Association between Vitamin D Genetic Risk Score and Cancer Risk in a Large Cohort of U.S. Women
Abstract
:1. Introduction
2. Methods
2.1. Women’s Genome Health Study
2.2. Cancer Endpoint Ascertainment
2.3. Genotyping in the WGHS
2.4. Dietary and Lifestyle Factors
2.5. Laboratory Assessment of 25OHD
3. Statistical Analysis
Genetic Variant Selection
4. Role of the Funding Sources
5. Results
5.1. Candidate SNP Analyses
5.2. Mendelian Instrumental Variable Estimates
6. Discussion
6.1. Strengths
6.2. Limitations
7. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Afzal, S.; Brondum-Jacobsen, P.; Bojesen, S.E.; Nordestgaard, B.G. Genetically low vitamin D concentrations and increased mortality: Mendelian randomisation analysis in three large cohorts. BMJ 2014, 18, 349. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Kunutsor, S.; Vitezova, A.; Oliver-Williams, C.; Chowdhury, S.; Kiefte-de-Jong, J.C. Vitamin D and risk of cause specific death: Systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ 2014, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theodoratou, E.; Tzoulaki, I.; Zgaga, L.; Ioannidis, J.P. Vitamin D and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ 2014, 348. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Zhang, F.; Richards, J.B.; Kestenbaum, B.; van Meurs, J.B.; Berry, D.; Kiel, D.P.; Streeten, E.A.; Ohlsson, C.; Koller, D.L.; et al. Common genetic determinants of vitamin D insufficiency: A genome-wide association study. Lancet 2010, 376, 180–188. [Google Scholar] [CrossRef]
- Ahn, J.; Yu, K.; Stolzenberg-Solomon, R.; Simon, K.C.; McCullough, M.L.; Gallicchio, L.; Jacobs, E.J.; Ascherio, A.; Helzlsouer, K.; Jacobs, K.B.; et al. Genome-wide association study of circulating vitamin D levels. Hum. Mol. Genet. 2010, 19, 2739–2745. [Google Scholar] [CrossRef] [PubMed]
- Pibiri, F.; Kittles, R.A.; Sandler, R.S.; Keku, T.O.; Kupfer, S.S.; Xicola, R.M.; Llor, X.; Ellis, N.A. Genetic variation in vitamin D-related genes and risk of colorectal cancer in African Americans. Cancer Causes Control 2014, 25, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, E.T.; Van Pelt, C.; Forster, R.E.; Zaidi, W.; Hibler, E.A.; Galligan, M.A.; Haussler, M.R.; Jurutka, P.W. CYP24A1 and CYP27B1 polymorphisms modulate vitamin D metabolism in colon cancer cells. Cancer Res. 2013, 73, 2563–2573. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.M.; Ulrich, C.M.; Hsu, L.; Duggan, D.J.; Benitez, D.S.; White, E.; Slattery, M.L.; Farin, F.M.; Makar, K.W.; Carlson, C.S.; et al. Vitamin D related genes, CYP24A1 and CYP27B1, and colon cancer risk. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2540–2548. [Google Scholar] [CrossRef] [PubMed]
- Hiraki, L.T.; Major, J.M.; Chen, C.; Cornelis, M.C.; Hunter, D.J.; Rimm, E.B.; Simon, K.C.; Weinstein, S.J.; Purdue, M.P.; Yu, K.; et al. Exploring the genetic architecture of circulating 25-hydroxyvitamin D. Genet. Epidemiol. 2013, 37, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Chasman, D.I.; Zee, R.Y.; Parker, A.; Rose, L.; Cook, N.R.; Buring, J.E.; Women’s Genome Health Study Working Group. Rationale, design, and methodology of the Women’s Genome Health Study: A genome-wide association study of more than 25,000 initially healthy american women. Clin. Chem. 2008, 54, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, K.L.; Steemers, F.J.; Ren, H.; Ng, P.; Zhou, L.; Tsan, C.; Chang, W.; Bullis, D.; Musmacker, J.; King, C.; et al. Whole-genome genotyping. Methods Enzymol. 2006, 410, 359–376. [Google Scholar] [PubMed]
- Willett, W.C.; Reynolds, R.D.; Cottrell-Hoehner, S.; Sampson, L.; Browne, M.L. Validation of a semi-quantitative food frequency questionnaire: Comparison with a 1-year diet record. J. Am. Diet. Assoc. 1987, 87, 43–47. [Google Scholar] [PubMed]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Salvini, S.; Hunter, D.J.; Sampson, L.; Stampfer, M.J.; Colditz, G.A.; Rosner, B.; Willett, W.C. Food-based validation of a dietary questionnaire: The effects of week-to-week variation in food consumption. Int. J. Epidemiol. 1989, 18, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Chandler, P.D.; Buring, J.E.; Manson, J.E.; Giovannucci, E.L.; Moorthy, M.V.; Zhang, S.; Lee, I.M.; Lin, J.H. Circulating Vitamin D Levels and Risk of Colorectal Cancer in Women. Cancer Prev. Res. 2015, 8, 675–682. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, S.L.; Baggerly, C.; French, C.B.; Baggerly, L.L.; Garland, C.F.; Gorham, E.D.; Lappe, J.M.; Heaney, R.P. Serum 25-Hydroxyvitamin D Concentrations ≥40 ng/mL Are Associated with >65% Lower Cancer Risk: Pooled Analysis of Randomized Trial and Prospective Cohort Study. PLoS ONE 2016, 11, e0152441. [Google Scholar] [CrossRef] [PubMed]
- Vaughan-Shaw, P.G.; O’Sullivan, F.; Farrington, S.M.; Theodoratou, E.; Campbell, H.; Dunlop, M.G.; Zgaga, L. The impact of vitamin D pathway genetic variation and circulating 25-hydroxyvitamin D on cancer outcome: Systematic review and meta-analysis. Br. J. Cancer 2017, 116, 1092–1110. [Google Scholar] [CrossRef] [PubMed]
- Skaaby, T.; Husemoen, L.L.; Thuesen, B.H.; Pisinger, C.; Jørgensen, T.; Roswall, N.; Larsen, S.C.; Linneberg, A. Prospective population-based study of the association between serum 25-hydroxyvitamin-D levels and the incidence of specific types of cancer. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- Skaaby, T.; Husemoen, L.L.; Pisinger, C.; Jørgensen, T.; Thuesen, B.H.; Fenger, M.; Linneberg, A. Vitamin D status and cause-specific mortality: A general population study. PLoS ONE 2012, 7, e52423. [Google Scholar] [CrossRef] [PubMed]
- Bassuk, S.S.; Manson, J.E.; Lee, I.M.; Cook, N.R.; Christen, W.G.; Bubes, V.Y.; Gordon, D.S.; Copeland, T.; Friedenberg, G.; D’Agostino, D.M.; et al. Baseline characteristics of participants in the VITamin D and OmegA-3 TriaL (VITAL). Contemp. Clin. Trials 2016, 47, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Hiraki, L.T.; Qu, C.; Hutter, C.M.; Baron, J.A.; Berndt, S.I.; Bézieau, S.; Brenner, H.; Caan, B.J.; Casey, G.; Chang-Claude, J.; et al. Genetic predictors of circulating 25-hydroxyvitamin d and risk of colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 2037–2046. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.M.; Visscher, P.M.; Wray, N.R. Harnessing the information contained within genome-wide association studies to improve individual prediction of complex disease risk. Hum. Mol. Genet. 2009, 18, 3525–3531. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Harbord, R.M.; Sterne, J.A.; Timpson, N.; Davey Smith, G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 2008, 27, 1133–1163. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.; De Lange, M.; Snieder, H.; MacGregor, A.J.; Swaminathan, R.; Thakker, R.V.; Spector, T.D. Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. J. Bone Miner. Res. 2001, 16, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Orton, S.M.; Morris, A.P.; Herrera, B.M.; Ramagopalan, S.V.; Lincoln, M.R.; Chao, M.J.; Vieth, R.; Sadovnick, A.D.; Ebers, G.C. Evidence for genetic regulation of vitamin D status in twins with multiple sclerosis. Am. J. Clin. Nutr. 2008, 88, 441–447. [Google Scholar] [PubMed]
- Shea, M.K.; Benjamin, E.J.; Dupuis, J.; Massaro, J.M.; Jacques, P.F.; D’Agostino, R.B., Sr.; Ordovas, J.M.; O’Donnell, C.J.; Dawson-Hughes, B.; Vasan, R.S.; et al. Genetic and non-genetic correlates of vitamins K and D. Eur. J. Clin. Nutr. 2009, 63, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Wjst, M.; Altmuller, J.; Braig, C.; Bahnweg, M.; Andre, E. A genome-wide linkage scan for 25-OH-D(3) and 1,25-(OH)2-D3 serum levels in asthma families. J. Steroid Biochem. Mol. Biol. 2007, 103, 799–802. [Google Scholar] [CrossRef] [PubMed]
- Maher, B. Personal genomes: The case of the missing heritability. Nature 2008, 456, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, R.T.; Johnson, K.C.; Kooperberg, C.; Pettinger, M.; Wactawski-Wende, J.; Rohan, T.; Rossouw, J.; Lane, D.; O’Sullivan, M.J.; Yasmeen, S.; et al. Calcium plus vitamin D supplementation and the risk of breast cancer. J. Natl. Cancer Inst. 2008, 100, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Speers, C.; Brown, P. Breast cancer prevention using calcium and vitamin D: A bright future? J. Natl. Cancer Inst. 2008, 100, 1562–1564. [Google Scholar] [CrossRef] [PubMed]
- Mondul, A.M.; Shui, I.M.; Yu, K.; Weinstein, S.J.; Tsilidis, K.K.; Joshi, A.D.; Agudo, A.; Berg, C.D.; Black, A.; Buring, J.E.; et al. Vitamin D-associated genetic variation and risk of breast cancer in the breast and prostate cancer cohort consortium (BPC3). Cancer Epidemiol. Biomark. Prev. 2015, 24, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Vélez de-la-Paz, O.I.; Zhai, J.X.; Liu, D.W. Serum 25-hydroxyvitamin D and breast cancer risk: A meta-analysis of prospective studies. Tumour Biol. 2013, 34, 3509–3517. [Google Scholar] [CrossRef] [PubMed]
- Wactawski-Wende, J.; Kotchen, J.M.; Anderson, G.L.; Assaf, A.R.; Brunner, R.L.; O’Sullivan, M.J.; Margolis, K.L.; Ockene, J.K.; Phillips, L.; Pottern, L.; et al. Calcium plus vitamin D supplementation and the risk of colorectal cancer. N. Engl. J. Med. 2006, 354, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, D.P.; Doll, R.; Khaw, K.T. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: Randomised double blind controlled trial. BMJ 2003, 326, 469. [Google Scholar] [CrossRef] [PubMed]
- Ekmekcioglu, C.; Haluza, D.; Kundi, M. 25-Hydroxyvitamin D Status and Risk for Colorectal Cancer and Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Epidemiological Studies. Int. J. Environ. Res. Public Health 2017, 14, 127. [Google Scholar] [CrossRef] [PubMed]
Age (Years) | 54.7 (7.1) |
---|---|
Randomized aspirin, % | 50 |
Randomized vitamin E, % | 50 |
Season of blood draw, % | |
Winter | 32.1 |
Spring or fall | 17.2 |
Summer | 50.7 |
HRT 1 use, never, % | 48.3 |
No oral contraceptive use, % | 30.1 |
Postmenopausal, % | 54.5 |
Body mass index (kg/m2) | 25.9 (5.0) |
Exercise (METS-h/week) 2 | 14.2 (18.3) |
Alcohol (g/day) | 4.3 (8.4) |
Total vitamin D intake (IU/day) | 354.7 (242.8) |
Vitamin D without supplement (IU/day) | 236.1 (111.2) |
Smoking, % | |
Current | 11.6 |
Past | 37.5 |
Never | 50.9 |
Family history of colorectal cancer 3, % | 10.6 |
Family history of breast cancer, % | 6.3 |
Mammogram screening, % | 62.7 |
Colonoscopy or sigmoidoscopy screening 4, % | 8.0 |
Diabetes, % | 2.5 |
Cases/Sample Size | Rate/1000 pyrs 1 | HR (95% CI) | |
---|---|---|---|
Breast | |||
Continuous | 1560/23,294 | 1.02 (0.99–1.05) | |
Reference | 417/6477 | 3.56 | 1.00 |
GRS 6–7 | 626/9619 | 3.60 | 1.02 (0.90–1.15) |
GRS 8–10 | 517/7196 | 4.00 | 1.13 (0.99–1.28) |
Colorectal | |||
Continuous | 329/23,294 | 1.06 (1.00–1.13) | |
Reference | 83/6477 | 0.69 | 1.00 |
GRS 6–7 | 136/9621 | 0.76 | 1.12 (0.85–1.47) |
GRS 8–10 | 110/7195 | 0.82 | 1.21 (0.91–1.61) |
Lung | |||
Continuous | 330/23,294 | 1.00 (0.94–1.06) | |
Reference | 99/6477 | 0.82 | 1.00 |
GRS 6–7 | 129/9621 | 0.72 | 0.89 (0.68–1.15) |
GRS 8–10 | 102/7196 | 0.76 | 0.94 (0.71–1.23) |
Total | |||
Continuous | 3985/23,294 | 1.01 (1.00–1.03) | |
Reference | 1091/6468 | 9.71 | 1.00 |
GRS 6–7 | 1626/9610 | 9.76 | 1.01 (0.93–1.09) |
GRS 8–10 | 1268/7183 | 10.23 | 1.06 (0.98–1.15) |
Total Mortality | |||
Continuous | 2973/23,294 | 1.00 (0.98–1.02) | |
Reference | 850/6477 | 6.87 | 1.00 |
GRS 6–7 | 1193/9621 | 6.49 | 0.96 (0.88–1.05) |
GRS 8–10 | 930/7196 | 6.77 | 1.00 (0.91–1.09) |
Cancer mortality | |||
Continuous | 770/23,294 | 1.00 (0.96–1.04) | |
Reference | 217/6468 | 1.93 | 1.00 |
GRS 6–7 | 305/9610 | 1.83 | 0.95 (0.80–1.13) |
GRS 8–10 | 248/7183 | 2.00 | 1.05 (0.87–1.26) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandler, P.D.; Tobias, D.K.; Wang, L.; Smith-Warner, S.A.; Chasman, D.I.; Rose, L.; Giovannucci, E.L.; Buring, J.E.; Ridker, P.M.; Cook, N.R.; et al. Association between Vitamin D Genetic Risk Score and Cancer Risk in a Large Cohort of U.S. Women. Nutrients 2018, 10, 55. https://doi.org/10.3390/nu10010055
Chandler PD, Tobias DK, Wang L, Smith-Warner SA, Chasman DI, Rose L, Giovannucci EL, Buring JE, Ridker PM, Cook NR, et al. Association between Vitamin D Genetic Risk Score and Cancer Risk in a Large Cohort of U.S. Women. Nutrients. 2018; 10(1):55. https://doi.org/10.3390/nu10010055
Chicago/Turabian StyleChandler, Paulette D., Deirdre K. Tobias, Lu Wang, Stephanie A. Smith-Warner, Daniel I. Chasman, Lynda Rose, Edward L. Giovannucci, Julie E. Buring, Paul M. Ridker, Nancy R. Cook, and et al. 2018. "Association between Vitamin D Genetic Risk Score and Cancer Risk in a Large Cohort of U.S. Women" Nutrients 10, no. 1: 55. https://doi.org/10.3390/nu10010055
APA StyleChandler, P. D., Tobias, D. K., Wang, L., Smith-Warner, S. A., Chasman, D. I., Rose, L., Giovannucci, E. L., Buring, J. E., Ridker, P. M., Cook, N. R., Manson, J. E., & Sesso, H. D. (2018). Association between Vitamin D Genetic Risk Score and Cancer Risk in a Large Cohort of U.S. Women. Nutrients, 10(1), 55. https://doi.org/10.3390/nu10010055