Advanced Liver Fibrosis Is Independently Associated with Palmitic Acid and Insulin Levels in Patients with Non-Alcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Transient Hepatic Elastography and Advanced Fibrosis Definition
2.3. Biochemical Evaluation
2.4. Assessment of Fatty Acid Composition of Red Blood Cells (RBC)
2.5. Fatty Acid Indexes and Estimation of Enzymatic Activities
2.6. Nutritional Evaluation
2.7. Evaluation of Lipid Ingestion
2.8. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Fatty Acid Profile of RBC
3.3. Assessment of Dietary Lipid Intake
3.4. Factors Associated to Liver Fibrosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABSI | body shape index |
ALP | alkaline phosphatase |
ALT | alanine transaminase |
AST | aspartate transaminase |
BAI | body adiposity index |
BMI | body mass index |
DNL | de novo lipogenesis |
D5D | delta-5-desaturase |
D6D | delta-6-desaturase |
ELOVL6 | elongation of longchain fatty acids family member 6 |
GGT | gamma-glutamyl transferase |
HOMA-IR | homeostatic model of assessment- insulin resistance |
IQR | interquartile range |
IR | insulin resistance |
kPa | kilopascals |
LS | liver stiffness |
MUFA | monounsaturated fatty acids |
NAFLD | nonalcoholic fatty liver disease |
NASH | non-alcoholic steatohepatitis |
POF | programa de orçamento familiar |
RBC | red blood cells |
R24h | 24 h recordatory |
SCD1 | stearoyl-CoA desaturase 1 |
SFAs | saturated fatty acids |
SREBP-1c | sterol regulatory element-binding protein-1c |
WC | waist circumference |
WHR | waist/hips ratio |
WHtR | waist/height ratio |
References
- Milić, S.; Stimac, D. Nonalcoholic fatty liver disease/steatohepatitis: Epidemiology, pathogenesis, clinical presentation and treatment. Dig Dis. 2012, 30, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.L. Mechanisms of Hepatic Fibrogenesis. Gastroenterology 2008, 134, 1655–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cusi, K. Nonalcoholic fatty liver disease in type 2 diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 2009, 16, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saponaro, C.; Gaggini, M.; Carli, F.; Gastaldelli, A. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients 2015, 7, 9453–9474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diraison, F.; Moulin, P.; Beylot, M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fattyacids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab. 2003, 29, 478–485. [Google Scholar] [CrossRef]
- Pardo, V.; González-Rodríguez, Á.; Muntané, J.; Kozma, S.C.; Valverde, Á.M. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection. Food Chem. Toxicol. 2015, 80, 298–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, T.S.; Lupke, M.; Ibrahim, S.; Buechler, C.; Lorenz, J.; Ruemmele, P.; Hofmann, U.; Melter, M.; Dayoub, R. Attenuated lipotoxicity and apoptosis is linked to exogenous and endogenous augmenter of liver regeneration by different pathways. PLoS ONE 2017, 12, e0184282. [Google Scholar] [CrossRef] [PubMed]
- Hernández, E.Á.; Kahl, S.; Seelig, A.; Begovatz, P.; Irmler, M.; Kupriyanova, Y.; Nowotny, B.; Nowotny, P.; Herder, C.; Barosa, C.; et al. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J. Clin. Investig. 2017, 127, 695–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.J.; Lambert, J.E.; Hovhannisyan, Y.; Ramos-Roman, M.A.; Trombold, J.R.; Wagner, D.A.; Parks, E.J. Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am. J. Clin. Nutr. 2015, 101, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, S.; Jäger, S.; Jansen, E.; Peter, A.; Stefan, N.; Boeing, H.; Schulze, M.B.; Kröger, J. Associations of Erythrocyte Fatty Acids in the De Novo Lipogenesis Pathway with Proxies of Liver Fat Accumulation in the EPIC-Potsdam Study. PLoS ONE 2015, 10, e0127368. [Google Scholar] [CrossRef] [PubMed]
- Petit, J.M.; Guiu, B.; Duvillard, L.; Jooste, V.; Brindisi, M.C.; Athias, A.; Bouillet, B.; Habchi, M.; Cottet, V.; Gambert, P.; et al. Increased erythrocytes n-3 and n-6 polyunsaturated fatty acids is significantly associated with a lower prevalence of steatosis in patients with type 2 diabetes. Clin. Nutr. 2012, 31, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.W.; Vergniol, J.; Wong, G.L.; Foucher, J.; Chan, H.L.; Le Bail, B.; Choi, P.C.; Kowo, M.; Chan, A.W.; Merrouche, W.; et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010, 51, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Broekhuyse, R.M. Long-term storage of erythrocytes for quantitative analyses of lipids. Clin. Chim. Acta 1974, 52, 53–58. [Google Scholar] [CrossRef]
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 1986, 27, 114–120. [Google Scholar] [PubMed]
- Xu, Z.; Harvey, K.; Pavlina, T.; Dutot, G.; Zaloga, G.; Siddiqui, R. An improved method for determining medium- and long-chain FAMEs using gas chromatography. Lipids 2010, 45, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Assumpção, R.P.; Mucci, D.B.; Fonseca, F.C.P.; Marcondes, H.; Sardinha, F.L.C.; Citelli, M.; Tavares do Carmo, M.G. Fatty acid profile of maternal and fetal erythrocytes and placental expression of fatty acidtransport proteins in normal and intrauterine growth restriction pregnancies. Prostaglandins Leukot. Essent. Fatty Acids 2017, 125, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G.; Roche, A.F.; Martorell, R. The Airlie (VA) Consensus Conference. In Anthropometric Standardization Reference Manual; Lohman, T.G., Roche, A.F., Martorell, R., Eds.; Human Kinetics: Champaign, IL, USA, 1988; pp. 39–80. [Google Scholar]
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Pitanga, F.J.G.; Lessa, I. Razão cintura-estatura como discriminador do risco coronariano de adultos. Rev. Assoc. Med. Bras. 2006, 52, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A better index of body adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef] [PubMed]
- Instituto Brasileiro de Geografia e Estatísticas. Pesquisa de orçamentos familiares no Brasil, 2008–2009: Tabela de Medidas Referidas para os Alimentos Consumidos no Brasil; IBGE: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- Harttig, U.; Haubrock, J.; Knüppel, S.; Boeing, H. The MSM program: Web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65 (Suppl. 1), S87–S91. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.P.; Poos, M.I. Dietary Reference Intakes: Summary of applications in dietary assessment. Public Health Nutr. 2002, 5, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Yamada, K.; Mizukoshi, E.; Sunagozaka, H.; Arai, K.; Yamashita, T.; Takeshita, Y.; Misu, H.; Takamura, T.; Kitamura, S.; Zen, Y.; et al. Characteristics of hepatic fatty acid compositions in patients with nonalcoholic steatohepatitis. Liver Int. 2015, 35, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Arain, S.Q.; Talpur, F.N.; Channa, N.A.; Ali, M.S.; Afridi, H.I. Serum lipid profile as a marker of liver impairment in hepatitis B Cirrhosis patients. Lipids Health Dis. 2017, 16, 51. [Google Scholar] [CrossRef] [PubMed]
- Duan, N.N.; Liu, X.J.; Wu, J. Palmitic acid elicits hepatic stellate cell activation through inflammasomes and hedgehog signaling. Life Sci. 2017, 176, 42–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puri, P.; Wiest, M.M.; Cheung, O.; Mirshahi, F.; Sargeant, C.; Min, H.K.; Contos, M.J.; Sterling, R.K.; Fuchs, M.; Zhou, H.; et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 2009, 50, 1827–1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allard, J.P.; Aghdassi, E.; Mohammed, S.; Raman, M.; Avand, G.; Arendt, B.M.; Jalali, P.; Kandasamy, T.; Prayitno, N.; Sherman, M.; et al. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): A cross-sectional study. J. Hepatol. 2008, 48, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Poppitt, S.D.; Kilmartin, P.; Butler, P.; Keogh, G.F. Assessment of erythrocyte phospholipid fatty acid composition as a biomarker for dietary MUFA, PUFA or saturated fatty acid intake in a controlled cross-over intervention trial. Lipids Health Dis. 2005, 4, 30. [Google Scholar] [CrossRef] [PubMed]
- Walle, P.; Takkunen, M.; Männistö, V.; Vaittinen, M.; Lankinen, M.; Kärjä, V.; Käkelä, P.; Ågren, J.; Tiainen, M.; Schwab, U.; et al. Fatty acid metabolism is altered in non-alcoholic steatohepatitis independent of obesity. Metabolism 2016, 65, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Breen, D.M.; Naassan, A.E.; Wang, P.Y.; Uchino, H.; Fantus, I.G.; Carpentier, A.C.; Gutierrez-Juarez, R.; Brindley, D.N.; Lam, T.K.; et al. In vivo effects of polyunsaturated, monounsaturated, and saturated fatty acids on hepatic and peripheral insulin sensitivity. Metabolism 2015, 64, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Hudgins, L.C.; Hellerstein, M.; Seidman, C.; Neese, R.; Diakun, J.; Hirsch, J. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J. Clin. Investig. 1996, 97, 2081–2091. [Google Scholar] [CrossRef] [PubMed]
- Tamura, S.; Shimomura, L. Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J. Clin. Investig. 2005, 115, 1139–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaton, G.H. Approaches to analysis of dietary data: Relationship between planned analyses and choice of methodology. Am J Clin Nutr. 1994, 59, 253S–261S. [Google Scholar] [CrossRef] [PubMed]
Variables | Patients without Advanced Fibrosis (#LS Value < 7.9 kPa) n = 37 | Patients with Advanced Fibrosis (#LS Value ≥ 7.9 kPa) n = 52 | |||
---|---|---|---|---|---|
% | % | p value | |||
Gender (F/M) | 70.28/29.72 | 76.92/23.08 | 0.482 | ||
Hypertension | 86.48 | 78.84 | 0.358 | ||
Type 2 diabetes | 56.75 | 76.92 | 0.045 | ||
Hypertriglyceridemia | 29.72 | 30.76 | 0.917 | ||
MS | 75.67 | 78.84 | 0.725 | ||
Median | IQR | Median | IQR | p value | |
Age, yr | 62.00 | 57.00–68.00 | 62.50 | 55.00–67.75 | 0.508 |
BMI (kg/m²) | 29.60 | 27.59–34.02 | 33.26 | 29.57–36.50 | 0.018 * |
WC (cm) | 105.00 | 97.75–110.00 | 109.00 | 98.62–116.75 | 0.116 |
WHR | 1.00 | 0.93–1.06 | 0.99 | 0.94–1.07 | 0.708 |
BAI | 31.69 | 29.00–37.11 | 35.35 | 29.32–38.82 | 0.240 |
WHtR | 0.63 | 0.59–0.70 | 0.68 | 0.60–0.73 | 0.099 |
ABSI | 0.0841 | 0.0810–0.0878 | 0.0834 | 0.0774–0.0888 | 0.580 |
ALT (U/L) | 44.00 | 33.00–68.50 | 54.50 | 39.25–84.00 | 0.021 * |
AST (U/L) | 26.00 | 20.00–35.50 | 38.00 | 28.50–55.75 | <0.001 * |
Variables | Patients without advanced fibrosis (#LS value < 7.9 kPa) n = 37 | Patients with advanced fibrosis (#LS value ≥ 7.9 kPa) n = 52 | |||
Median | IQR | Median | IQR | p value | |
GGT (U/L) | 39.00 | 28.00–73.50 | 87.59 | 57.75–143.75 | <0.001 * |
ALP (U/L) | 91.00 | 72.25–112.75 | 99.00 | 76.25–123.00 | 0.313 |
Serum insulin | 14.90 | 8.45–22.75 | 20.05 | 12.32–28.05 | 0.044 * |
HOMA-IR | 4.08 | 2.38–5.90 | 4.56 | 3.44–8.20 | 0.113 |
NEFA (mcU/mL) | 645.79 | 403.24–940.89 | 688.56 | 547.35–789.07 | 0.611 |
Total cholesterol (mg/dL) | 170.00 | 151.50–218.50 | 185.00 | 152.25–214.75 | 0.727 |
LDL (mg/dL) | 96.00 | 75.00–133.50 | 102.50 | 82.00–130.25 | 0.546 |
HDL (mg/dL) | 46.00 | 37.50–54.50 | 42.00 | 35.25–51.75 | 0.272 |
Triglycerides (mg/dL) | 133.00 | 81.50–229.50 | 151.50 | 99.50–247.50 | 0.410 |
Variables | Patients without Advanced Fibrosis (#LS Value < 7.9 kPa) n = 37 | Patients with Advanced Fibrosis (#LS Value ≥ 7.9 kPa) n = 52 | |||
---|---|---|---|---|---|
FA | Median | IQR | Median | IQR | p value |
16:0 | 19.40 | 17.91–21.49 | 21.89 | 19.62–23.32 | 0.001 * |
18:0 | 16.73 | 15.83–18.21 | 17.89 | 16.85–18.81 | 0.027 * |
Ʃ SFA | 48.63 | 44.11–54.36 | 46.48 | 44.50–50.11 | 0.141 |
16:1(n-7) | 0.78 | 0.49–1.27 | 0.77 | 0.39–1.88 | 0.882 |
18:1(n-9) | 10.45 | 9.35–11.10 | 11.34 | 10.23–12.58 | 0.004 * |
Ʃ MUFA | 15.39 | 13.98–17.66 | 17.11 | 14.79–19.37 | 0.015 * |
18:2(n-6) | 8.06 | 7.08–9.31 | 8.40 | 7.48–10.11 | 0.202 |
20:4(n-6) | 12.71 | 11.14–14.47 | 13.51 | 11.27–14.96 | 0.480 |
Ʃ n-6 PUFA | 28.74 | 24.41–32.11 | 28.41 | 25.35–31.53 | 0.835 |
18:3(n-3) | 0.40 | 0.30–0.68 | 0.38 | 0.20–0.57 | 0.424 |
20:5(n-3) | 1.19 | 0.99–1.50 | 1.19 | 0.97–1.40 | 0.335 |
22:6(n-3) | 3.43 | 2.69–4.12 | 3.07 | 2.52–3.85 | 0.324 |
Ʃ n-3 PUFA | 6.68 | 5.84–7.72 | 6.53 | 5.69–7.55 | 0.674 |
Ʃ PUFA | 35.82 | 31.28–39.84 | 35.20 | 32.93–37.85 | 0.790 |
(n-6):(n-3) | 4.31 | 3.84–4.77 | 4.46 | 3.81–5.27 | 0.415 |
Variables | Patients without advanced fibrosis (#LS value < 7.9 kPa) n = 37 | Patients with advanced fibrosis (#LS value ≥ 7.9 kPa) n = 52 | |||
Median | IQR | Median | IQR | p value | |
Omega-3 index | 6.60 | 3.87–5.57 | 4.34 | 3.54–5.02 | 0.162 |
18:3(n-6):18:2(n-6) | 0.03 | 0.00–0.06 | 0.00 | 0.00–0.06 | 0.288 |
20:4(n-6):20:3(n-6) | 9.59 | 7.08–13.52 | 7.90 | 4.79–9.55 | 0.010 * |
18:0:16:0 | 0.85 | 0.79–0.91 | 0.82 | 0.75–0.85 | 0.014 * |
16:1(n-7):16:0 | 0.04 | 0.03–0.07 | 0.05 | 0.03–0.15 | 0.139 |
18:1(n-9):18:0 | 0.61 | 0.54–0.66 | 0.63 | 0.57–0.70 | 0.095 |
16:0:18:2(n-6) | 2.33 | 2.10–2.75 | 2.44 | 2.19–2.87 | 0.233 |
Nutrients | Recommendations | Median | IQR | Lower to Recommended (%) | Over Recommended (%) |
---|---|---|---|---|---|
Total fat, % kcal | 25–35% * | 31.59 | 29.40–34.54 | 5.6 | 22.5 |
Saturated fat, % kcal | <7% # | 32.80 | 30.43–36.72 | - | 97.8 |
MUFA fat, % kcal | Up to 20% # | 11.03 | 10.11–12.16 | 100 | - |
PUFA fat, % kcal | Up to 10% # | 6.87 | 6.14–7.87 | 93.3 | - |
Cholesterol (mg) | <200 mg/d # | 166.30 | 165.47–167.11 | 100 | - |
Variables | Patients without Advanced Fibrosis (#LS Value < 7.9 kPa) n = 37 | Patients with Advanced Fibrosis (#LS Value ≥ 7.9 kPa) n = 52 | |||
---|---|---|---|---|---|
Median | IQR | Median | IQR | p value | |
Total fat, % kcal | 31.71 | 29.56–35.33 | 31.57 | 28.65–34.10 | 0.391 |
Saturated fat, % kcal | 32.64 | 30.11–36.72 | 32.81 | 30.78–36.96 | 0.914 |
MUFA, % kcal | 11.16 | 10.11–12.67 | 11.00 | 10.00–11.92 | 0.373 |
PUFA, % kcal | 6.92 | 6.36–7.52 | 6.73 | 6.05–8.18 | 0.696 |
Cholesterol (mg) | 166.29 | 165.60–167.39 | 166.31 | 165.41–166.95 | 0.419 |
Multivariate | |||||
---|---|---|---|---|---|
Regression Coefficient | SE | OR | 95% CI | p Value | |
Insulin | 0.097 | 0.04 | 1.10 | 1.01–1.19 | <0.001 |
16:0 | 0.392 | 0.13 | 1.48 | 1.13–1.93 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cansanção, K.; Silva Monteiro, L.; Carvalho Leite, N.; Dávalos, A.; Tavares do Carmo, M.D.G.; Arantes Ferreira Peres, W. Advanced Liver Fibrosis Is Independently Associated with Palmitic Acid and Insulin Levels in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients 2018, 10, 1586. https://doi.org/10.3390/nu10111586
Cansanção K, Silva Monteiro L, Carvalho Leite N, Dávalos A, Tavares do Carmo MDG, Arantes Ferreira Peres W. Advanced Liver Fibrosis Is Independently Associated with Palmitic Acid and Insulin Levels in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients. 2018; 10(11):1586. https://doi.org/10.3390/nu10111586
Chicago/Turabian StyleCansanção, Kátia, Luana Silva Monteiro, Nathalie Carvalho Leite, Alberto Dávalos, Maria Das Graças Tavares do Carmo, and Wilza Arantes Ferreira Peres. 2018. "Advanced Liver Fibrosis Is Independently Associated with Palmitic Acid and Insulin Levels in Patients with Non-Alcoholic Fatty Liver Disease" Nutrients 10, no. 11: 1586. https://doi.org/10.3390/nu10111586
APA StyleCansanção, K., Silva Monteiro, L., Carvalho Leite, N., Dávalos, A., Tavares do Carmo, M. D. G., & Arantes Ferreira Peres, W. (2018). Advanced Liver Fibrosis Is Independently Associated with Palmitic Acid and Insulin Levels in Patients with Non-Alcoholic Fatty Liver Disease. Nutrients, 10(11), 1586. https://doi.org/10.3390/nu10111586