossRef]
- Ashton, L.M.; Morgan, P.J.; Hutchesson, M.J.; Rollo, M.E.; Collins, C.E. Feasibility and preliminary efficacy of the ‘heyman’ healthy lifestyle program for young men: A pilot randomised controlled trial. Nutr. J. 2017, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. Australian Bureau of Statistics. Australian Health Survey: First Results 2014–2015. Available online: http://www.abs.gov.au/AUSSTATS/[email protected]/DetailsPage/4364.0.55.0012014-15?OpenDocument (accessed on 4 January 2017).
- Marfell-Jones, M.J.; Stewart, A.; De Ridder, J. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Wellington, New Zealand, 2012.
- Stephen, I.D.; Coetzee, V.; Smith, M.L.; Perrett, D.I. Skin blood perfusion and oxygenation colour affect perceived human health. PLoS ONE 2009, 4, e5083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatas, G.N.; Zmudzka, B.Z.; Kollias, N.; Beer, J.Z. Non-invasive measurements of skin pigmentation in situ. Pigment Cell Melanoma Res. 2004, 17, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.E.; Boggess, M.M.; Watson, J.F.; Guest, M.; Duncanson, K.; Pezdirc, K.; Rollo, M.; Hutchesson, M.J.; Burrows, T.L. Reproducibility and comparative validity of a food frequency questionnaire for australian adults. Clin. Nutr. 2014, 33, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.E.; Burrows, T.L.; Rollo, M.E.; Boggess, M.M.; Watson, J.F.; Guest, M.; Duncanson, K.; Pezdirc, K.; Hutchesson, M.J. The comparative validity and reproducibility of a diet quality index for adults: The australian recommended food score. Nutrients 2015, 7, 785–798. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council (NHMRC). Eat for Health: Australian Dietary Guidelines; Department of Health and Ageing, Research Council Canberra: Canberra, Australia, 2013.
- Collins, C.E.; Young, A.F.; Hodge, A. Diet quality is associated with higher nutrient intake and self-rated health in mid-aged women. J. Am. Coll. Nutr. 2008, 27, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Aljadani, H.M.; Patterson, A.; Sibbritt, D.; Hutchesson, M.J.; Jensen, M.E.; Collins, C.E. Diet quality, measured by fruit and vegetable intake, predicts weight change in young women. J. Obes. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, S.; Hughes, M.; Marks, G. Validation of a FFQ to estimate the intake of PUFA using plasma phospholipid fatty acids and weighed foods records. Br. J. Nutr. 2007, 97, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, T.; Burrows, T.; Rollo, M.; Wood, L.; Callister, R.; Collins, C. Comparison of fatty acid intakes assessed by a cardiovascular-specific food frequency questionnaire with red blood cell membrane fatty acids in hyperlipidaemic australian adults: A validation study. Eur. J. Clin. Nutr. 2016, 70, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- Van het Hof, K.H.; West, C.E.; Weststrate, J.A.; Hautvast, J.G. Dietary factors that affect the bioavailability of carotenoids. J. Nutr. 2000, 130, 503–506. [Google Scholar] [PubMed]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Chapman & Hall/CRC: New York, NY, USA, 1994. [Google Scholar]
- Poi, B. From the help desk; some bootstrapping techniques. Stata J. 2004, 4, 312–328. [Google Scholar]
- EL-Qudah, J.M. Estimation of carotenoid contents of selected mediterranean legumes by HPLC. World J. Med. Sci. 2014, 10, 89–93. [Google Scholar]
- FSANZ. Nuttab 2006—Australian Food Composition Tables. Available online: http://www.foodstandards.gov.au/science/monitoringnutrients/nutrientables/nuttab/pages/default.aspx (accessed on 14 October 2017).
- Ashman, A.M.; Collins, C.E.; Brown, L.J.; Rae, K.M.; Rollo, M.E. A brief tool to assess image-based dietary records and guide nutrition counselling among pregnant women: An evaluation. JMIR mHealth uHealth 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Gunter, M.J.; Romaguera, D.; Peelen, L.M.; Van der Schouw, Y.T.; Beulens, J.W.; Freisling, H.; Muller, D.C.; Ferrari, P.; Huybrechts, I. Diet quality scores and prediction of all-cause, cardiovascular and cancer mortality in a pan-european cohort study. PLoS ONE 2016, 11, e0159025. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, L.; Mirmiran, P.; Azizi, F. Dietary diversity score is favorably associated with the metabolic syndrome in tehranian adults. Int. J. Obes. 2005, 29, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Azadbakht, L.; Mirmiran, P.; Esmaillzadeh, A.; Azizi, F. Dietary diversity score and cardiovascular risk factors in tehranian adults. Public Health Nutr. 2006, 9, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Calvert, C.; Cade, J.; Barrett, J.; Woodhouse, A.; Group, U.S. Using cross-check questions to address the problem of mis-reporting of specific food groups on food frequency questionnaires. Eur. J. Clin. Nutr. 1997, 51, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Graf, B.; Mitra, S.; Stephen, I. Daily consumption of a fruit and vegetable smoothie alters facial skin color. PLoS ONE 2015, 10, e0133445. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Mean ± SD or n (%) |
---|---|
Age (years) | 21.7 ± 2.2 |
Female | 82 (55.4%) |
Weight (kg) | 70.9 ± 15.8 |
Height (cm) | 171.7 ± 9.6 |
BMI (kg/m2) | 23.9 ± 4.1 |
Energy intake (kJ/day) | 9238.0 ± 3004.9 |
Fat intake (g/day) | 78.4 ± 28.6 |
Fruit serves/day | 1.8 ± 1.5 |
Vegetable serves/day | 4.4 ± 2.4 |
ARFS (total possible score) | |
Total Score (73) | 32.5 ± 9.8 |
Vegetables (21) | 11.7 ± 5.0 |
Fruit (12) | 5.1 ± 3.2 |
Protein–Meat (7) | 2.3 ± 1.4 |
Protein–Vegetarian sources (6) | 2.0 ± 1.4 |
Breads/cereals–Grains (13) | 5.5 ± 2.2 |
Dairy (11) | 4.2 ± 1.8 |
Spreads/Sauces (2) | 1.0 ± 0.8 |
FAVVA (total possible score) | |
Total Score (190) | 85.1 ± 25.4 |
Vegetables (122) | 56.3 ± 17.2 |
Fruit (68) | 28.8 ± 11.6 |
Skin coloration reflectance spectroscopy | |
Overall L* | 64.3 ± 3.6 |
Overall a* | 8.6 ± 1.5 |
Overall b* | 16.7 ± 2.4 |
Spearman’s ρ | Unadjusted Regression | Adjusted Regression | |||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | R2 | SE | β | 95% CI | R2 | SE | ||
ARFS | |||||||||
Total ARFS | 0.30 *** | 0.07 *** | 0.03, 0.10 | 0.08 | 0.02 | 0.04 * | 0.00, 0.07 | 0.34 | 0.02 |
ARFS–Vegetables | 0.19 * | 0.08 * | 0.01, 0.15 | 0.03 | 0.04 | 0.05 | −0.01, 0.11 | 0.33 | 0.03 |
ARFS–Fruit | 0.30 *** | 0.20 ** | 0.08, 0.32 | 0.07 | 0.06 | 0.09 | −0.02, 0.20 | 0.33 | 0.06 |
ARFS Meat | 0.14 | 0.28 | −0.03, 0.59 | 0.03 | 0.16 | 0.20 | −0.09, 0.50 | 0.33 | 0.15 |
ARFS Vegetarian alternatives | 0.35 *** | 0.60 *** | 0.34, 0.85 | 0.13 | 0.13 | 0.38 ** | 0.11, 0.64 | 0.37 | 0.13 |
ARFS Grains | 0.11 | 0.09 | −0.06, 0.25 | 0.01 | 0.08 | 0.06 | −0.08, 0.20 | 0.32 | 0.07 |
ARFS Dairy | 0.08 | 0.10 | −0.09, 0.28 | 0.01 | 0.10 | −0.02 | −0.19, 0.14 | 0.32 | 0.08 |
ARFS Spreads/sauces | −0.12 | −0.44 | −0.94, 0.07 | 0.02 | 0.26 | −0.50 * | −0.92, −0.09 | 0.34 | 0.21 |
FAVVA | |||||||||
Total FAVVA | 0.39 *** | 0.03 *** | 0.02 0.05 | 0.14 | 0.01 | 0.02 *** | 0.01, 0.04 | 0.38 | 0.01 |
FAVVA fruit | 0.37 *** | 0.08 *** | 0.05, 0.10 | 0.14 | 0.01 | 0.05 *** | 0.02 0.08 | 0.37 | 0.01 |
FAVVA veg | 0.30 *** | 0.04 *** | 0.02, 0.06 | 0.09 | 0.01 | 0.03 ** | 0.01, 0.04 | 0.35 | 0.01 |
Variable | n = 148 (100%) | Kappa (Kw) | p-Value | ||
---|---|---|---|---|---|
Same Tertile | Adjacent Tertile | Misclassified a | |||
ARFS | |||||
Total ARFS | 65 (44%) | 62 (42%) | 21 (14%) | 0.21 | <0.001 |
ARFS−Vegetables | 59 (40%) | 63 (43%) | 26 (18%) | 0.14 | <0.05 |
ARFS−Fruit | 63 (43%) | 66 (45%) | 19 (13%) | 0.20 | <0.001 |
ARFS Meat | 52 (35%) | 69 (47%) | 27 (18%) | 0.08 | 0.09 |
ARFS Vegetarian alternatives | 68 (46%) | 63 (43%) | 17 (11%) | 0.23 | <0.001 |
ARFS Grains | 63 (43%) | 64 (43%) | 21 (14%) | 0.16 | <0.01 |
ARFS Dairy | 56 (38%) | 57 (39%) | 35 (24%) | 0.09 | 0.08 |
ARFS Spreads/sauces | 45 (30%) | 49 (33%) | 54 (36%) | -0.06 | 0.86 |
FAVVA | |||||
Total FAVVA | 60 (41%) | 73 (49%) | 15 (10%) | 0.22 | <0.001 |
FAVVA fruit | 65 (44%) | 66 (45%) | 17 (11%) | 0.24 | <0.001 |
FAVVA veg | 65 (44%) | 60 (44%) | 23 (16%) | 0.19 | <0.01 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashton, L.M.; Pezdirc, K.B.; Hutchesson, M.J.; Rollo, M.E.; Collins, C.E. Is Skin Coloration Measured by Reflectance Spectroscopy Related to Intake of Nutrient-Dense Foods? A Cross-Sectional Evaluation in Australian Young Adults. Nutrients 2018, 10, 11. https://doi.org/10.3390/nu10010011
Ashton LM, Pezdirc KB, Hutchesson MJ, Rollo ME, Collins CE. Is Skin Coloration Measured by Reflectance Spectroscopy Related to Intake of Nutrient-Dense Foods? A Cross-Sectional Evaluation in Australian Young Adults. Nutrients. 2018; 10(1):11. https://doi.org/10.3390/nu10010011
Chicago/Turabian StyleAshton, Lee M., Kristine B. Pezdirc, Melinda J. Hutchesson, Megan E. Rollo, and Clare E. Collins. 2018. "Is Skin Coloration Measured by Reflectance Spectroscopy Related to Intake of Nutrient-Dense Foods? A Cross-Sectional Evaluation in Australian Young Adults" Nutrients 10, no. 1: 11. https://doi.org/10.3390/nu10010011