Dairy Foods and Body Mass Index over 10-Year: Evidence from the Caerphilly Prospective Cohort Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Dairy Product Consumption
2.3. BMI and Other Covariates
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight. 2018. Available online: http://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 23 August 2018).
- Hawkes, C.; Smith, T.G.; Jewell, J.; Wardle, J.; Hammond, R.A.; Friel, S.; Thow, A.M.; Kain, J. Smart food policies for obesity prevention. Lancet 2015, 385, 2410–2421. [Google Scholar] [CrossRef]
- Thorning, T.K.; Bertram, H.C.; Bonjour, J.-P.; de Groot, L.; Dupont, D.; Feeney, E.; Ipsen, R.; Lecerf, J.M.; Mackie, A.; McKinley, M.C.; et al. Whole dairy matrix or single nutrients in assessment of health effects: Current evidence and knowledge gaps. Am. J. Clin. Nutr. 2017, 105, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, K.M.; Lovegrove, J.A.; Givens, D.I. The impact of substituting SFA in dairy products with MUFA or PUFA on CVD risk: Evidence from human intervention studies. Nutr. Res. Rev. 2012, 25, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Lovegrove, J.A.; Givens, D.I. Dairy food products: Good or bad for cardiometabolic disease? Nutr. Res. Rev. 2016, 29, 249–267. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Pan, A.; Malik, V.S.; Hu, F.B. Effects of dairy intake on body weight and fat: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 96, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Dougkas, A.; Reynolds, C.K.; Givens, I.D.; Elwood, P.C.; Minihane, A.M. Associations between dairy consumption and body weight: A review of the evidence and underlying mechanisms. Nutr. Res. Rev. 2011, 24, 72–95. [Google Scholar] [CrossRef] [PubMed]
- Rosell, M.; Hakansson, N.N.; Wolk, A. Association between dairy food consumption and weight change over 9 y in 19 352 perimenopausal women. Am. J. Clin. Nutr. 2006, 84, 1481–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergnaud, A.C.; Peneau, S.; Chat-Yung, S.; Kesse, E.; Czernichow, S.; Galan, P.; Hercberg, S.; Bertrais, S. Dairy consumption and 6-y changes in body weight and waist circumference in middle-aged French adults. Am. J. Clin. Nutr. 2008, 88, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, F.B.; Sui, X.M.; Lavie, C.J.; Blair, S.N. Body Mass Index, the Most Widely Used but Also Widely Criticized Index: Would a Criterion Standard Measure of Total Body Fat Be a Better Predictor of Cardiovascular Disease Mortality? Mayo Clin. Proc. 2016, 91, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Baker, I.A.; Pickering, J.; Elwood, P.C.; Bayer, A.; Ebrahim, S. Fibrinogen, viscosity and white blood cell count predict myocardial, but not cerebral infarction: Evidence from the Caerphilly and speedwell cohort. Thromb. Haemost. 2002, 87, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Elwood, P. Milk, coronary disease and mortality. J. Epidemiol. Community Health 2001, 55, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Gallacher, J.E.J.; Yarnell, J.W.G.; Sweetnam, P.M.; Elwood, P.C.; Stansfeld, S.A. Anger and incident heart disease in the caerphilly study. Psychosom. Med. 1999, 61, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, J.W.G.; Patterson, C.C.; Thomas, H.F.; Sweetnam, P.M. Central obesity: Predictive value of skinfold measurements for subsequent ischaemic heart disease at 14 years follow-up in the Caerphilly Study. Int. J. Obes. 2001, 25, 1546–1549. [Google Scholar] [CrossRef] [PubMed]
- Fehily, A.M.; Butland, B.K.; Holiday, R.M.; Yarnell, J.W.G. Dietary studies in the Caerphilly Heart Disease Survey. Food Sci. Nutr. 1988, 42, 77–78. [Google Scholar]
- Caerphilly and Speedwell collaborative heart disease studies. The Caerphilly and Speedwell Collaborative Group. J. Epidemiol. Community Health 1984, 38, 259–262. [CrossRef]
- Food Standards Agency. Food Portion Sizes, 3rd ed.; TSO: Norwich, UK, 2005. [Google Scholar]
- Livingstone, K.M.; Lovegrove, J.A.; Cockcroft, J.R.; Elwood, P.C.; Pickering, J.E.; Givens, D.I. Does dairy food intake predict arterial stiffness and blood pressure in men? Evidence from the Caerphilly Prospective Study. Hypertension 2013, 61, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Fehily, A.M.; Yarnell, J.W.; Butland, B.K. Diet and ischaemic heart disease in the Caerphilly Study. Hum. Nutr. Appl. Nutr. 1987, 41, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, J.W.; Fehily, A.M.; Milbank, J.E.; Sweetnam, P.M.; Walker, C.L. A short dietary questionnaire for use in an epidemiological survey: Comparison with weighed dietary records. Hum. Nutr. Appl. Nutr. 1983, 37, 103–112. [Google Scholar] [PubMed]
- World Health Organisation. Global Database on Body Mass Index (BMI) Classification. 2016. Available online: http://www.who.int/bmi/index.jsp?introPage=intro_3.html (accessed on 27 May 2016).
- Office of Population Censuses and Surveys. Classification of Occupations 1980; HMSO: London, UK, 1980. [Google Scholar]
- Livingstone, K.M.; Givens, D.I.; Cockcroft, J.R.; Pickering, J.E.; Lovegrove, J.A. Is fatty acid intake a predictor of arterial stiffness and blood pressure in men? Evidence from the Caerphilly Prospective Study. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Samara, A.; Herbeth, B.; Ndiaye, N.C.; Fumeron, F.; Billod, S.; Siest, G.; Visvikis-Siest, S. Dairy product consumption, calcium intakes, and metabolic syndrome-related factors over 5 years in the STANISLAS study. Nutrition 2013, 29, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G.; Schwedhelm, C.; Kalle-Uhlmann, T.; Missbach, B.; Knuppel, S.; Boeing, H. Consumption of Dairy Products in Relation to Changes in Anthropometric Variables in Adult Populations: A Systematic Review and Meta-Analysis of Cohort Studies. PLoS ONE 2016, 11, e0157461. [Google Scholar] [CrossRef] [PubMed]
- NHS. Milk and Dairy in Your Diet. 2015. Available online: https://www.nhs.uk/live-well/eat-well/milk-and-dairy-nutrition/ (accessed on 21 July 2017).
- Guo, J.; Astrup, A.; Lovegrove, J.A.; Gijsbers, L.; Givens, D.I.; Soedamah-Muthu, S.S. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: Dose-response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2017, 32, 269–287. [Google Scholar] [CrossRef] [PubMed]
- Pimpin, L.; Wu, J.H.; Haskelberg, H.; Del Gobbo, L.; Mozaffarian, D. Is Butter Back? A Systematic Review and Meta-Analysis of Butter Consumption and Risk of Cardiovascular Disease, Diabetes, and Total Mortality. PLoS ONE 2016, 11, e0158118. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.B.; Cesar, C.L.; Martini, L.A.; Fisberg, R.M. Dietary calcium intake and overweight: An epidemiologic view. Nutrition 2008, 24, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Rafferty, K. Preponderance of the evidence: An example from the issue of calcium intake and body composition. Nutr. Rev. 2009, 67, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Heiss, C.J.; Shaw, S.E.; Carothers, L. Association of calcium intake and adiposity in postmenopausal women. J. Am. Coll. Nutr. 2008, 27, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Major, G.C.; Chaput, J.P.; Ledoux, M.; St-Pierre, S.; Anderson, G.H.; Zemel, M.B.; Tremblay, A. Recent developments in calcium-related obesity research. Obes. Rev. 2008, 9, 428–445. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Fan, C.; Lu, Y.; Qi, K. Effects of calcium supplementation on body weight: A meta-analysis. Am. J. Clin. Nutr. 2016, 104, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Christensen, R.; Lorenzen, J.K.; Svith, C.R.; Bartels, E.M.; Melanson, E.L.; Saris, W.H.; Tremblay, A.; Astrup, A. Effect of calcium from dairy and dietary supplements on faecal fat excretion: A meta-analysis of randomized controlled trials. Obes. Rev. 2009, 10, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Teegarden, D.; White, K.M.; Lyle, R.M.; Zemel, M.B.; Van Loan, M.D.; Matkovic, V.; Craig, B.A.; Schoeller, D.A. Calcium and dairy product modulation of lipid utilization and energy expenditure. Obesity (Silver Spring) 2008, 16, 1566–1572. [Google Scholar] [CrossRef] [PubMed]
- Zemel, M.B.; Donnelly, J.E.; Smith, B.K.; Sullivan, D.K.; Richards, J.; Morgan-Hanusa, D.; Mayo, M.S.; Sun, X.; Cook-Wiens, G.; Bailey, B.W.; et al. Effects of dairy intake on weight maintenance. Nutr. Metab. 2008, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beasley, J.M.; Ange, B.A.; Anderson, C.A.; Miller, E.R., 3rd; Erlinger, T.P.; Holbrook, J.T.; Sacks, F.M.; Appel, L.J. Associations between macronutrient intake and self-reported appetite and fasting levels of appetite hormones: Results from the Optimal Macronutrient Intake Trial to Prevent Heart Disease. Am. J. Epidemiol. 2009, 169, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.; Noakes, M.; Trenerry, C.; Clifton, P.M. Energy intake, ghrelin, and cholecystokinin after different carbohydrate and protein preloads in overweight men. J. Clin. Endocrinol. Metab. 2006, 91, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- Little, T.J.; Horowitz, M.; Feinle-Bisset, C. Modulation by high-fat diets of gastrointestinal function and hormones associated with the regulation of energy intake: Implications for the pathophysiology of obesity. Am. J. Clin. Nutr. 2007, 86, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Luhovyy, B.L.; Akhavan, T.; Anderson, G.H. Whey proteins in the regulation of food intake and satiety. J. Am. Coll. Nutr. 2007, 26, 704S–712S. [Google Scholar] [CrossRef] [PubMed]
- Veiga, P.; Pons, N.; Agrawal, A.; Oozeer, R.; Guyonnet, D.; Brazeilles, R.; Faurie, J.M.; Vlieg, J.E.T.V.H.; Houghton, L.A.; Whorwell, P.J.; et al. Changes of the human gut microbiome induced by a fermented milk product. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Nicklas, T.A.; O’Neil, C.E.; Fulgoni, V.L. Differing Statistical Approaches Affect the Relation between Egg Consumption, Adiposity, and Cardiovascular Risk Factors in Adults. J. Nutr. 2015, 145, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Eales, J.; Lenoir-Wijnkoop, I.; King, S.; Wood, H.; Kok, F.J.; Shamir, R.; Prentice, A.; Edwards, M.; Glanville, J.; Atkinson, R.L. Is consuming yogurt associated with weight management outcomes? Results from a systematic review. Int. J. Obes. 2016, 40, 731–746. [Google Scholar] [CrossRef] [PubMed]
- Magkos, F.; Manios, Y.; Babaroutsi, E.; Sidossis, L.S. Differences in the quantitative and qualitative performance of a calcium-specific food frequency questionnaire across age and sex. J. Hum. Nutr. Diet. 2006, 19, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, D.A.; Lovegrove, J.A.; Givens, I.D. Dairy Products: Their Role in the Diet and Effects on Cardiovascular Disease. In Handbook of Lipids in Human Function; Elsevier: Amsterdam, The Netherlands, 2015; pp. 111–129. [Google Scholar]
Characteristics | Total Dairy Intake (g/day) * | p for Trend | |||||||
---|---|---|---|---|---|---|---|---|---|
0 ≤ Dairy ≤ 183 | 183 < Dairy < 240 | 240 ≤ Dairy < 485 | 485 ≤ Dairy ≤ 842 | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Participants, n | 423 | 421 | 424 | 422 | |||||
Milk, g/day | 115.0 | 60.7 | 146.3 | 10.1 | 413.5 | 82.5 | 516.8 | 129.5 | |
Cheese, g/day | 15.2 | 12.1 | 20.4 | 11.7 | 15.9 | 12.5 | 22.4 | 13.5 | |
Cream, g/day | 0.8 | 2.0 | 2.0 | 4.0 | 1.4 | 2.8 | 2.8 | 4.9 | |
Butter, g/day | 11.0 | 13.2 | 32.2 | 14.8 | 18.8 | 20.9 | 35.9 | 18.5 | |
Age, year | 52 | 4.4 | 52 | 4.3 | 51 | 4.5 | 52 | 4.5 | 0.516 |
Manual workers, % | 62.4 | 67.7 | 61.3 | 64.7 | 0.964 | ||||
Leisure activity, % | 48.7 | 45.6 | 47.2 | 49.5 | 0.663 | ||||
Current smokers, % | 48.0 | 51.5 | 52.4 | 55.9 | 0.024 | ||||
Alcohol intake (ethanol), mL/week | 32.5 | 34.9 | 33.3 | 35.9 | 27.0 | 32.1 | 31.1 | 43.8 | 0.116 |
Total energy intake, MJ/day | 8.6 | 2.3 | 9.7 | 2.1 | 9.4 | 2 | 10.7 | 2.5 | <0.001 |
Fibre (cereal sources), g/day | 7.6 | 4.7 | 7.6 | 4.2 | 8 | 4.6 | 8.1 | 4.7 | 0.084 |
Fibre (vegetable sources), g/day | 8.4 | 2.8 | 8.4 | 2.6 | 8.6 | 2.7 | 8.5 | 2.8 | 0.259 |
Protein, % of food energy | 13.1 | 2.2 | 12.7 | 1.8 | 13.6 | 1.9 | 13 | 1.9 | 0.198 |
Fat, % of food energy | 37.8 | 7.0 | 40.3 | 6.9 | 38.9 | 6.7 | 42.1 | 6.8 | <0.001 |
Sugar, g/day | 81.9 | 32.8 | 91.2 | 34.1 | 93.0 | 31.2 | 110.7 | 41.2 | <0.001 |
Eggs, n/week | 3.5 | 2.5 | 3.8 | 2.2 | 3.8 | 2.6 | 4.7 | 5.4 | <0.001 |
Fruit, times/week | 5.3 | 4.9 | 5.3 | 4.5 | 4.9 | 4.2 | 4.9 | 4.4 | 0.396 |
Vegetable, times/week | 9.4 | 4.6 | 9.2 | 4.3 | 9.6 | 4.4 | 9.5 | 4.4 | 0.471 |
Red meat, times/week | 5.2 | 2.5 | 5.5 | 2.9 | 5.4 | 2.6 | 5.9 | 2.9 | 0.001 |
Fish, times/week | 0.9 | 0.8 | 1.1 | 0.9 | 1.0 | 0.8 | 1 | 0.8 | 0.144 |
Total Dairy Intake (g/day) * | p for Trend | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 ≤ Dairy ≤ 183 | 183 < Dairy < 240 | 240 ≤ Dairy < 485 | 485 < Dairy ≤ 842 | ||||||
Cross-sectional analysis | |||||||||
Participants, n | 419 | 417 | 421 | 417 | |||||
BMI mean (SD), kg/m2 | 26.4 | 3.8 | 26.6 | 3.4 | 26.2 | 3.4 | 25.8 | 3.3 | |
Unadjusted Coef. (SE) | 1 (reference) | 0.186 | 0.240 | −0.217 | 0.239 | −0.601 | 0.240 | 0.004 | |
Multivariate model 1 Coef. (SE) † | 1 (reference) | 0.233 | 0.240 | −0.116 | 0.240 | −0.388 | 0.251 | 0.055 | |
Multivariate model 2 Coef. (SE) ‡ | 1 (reference) | −0.315 | 0.253 | −0.100 | 0.240 | −0.315 | 0.253 | 0.120 | |
Longitudinal analysis at 5-years | |||||||||
Participants, n | 415 | 414 | 418 | 415 | |||||
BMI mean change from baseline (SD), kg/m2 | 0.3 | 1.5 | 0.3 | 1.6 | 0.2 | 1.4 | 0.2 | 1.3 | |
Unadjusted Coef. (SE) | 1 (reference) | 0.002 | 0.102 | −0.031 | 0.102 | −0.092 | 0.102 | 0.342 | |
Multivariate model 3 Coef. (SE) § | 1 (reference) | 0.007 | 0.103 | −0.054 | 0.103 | −0.167 | 0.108 | 0.100 | |
Multivariate model 4 Coef. (SE) ‖ | 1 (reference) | −0.003 | 0.104 | −0.051 | 0.104 | −0.156 | 0.110 | 0.136 | |
Longitudinal analysis at 10-years | |||||||||
Participants, n | 337 | 353 | 354 | 360 | |||||
BMI mean change from baseline (SD), kg/m2 | 0.5 | 1.9 | 0.5 | 2.0 | 0.4 | 1.9 | 0.4 | 1.7 | |
Unadjusted Coef. (SE) | 1 (reference) | 0.041 | 0.143 | −0.107 | 0.143 | −0.017 | 0.143 | 0.661 | |
Multivariate model 3 Coef. (SE) § | 1 (reference) | 0.021 | 0.143 | −0.175 | 0.143 | −0.129 | 0.150 | 0.197 | |
Multivariate model 4 Coef. (SE) ‖ | 1 (reference) | 0.001 | 0.143 | −0.186 | 0.144 | −0.126 | 0.152 | 0.214 |
Milk Intake (g/day) | p for Trend | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 0 < Milk ≤ 293 | 293 < Milk ≤ 585 | 585 ≤ Milk | ||||||
Cross-sectional analysis | |||||||||
Participants, n | 93 | 779 | 692 | 110 | |||||
BMI mean (SD), kg/m2 | 27.3 | 4.4 | 26.4 | 3.5 | 26.1 | 3.4 | 25.4 | 3.3 | |
Unadjusted Coef. (SE) | 1 (reference) | −0.907 | 0.380 | −1.181 | 0.383 | −1.846 | 0.488 | <0.001 | |
Multivariate model 1 Coef. (SE) * | 1 (reference) | −0.926 | 0.375 | −1.096 | 0.380 | −1.708 | 0.486 | 0.001 | |
Multivariate model 2 Coef. (SE) † | 1 (reference) | −0.896 | 0.377 | −1.023 | 0.383 | −1.540 | 0.492 | 0.007 | |
Longitudinal analysis at 5-years | |||||||||
Participants, n | 92 | 773 | 687 | 110 | |||||
BMI mean change from baseline (SD), kg/m2 | 0.1 | 1.8 | 0.3 | 1.5 | 0.2 | 1.3 | 0.3 | 1.6 | |
Unadjusted Coef. (SE) | 1 (reference) | 0.212 | 0.163 | 0.124 | 0.164 | 0.231 | 0.208 | 0.983 | |
Multivariate model 3 Coef. (SE) ‡ | 1 (reference) | 0.190 | 0.162 | 0.069 | 0.164 | 0.130 | 0.210 | 0.557 | |
Multivariate model 4 Coef. (SE) § | 1 (reference) | 0.135 | 0.164 | 0.041 | 0.166 | 0.106 | 0.213 | 0.664 | |
Longitudinal analysis at 10-years | |||||||||
Participants, n | 68 | 648 | 595 | 93 | |||||
BMI mean change from baseline (SD), kg/m2 | 0.2 | 2.1 | 0.5 | 1.9 | 0.4 | 1.8 | 0.7 | 2.0 | |
Unadjusted Coef. | 1 (reference) | 0.267 | 0.240 | 0.117 | 0.241 | 0.475 | 0.300 | 0.804 | |
Multivariate model 3 Coef. (SE) ‡ | 1 (reference) | 0.159 | 0.237 | −0.038 | 0.239 | 0.172 | 0.300 | 0.422 | |
Multivariate model 4 Coef. (SE) § | 1 (reference) | 0.133 | 0.240 | −0.053 | 0.243 | 0.203 | 0.307 | 0.523 |
Cheese Intake (g/day) | p for Trend | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 ≤ Cheese < 11 | 11 ≤ Cheese < 16 | 16 ≤ Cheese < 22 | 22 ≤ Cheese < 130 | ||||||
Cross-sectional analyses | |||||||||
Participants, n | 368 | 426 | 459 | 411 | |||||
BMI mean (SD), kg/m2 | 26.1 | 3.9 | 26.1 | 3.4 | 26.1 | 3.3 | 26.6 | 3.4 | |
Unadjusted Coef. (SE) | 1 (reference) | 0.032 | 0.247 | 0.051 | 0.243 | 0.510 | 0.249 | 0.046 | |
Multivariate model 1 Coef. (SE) * | 1 (reference) | 0.085 | 0.244 | 0.156 | 0.243 | 0.627 | 0.254 | 0.015 | |
Multivariate model 2 Coef. (SE) † | 1 (reference) | 0.021 | 0.244 | 0.078 | 0.244 | 0.515 | 0.255 | 0.045 | |
Longitudinal analysis at 5-years | |||||||||
Participants, n | 364 | 424 | 456 | 408 | |||||
BMI mean change from baseline (SD), kg/m2 | 0.4 | 1.4 | 0.2 | 1.5 | 0.3 | 1.4 | 0.1 | 1.5 | |
Unadjusted Coef. (SE) | 1 (reference) | −0.134 | 0.105 | −0.099 | 0.104 | −0.290 | 0.106 | 0.014 | |
Multivariate model 3 Coef. (SE) ‡ | 1 (reference) | −0.139 | 0.105 | −0.114 | 0.105 | −0.297 | 0.110 | 0.014 | |
Multivariate model 4 Coef. (SE) § | 1 (reference) | −0.126 | 0.106 | −0.119 | 0.106 | −0.293 | 0.110 | 0.013 | |
Longitudinal analysis at 10-years | |||||||||
Participants, n | 311 | 361 | 375 | 351 | |||||
BMI mean change from baseline (SD), kg/m2 | 0.5 | 1.9 | 0.6 | 1.9 | 0.4 | 1.8 | 0.3 | 1.8 | |
Unadjusted Coef. (SE) | 1 (reference) | 0.043 | 0.146 | −0.164 | 0.144 | −0.266 | 0.146 | 0.025 | |
Multivariate model 3 Coef. (SE) ‡ | 1 (reference) | 0.008 | 0.144 | −0.113 | 0.145 | −0.188 | 0.150 | 0.143 | |
Multivariate model 4 Coef. (SE) § | 1 (reference) | 0.045 | 0.144 | −0.097 | 0.145 | −0.202 | 0.150 | 0.109 |
Cream Intake (g/day) | p for Trend | ||||||
---|---|---|---|---|---|---|---|
0 | 0 < Cream < 5.4 | 5.4 ≤ Cream < 40.5 | |||||
Cross-sectional analysis | |||||||
Participants, n | 1094 | 220 | 244 | ||||
BMI mean (SD), kg/m2 | 26.4 | 3.6 | 25.9 | 3.2 | 26.1 | 2.9 | |
Unadjusted Coef. (SE) | 1 (reference) | −0.501 | 0.255 | −0.243 | 0.244 | 0.137 | |
Multivariate model 1 Coef. (SE) * | 1 (reference) | −0.547 | 0.255 | −0.091 | 0.245 | 0.339 | |
Multivariate model 2 Coef. (SE) † | 1 (reference) | −0.498 | 0.253 | −0.139 | 0.244 | 0.277 | |
Longitudinal analysis at 5-years | |||||||
Participants, n | 1085 | 220 | 242 | ||||
BMI mean change from baseline (SD), kg/m2 | 0.2 | 1.5 | 0.2 | 1.3 | 0.3 | 1.4 | |
Unadjusted Coef. (SE) | 1 (reference) | −0.031 | 0.109 | 0.088 | 0.105 | 0.504 | |
Multivariate model 3 Coef. (SE) ‡ | 1 (reference) | −0.051 | 0.110 | 0.051 | 0.106 | 0.761 | |
Multivariate model 4 Coef. (SE) § | 1 (reference) | −0.031 | 0.111 | 0.067 | 0.107 | 0.628 | |
Longitudinal analysis at 10-years | |||||||
Participants, n | 904 | 190 | 211 | ||||
BMI mean change from baseline (SD), kg/m2 | 0.4 | 1.9 | 0.4 | 1.6 | 0.6 | 1.8 | |
Unadjusted Coef. (SE) | 1 (reference) | −0.044 | 0.149 | 0.193 | 0.143 | 0.256 | |
Multivariate model 3 Coef. (SE) ‡ | 1 (reference) | −0.089 | 0.148 | 0.181 | 0.142 | 0.329 | |
Multivariate model 4 Coef. (SE) § | 1 (reference) | −0.096 | 0.148 | 0.176 | 0.142 | 0.348 |
Butter Intake (g/day) | p for Trend | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 < Butter < 12 | 12 < Butter < 24.3 | 24.3 ≤ Butter < 32.4 | 32.4 ≤ Butter ≤ 130 | ||||||
Cross-sectional analysis | |||||||||
Participants, n | 419 | 431 | 416 | 357 | |||||
BMI mean (SD), kg/m2 | 26.4 | 3.3 | 25.8 | 3.4 | 26.4 | 3.4 | 26.2 | 3.7 | |
Unadjusted Coef. (SE) | 1 (reference) | −0.527 | 0.237 | 0.040 | 0.239 | −0.180 | 0.248 | 0.955 | |
Multivariate model 1 Coef. (SE) * | 1 (reference) | −0.560 | 0.233 | 0.144 | 0.236 | 0.147 | 0.260 | 0.219 | |
Multivariate model 2 Coef. (SE) † | 1 (reference) | −0.434 | 0.233 | 0.229 | 0.236 | 0.184 | 0.260 | 0.167 | |
Longitudinal analysis at 5-years | |||||||||
Participants, n | 418 | 426 | 414 | 353 | |||||
BMI mean change from baseline (SD), kg/m2 | 0.3 | 1.5 | 0.2 | 1.4 | 0.1 | 1.4 | 0.4 | 1.5 | |
Unadjusted Coef. (SE) | 1 (reference) | −0.091 | 0.101 | −0.198 | 0.102 | 0.097 | 0.106 | 0.709 | |
Multivariate model 3 Coef. (SE) ‡ | 1 (reference) | −0.095 | 0.101 | −0.192 | 0.102 | 0.071 | 0.113 | 0.998 | |
Multivariate model 4 Coef. (SE) § | 1 (reference) | −0.089 | 0.102 | −0.183 | 0.103 | 0.050 | 0.113 | 0.891 | |
Longitudinal analysis at 10-years | |||||||||
Participants, n | 358 | 353 | 344 | 305 | |||||
BMI mean change from baseline (SD), kg/m2 | 0.5 | 1.8 | 0.4 | 1.9 | 0.3 | 1.9 | 0.6 | 2.0 | |
Unadjusted Coef. (SE) | 1 (reference) | −0.076 | 0.141 | −0.234 | 0.142 | 0.092 | 0.146 | 0.894 | |
Multivariate model 3 Coef. (SE) ‡ | 1 (reference) | −0.081 | 0.139 | −0.196 | 0.140 | 0.054 | 0.153 | 0.915 | |
Multivariate model 4 Coef. (SE) § | 1 (reference) | −0.055 | 0.140 | −0.146 | 0.141 | 0.054 | 0.154 | 0.989 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Dougkas, A.; Elwood, P.C.; Givens, D.I. Dairy Foods and Body Mass Index over 10-Year: Evidence from the Caerphilly Prospective Cohort Study. Nutrients 2018, 10, 1515. https://doi.org/10.3390/nu10101515
Guo J, Dougkas A, Elwood PC, Givens DI. Dairy Foods and Body Mass Index over 10-Year: Evidence from the Caerphilly Prospective Cohort Study. Nutrients. 2018; 10(10):1515. https://doi.org/10.3390/nu10101515
Chicago/Turabian StyleGuo, Jing, Anestis Dougkas, Peter C. Elwood, and David I. Givens. 2018. "Dairy Foods and Body Mass Index over 10-Year: Evidence from the Caerphilly Prospective Cohort Study" Nutrients 10, no. 10: 1515. https://doi.org/10.3390/nu10101515
APA StyleGuo, J., Dougkas, A., Elwood, P. C., & Givens, D. I. (2018). Dairy Foods and Body Mass Index over 10-Year: Evidence from the Caerphilly Prospective Cohort Study. Nutrients, 10(10), 1515. https://doi.org/10.3390/nu10101515