Circulating Linoleic Acid is Associated with Improved Glucose Tolerance in Women after Gestational Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Protocol
2.3. Glucose Tolerance Groups
2.4. Biochemical Measurements
2.5. Fatty Acid Analysis
2.6. Statistical Analysis
3. Results
3.1. Background Characteristics
3.2. Fatty Acid Profiles in NGT, IGT, and T2D Groups
3.3. Correlation between FAs and Clinical Measurements for All Women
3.4. Correlation between FAs and Glucose Tolerance for All Women
3.5. Correlations with Dietary Intake in All Women
3.6. FA Influence on T2D Development in Women Treated with Insulin during Pregnancy
4. Discussion
4.1. MUFAs and Saturated FAs Associate with Decreased Metabolic Health
4.2. LA Is Robustly Associated with Healthy Glucose Homeostasis
4.3. ω3-PUFAs Show Mixed Results in Relation to Glucose Metabolism
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Metzger, B.E.; Coustan, D.R. The Organizing Committee. Summary and recommendations of the fourth international workshop-conference on gestational diabetes mellitus. Diabetes Care 1998, 21, B161–B167. [Google Scholar] [PubMed]
- Seshadri, R. American diabetes association gestational diabetes mellitus. Diabetes Care 2002, 25, S94–S96. [Google Scholar]
- Bellamy, L.; Casas, J.P.; Hingorani, A.D.; Williams, D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet 2009, 373, 1773–1779. [Google Scholar] [CrossRef]
- Kim, C.; Newton, K.M.; Knopp, R.H. Gestational diabetes and the incidence of type 2 diabetes: A systematic review. Diabetes Care 2002, 25, 1862–1868. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Montano, P.; Garcia-Gonzalez, V. Effects of dietary fatty acids in pancreatic beta cell metabolism, implications in homeostasis. Nutrients 2018, 10, 393. [Google Scholar] [CrossRef] [PubMed]
- Silva Figueiredo, P.; Carla Inada, A.; Marcelino, G.; Maiara Lopes Cardozo, C.; de Cássia Freitas, K.; de Cássia Avellaneda Guimarães, R.; Pereira de Castro, A.; Aragão do Nascimento, V.; Aiko Hiane, P. Fatty acids consumption: The role metabolic aspects involved in obesity and its associated disorders. Nutrients 2017, 9, 1158. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.F.; Li, X.; Shi, M.; Li, D. N-3 polyunsaturated fatty acids and metabolic syndrome risk: A meta-analysis. Nutrients 2017, 9, 703. [Google Scholar] [CrossRef] [PubMed]
- Field, C.J.; Ryan, E.A.; Thomson, A.; Clandinin, M.T. Diet fat composition alters membrane phospholipid composition, insulin binding, and glucose metabolism in adipocytes from control and diabetic animals. J. Biol. Chem. 1990, 265, 11143–11150. [Google Scholar] [PubMed]
- Schwab, U.; Lauritzen, L.; Tholstrup, T.; Haldorssoni, T.; Riserus, U.; Uusitupa, M.; Becker, W. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: A systematic review. Food Nutr. Res. 2014, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanders, A.J.; Alssema, M.; De Hoon, S.E.; Feskens, E.J.; van Woudenbergh, G.J.; van der Kallen, C.J.; Zock, P.L.; Refsum, H.; Drevon, C.A.; Elshorbagy, A. Circulating polyunsaturated fatty acids as biomarkers for dietary intake across subgroups: The codam and hoorn studies. Ann. Nutr. Metab. 2018, 72, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Brayner, B.; Kaur, G.; Keske, M.A.; Livingstone, K.M. Fads polymorphism, omega-3 fatty acids and diabetes risk: A systematic review. Nutrients 2018, 10, 758. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wu, J.H.; Wang, Q.; Lemaitre, R.N.; Mukamal, K.J.; Djousse, L.; King, I.B.; Song, X.; Biggs, M.L.; Delaney, J.A.; et al. Prospective association of fatty acids in the de novo lipogenesis pathway with risk of type 2 diabetes: The cardiovascular health study. Am. J. Clin. Nutr. 2014, 101, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.M.; English, D.R.; O’dea, K.; Sinclair, A.J.; Makrides, M.; Gibson, R.A.; Giles, G.G. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: Interpreting the role of linoleic acid. Am. J. Clin. Nutr. 2007, 86, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Lankinen, M.A.; Stančáková, A.; Uusitupa, M.; Ågren, J.; Pihlajamäki, J.; Kuusisto, J.; Schwab, U.; Laakso, M. Plasma fatty acids as predictors of glycaemia and type 2 diabetes. Diabetologia 2015, 58, 2533–2544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabout, M.; Alssema, M.; Nijpels, G.; Stehouwer, C.D.; Zock, P.L.; Brouwer, I.A.; Elshorbagy, A.K.; Refsum, H.; Dekker, J.M. Circulating linoleic acid and alpha-linolenic acid and glucose metabolism: The hoorn study. Eur. J. Nutr. 2017, 56, 2171–2180. [Google Scholar] [CrossRef] [PubMed]
- Forouhi, N.G.; Imamura, F.; Sharp, S.J.; Koulman, A.; Schulze, M.B.; Zheng, J.; Ye, Z.; Sluijs, I.; Guevara, M.; Huerta, J.M.; et al. Association of plasma phospholipid n-3 and n-6 polyunsaturated fatty acids with type 2 diabetes: The epic-interact case-cohort study. PLoS Med. 2016, 13, e1002094. [Google Scholar] [CrossRef] [PubMed]
- Belury, M.A.; Cole, R.M.; Snoke, D.B.; Banh, T.; Angelotti, A. Linoleic acid, glycemic control and type 2 diabetes. Prostaglandins Leukotrienes Essent. Fatty Acids 2018, 132, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Lepretti, M.; Martucciello, S.; Burgos Aceves, M.A.; Putti, R.; Lionetti, L. Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients 2018, 10, 350. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, Y.; Cederberg, H.; Vangipurapu, J.; Kangas, A.J.; Soininen, P.; Kuusisto, J.; Uusitupa, M.; Ala-Korpela, M.; Laakso, M. Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in finnish men. Diabetes Care 2013, 36, 3732–3738. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Scholl, T.O.; Leskiw, M.; Savaille, J.; Stein, T.P. Differences in maternal circulating fatty acid composition and dietary fat intake in women with gestational diabetes mellitus or mild gestational hyperglycemia. Diabetes Care 2010, 33, 2049–2054. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.; Ghebremeskel, K.; Lowy, C.; Thomas, B.; Crawford, M. Adverse effect of obesity on red cell membrane arachidonic and docosahexaenoic acids in gestational diabetes. Diabetologia 2004, 47, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taschereau-Charron, A.; Da Silva, M.S.; Bilodeau, J.-F.; Morisset, A.-S.; Julien, P.; Rudkowska, I. Alterations of fatty acid profiles in gestational diabetes and influence of the diet. Maturitas 2017, 99, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Fugmann, M.; Uhl, O.; Hellmuth, C.; Hetterich, H.; Kammer, N.N.; Ferrari, U.; Parhofer, K.G.; Koletzko, B.; Seissler, J.; Lechner, A. Differences in the serum nonesterified fatty acid profile of young women associated with a recent history of gestational diabetes and overweight/obesity. PLoS ONE 2015, 10, e0128001. [Google Scholar] [CrossRef] [PubMed]
- Andersson-Hall, U.; Gustavsson, C.; Pedersen, A.; Malmodin, D.; Joelsson, L.; Holmang, A. Higher concentrations of bcaas and 3-hib are associated with insulin resistance in the transition from gestational diabetes to type 2 diabetes. J. Diabetes Res. 2018, 2018, 4207067. [Google Scholar] [CrossRef] [PubMed]
- Lindroos, A.; Lissner, L.; Sjostrom, L. Validity and reproducibility of a self-administered dietary questionnaire in obese and non-obese subjects. Eur. J. Clin. Nutr. 1993, 47, 461–481. [Google Scholar] [PubMed]
- Henry, C.J. Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutr. 2005, 8, 1133–1152. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation. 2006. Available online: http://apps.who.int/iris/handle/10665/43588 (accessed on 23 September 2018).
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of homa modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, H.M.; Langkilde, A.M.; Undeland, I.; Sandberg, A.S. Herring (clupea harengus) intake influences lipoproteins but not inflammatory and oxidation markers in overweight men. Br. J. Nutr. 2009, 101, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Imamura, F.; Micha, R.; Wu, J.H.; de Oliveira Otto, M.C.; Otite, F.O.; Abioye, A.I.; Mozaffarian, D. Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: A systematic review and meta-analysis of randomised controlled feeding trials. PLoS Med. 2016, 13, e1002087. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.S.; Baek, S.H.; Kim, J.Y.; Lee, J.H.; Kim, O.Y. Serum phospholipid monounsaturated fatty acid composition and δ-9-desaturase activity are associated with early alteration of fasting glycemic status. Nutr. Res. 2014, 34, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Ekelund, M.; Shaat, N.; Almgren, P.; Groop, L.; Berntorp, K. Prediction of postpartum diabetes in women with gestational diabetes mellitus. Diabetologia 2010, 53, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Palomer, X.; Pizarro-Delgado, J.; Barroso, E.; Vázquez-Carrera, M. Palmitic and oleic acid: The yin and yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol. Metab. 2018, 29, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Warensjö, E.; Risérus, U.; Vessby, B. Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia 2005, 48, 1999–2005. [Google Scholar] [CrossRef] [PubMed]
- Feskens, E.J.; Virtanen, S.M.; Räsänen, L.; Tuomilehto, J.; Stengård, J.; Pekkanen, J.; Nissinen, A.; Kromhout, D. Dietary factors determining diabetes and impaired glucose tolerance: A 20-year follow-up of the finnish and dutch cohorts of the seven countries study. Diabetes Care 1995, 18, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Yary, T.; Voutilainen, S.; Tuomainen, T.P.; Ruusunen, A.; Nurmi, T.; Virtanen, J. Omega-6 polyunsaturated fatty acids, serum zinc, delta-5-and delta-6-desaturase activities and incident metabolic syndrome. J. Hum. Nutr. Diet. 2017, 30, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Galgani, J.E.; Aguirre, C.A.; Uauy, R.D.; Díaz, E.O. Plasma arachidonic acid influences insulin-stimulated glucose uptake in healthy adult women. Ann. Nutr. Metab. 2007, 51, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Mazoochian, L.; Sadeghi, H.M.M.; Pourfarzam, M. The effect of FADS2 gene rs174583 polymorphism on desaturase activities, fatty acid profile, insulin resistance, biochemical indices, and incidence of type 2 diabetes. J. Res. Med. Sci. 2018, 23. [Google Scholar] [CrossRef]
- Brenner, R.R. Hormonal modulation of δ6 and δ5 desaturases: Case of diabetes. Prostaglandins Leukotrienes Essent. Fatty Acids 2003, 68, 151–162. [Google Scholar] [CrossRef]
- Ni, Y.; Zhao, L.; Yu, H.; Ma, X.; Bao, Y.; Rajani, C.; Loo, L.W.; Shvetsov, Y.B.; Yu, H.; Chen, T.; et al. Circulating unsaturated fatty acids delineate the metabolic status of obese individuals. EBioMedicine 2015, 2, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Ann. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Arterburn, L.M.; Hall, E.B.; Oken, H. Distribution, interconversion, and dose response of n− 3 fatty acids in humans. Am. J. Clin. Nutr. 2006, 83, 1467S–1476S. [Google Scholar] [CrossRef] [PubMed]
- Claesson, R.; Ignell, C.; Shaat, N.; Berntorp, K. HbA1c as a predictor of diabetes after gestational diabetes mellitus. Prim. Care Diabetes 2017, 11, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Marklund, M.; Pingel, R.; Rosqvist, F.; Lindroos, A.K.; Eriksson, J.W.; Vessby, B.; Oscarsson, J.; Lind, L.; Risérus, U. Fatty acid proportions in plasma cholesterol esters and phospholipids are positively correlated in various swedish populations. J. Nutr. 2017, 147, 2118–2125. [Google Scholar] [CrossRef] [PubMed]
NGT | IGT | T2D | Pa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean | SD | n | Mean | SD | n | Mean | SD | IGT vs. NGT | T2D vs. NGT | T2D vs. IGT | |
Age (years) | 135 | 39.5 | 5.0 | 43 | 40.5 | 6.0 | 43 | 37.8 | 5.3 | 0.05 | ||
Ethnicity (% Scandinavian) | 130 | 53.1 | 43 | 51.2 | 43 | 32.6 | 0.023 | |||||
Education level (0–4) | 125 | 2.4 | 1.3 | 41 | 2.3 | 1.3 | 37 | 1.6 | 1.5 | 0.007 | ||
BMI (kg/m2) | 135 | 26.1 | 4.9 | 43 | 29.5 | 4.6 | 43 | 29.2 | 5.8 | <0.001 | 0.002 | |
Waist circumference (cm) | 133 | 87.4 | 10.8 | 42 | 94.0 | 16.7 | 43 | 95.0 | 14.6 | 0.007 | 0.004 | |
Hip circumference (cm) | 133 | 102.3 | 9.9 | 42 | 108.2 | 9.1 | 43 | 107.5 | 11.6 | 0.002 | 0.02 | |
Body fat (%) | 59 | 32.9 | 7.9 | 16 | 40.5 | 6.6 | 12 | 38.5 | 13.2 | 0.007 | ||
Fat mass (kg) | 59 | 23.4 | 9.5 | 16 | 32.3 | 10.7 | 12 | 31.8 | 15.8 | 0.01 | 0.04 | |
Fat free mass (kg) | 59 | 45.6 | 5.4 | 16 | 46.0 | 6.7 | 12 | 45.9 | 6.0 | |||
BP systolic (mmHg) | 134 | 114 | 13 | 43 | 123 | 14 | 43 | 119 | 14 | <0.001 | ||
BP diastolic (mmHg) | 134 | 75 | 10 | 43 | 79 | 10 | 43 | 78 | 11 | |||
s-Total cholesterol (mM) | 135 | 4.7 | 0.8 | 43 | 4.7 | 0.8 | 42 | 4.7 | 0.7 | |||
s-HDL (mM) | 135 | 1.5 | 0.3 | 43 | 1.3 | 0.3 | 43 | 1.4 | 0.5 | 0.001 | 0.04 | |
s-LDL (mM) | 135 | 2.9 | 0.8 | 43 | 3.2 | 0.7 | 43 | 3.0 | 0.6 | |||
s-Triglycerides (mM) | 134 | 0.9 | 0.5 | 43 | 1.2 | 0.5 | 43 | 1.4 | 1.4 | <0.001 | ||
Alcohol intake (g) | 111 | 3.3 | 4.1 | 34 | 2.8 | 4.3 | 22 | 1.8 | 3.2 | |||
Smokers (%) | 126 | 19.8 | 37 | 13.5 | 34 | 11.8 | ||||||
Glucose and insulin | ||||||||||||
b-HbA1c (mmol/mol) | 135 | 37.1 | 3.7 | 42 | 38.4 | 3.9 | 43 | 52.7 | 19.0 | <0.001 | <0.001 | |
p-Glucose fasting (mM) | 135 | 5.4 | 0.4 | 42 | 6.1 | 0.4 | 43 | 8.2 | 3.5 | 0.02 | <0.001 | <0.001 |
p-Glucose 2 h (mM) | 125 | 5.5 | 1.1 | 41 | 7.7 | 1.6 | 12 | 11.8 | 3.9 | <0.001 | <0.001 | <0.001 |
s-Insulin fasting (mU/L) | 131 | 8.1 | 4.2 | 42 | 14.7 | 9.4 | 43 | 12.9 | 7.5 | <0.001 | <0.001 | |
s-Insulin 2 h (mU/L) | 119 | 45.0 | 37.8 | 39 | 87.8 | 57.7 | 12 | 85.3 | 58.4 | <0.001 | 0.008 | |
HOMA-IR | 130 | 1.9 | 1.0 | 42 | 3.9 | 2.7 | 42 | 4.9 | 3.4 | <0.001 | <0.001 | 0.04 |
NGT (n = 88) | IGT (n = 32) | T2D (n = 17) | Pa | Pa BMI-Adjusted | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | IGT vs. NGT | T2D vs. NGT | T2D vs. IGT | IGT vs. NGT | T2D vs. NGT | T2D vs. IGT | |
Energy intake (kcal/d) | 2399 | 551 | 2354 | 727 | 2248 | 590 | ||||||
Carbohydrate intake (g/d) | 251 | 66 | 251 | 87 | 232 | 73 | ||||||
Protein intake (g/d) | 97 | 23 | 98 | 38 | 97 | 27 | ||||||
Fat intake (g/d) | 108 | 32 | 103 | 33 | 101 | 30 | ||||||
Meal frequencies | ||||||||||||
Meat meals (per week) | 7.8 | 3.5 | 7.9 | 2.3 | 7.3 | 3.2 | ||||||
Fish meals (per week) | 2.6 | 1.9 | 2.7 | 1.5 | 3.0 | 2.5 | ||||||
Vegetarian meals (per week) | 1.4 | 2.4 | 0.6 | 1.3 | 0.7 | 1.5 | ||||||
Proportion of cooking fat used | ||||||||||||
Butter (%) | 32 | 31 | 17 | 25 | 12 | 20 | 0.03 | 0.03 | 0.01 | 0.01 | ||
Margarine (%) | 24 | 30 | 36 | 36 | 51 | 36 | 0.01 | 0.004 | ||||
Vegetable oil (%) | 43 | 28 | 38 | 30 | 37 | 33 |
NGT (n = 135) | IGT (n = 43) | T2D (n = 43) | Pa | Pa BMI-Adjusted | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | NGT vs. IGT | NGT vs. T2D | IGT vs. T2D | NGT vs. IGT | NGT vs. T2D | IGT vs. T2D | ||
ω-3 PUFAs, % | |||||||||||||
α-Linolenic acid | ALA (18:3n3) | 0.72 | 0.22 | 0.81 | 0.25 | 0.78 | 0.29 | ||||||
Eicosapentaenoic acid | EPA (20:5n3) | 0.90 | 0.54 | 1.00 | 0.67 | 0.95 | 0.45 | ||||||
Docosapentaenoic acid | DPA (22:5n3) | 0.41 | 0.09 | 0.40 | 0.08 | 0.45 | 0.12 | 0.007 | 0.036 | ||||
Docosahexaenoic acid | DHA (22:6n3) | 1.77 | 0.61 | 1.72 | 0.61 | 1.70 | 0.64 | ||||||
ω-6 PUFAs, % | |||||||||||||
Linoleic acid | LA (18:2n6) | 30.1 | 3.8 | 27.6 | 3.8 | 27.1 | 4.2 | 0.001 | <0.001 | 0.004 | <0.001 | ||
γ-Linolenic acid | GLA (18:3n6) | 0.30 | 0.15 | 0.38 | 0.14 | 0.34 | 0.14 | 0.004 | 0.011 | ||||
Dihomo-γ-linolenic acid | DGLA (20:3n6) | 1.25 | 0.31 | 1.42 | 0.34 | 1.36 | 0.40 | 0.013 | |||||
Arachidonic acid | AA (20:4n6) | 6.06 | 1.36 | 6.09 | 1.09 | 6.00 | 1.34 | ||||||
MUFAs, % | |||||||||||||
Palmitoleic acid | POA (16:1n7) | 1.42 | 0.50 | 1.77 | 0.70 | 1.68 | 0.80 | 0.004 | 0.042 | 0.026 | |||
Vaccenic acid | (18:1n7) | 2.03 | 0.29 | 2.06 | 0.30 | 2.08 | 0.33 | ||||||
Oleic acid | (18:1n9) | 22.6 | 2.6 | 23.9 | 3.1 | 23.7 | 3.8 | 0.03 | |||||
Saturated FAs, % | |||||||||||||
Myristic acid | (14:0) | 0.64 | 0.28 | 0.73 | 0.28 | 0.69 | 0.28 | ||||||
Palmitic acid | (16:0) | 23.5 | 2.1 | 23.9 | 2.0 | 24.7 | 2.3 | 0.002 | 0.003 | ||||
Stearic acid | (18:0) | 8.41 | 0.94 | 8.32 | 0.77 | 8.49 | 1.24 | ||||||
Desaturase activity | |||||||||||||
Delta-6 desaturase | D6D (DGLA/LA) | 0.047 | 0.015 | 0.058 | 0.016 | 0.056 | 0.017 | <0.001 | 0.002 | 0.002 | 0.010 | ||
Delta-5 desaturase | D5D (AA/DGLA) | 5.3 | 1.9 | 4.7 | 1.7 | 4.8 | 1.7 | ||||||
Stearoyl-CoA desaturase | SCD (16:1n7/16:0) | 0.060 | 0.018 | 0.073 | 0.024 | 0.067 | 0.027 | 0.003 | 0.02 | ||||
Delta-9 desaturase | D9D (18:1n9/18:0) | 2.8 | 0.5 | 2.9 | 0.5 | 2.8 | 0.6 |
BMI | Systolic BP | Diastolic BP | Waist | Hip | Body Fat % | HDL | LDL | TG | ||
---|---|---|---|---|---|---|---|---|---|---|
n = 221 | n = 220 | n = 220 | n = 218 | n = 218 | n = 85 | n = 221 | n = 221 | n = 220 | ||
ω-3 PUFAs | ||||||||||
ALA (18:3n3) | R | 0.109 | −0.013 | −0.033 | 0.114 | 0.072 | 0.120 | −0.325 | 0.170 | 0.385 |
P | 0.106 | 0.850 | 0.629 | 0.092 | 0.291 | 0.275 | <0.001 | 0.011 | <0.001 | |
EPA (20:5n3) | R | −0.045 | 0.075 | 0.062 | −0.080 | −0.075 | −0.019 | 0.161 | <0.001 | −0.179 |
P | 0.506 | 0.269 | 0.356 | 0.239 | 0.270 | 0.860 | 0.016 | 0.998 | 0.008 | |
DPA (22:5n3) | R | −0.101 | −0.034 | −0.022 | −0.117 | −0.098 | −0.146 | 0.161 | −0.043 | −0.059 |
P | 0.134 | 0.620 | 0.743 | 0.085 | 0.149 | 0.181 | 0.017 | 0.527 | 0.386 | |
DHA (22:6n3) | R | −0.196 | −0.059 | −0.040 | −0.180 | −0.221 | −0.162 | 0.306 | −0.126 | −0.275 |
P | 0.003 | 0.384 | 0.556 | 0.008 | 0.001 | 0.138 | <0.001 | 0.061 | <0.001 | |
ω-6 PUFAs | ||||||||||
LA (18:2n6) | R | −0.265 | −0.163 | −0.184 | −0.202 | −0.184 | −0.247 | 0.232 | −0.060 | −0.549 |
P | <0.001 | 0.016 | 0.006 | 0.003 | 0.006 | 0.023 | 0.001 | 0.376 | <0.001 | |
GLA (18:3n6) | R | 0.208 | 0.065 | 0.094 | 0.075 | 0.150 | 0.394 | −0.063 | 0.208 | 0.049 |
P | 0.002 | 0.334 | 0.166 | 0.273 | 0.027 | <0.001 | 0.351 | 0.002 | 0.473 | |
DGLA (20:3n6) | R | 0.223 | 0.076 | 0.052 | 0.209 | 0.216 | 0.289 | −0.080 | 0.161 | −0.035 |
P | 0.001 | 0.261 | 0.447 | 0.002 | 0.001 | 0.007 | 0.235 | 0.017 | 0.603 | |
AA (20:4n6) | R | −0.019 | 0.054 | 0.048 | −0.092 | −0.004 | −0.127 | 0.260 | −0.120 | −0.373 |
P | 0.781 | 0.428 | 0.481 | 0.178 | 0.958 | 0.245 | <0.001 | 0.076 | <0.001 | |
MUFAs | ||||||||||
POA (16:1n7) | R | 0.305 | 0.125 | 0.160 | 0.204 | 0.266 | 0.400 | −0.176 | 0.206 | 0.511 |
P | <0.001 | 0.063 | 0.017 | 0.002 | <0.001 | <0.001 | 0.009 | 0.002 | <0.001 | |
Vaccenic acid (18:1n7) | R | 0.104 | 0.034 | 0.078 | 0.009 | 0.085 | 0.078 | −0.207 | −0.008 | 0.335 |
P | 0.124 | 0.618 | 0.246 | 0.891 | 0.213 | 0.480 | 0.002 | 0.907 | <0.001 | |
Oleic acid (18:1n9) | R | 0.228 | 0.115 | 0.150 | 0.214 | 0.205 | 0.246 | −0.390 | 0.171 | 0.604 |
P | 0.001 | 0.090 | 0.026 | 0.001 | 0.002 | 0.023 | <0.001 | 0.011 | <0.001 | |
Saturated FAs | ||||||||||
Myristic acid (14:0) | R | 0.130 | 0.030 | 0.043 | 0.161 | 0.057 | 0.154 | −0.210 | 0.143 | 0.407 |
P | 0.053 | 0.661 | 0.523 | 0.017 | 0.405 | 0.158 | 0.002 | 0.034 | <0.001 | |
Palmitic acid (16:0) | R | 0.128 | 0.089 | 0.057 | 0.138 | 0.047 | 0.116 | −0.149 | −0.041 | 0.435 |
P | 0.058 | 0.186 | 0.397 | 0.042 | 0.493 | 0.290 | 0.027 | 0.541 | <0.001 | |
Stearic acid (18:0) | R | −0.093 | −0.075 | −0.050 | −0.123 | −0.099 | −0.111 | 0.266 | −0.245 | −0.379 |
P | 0.167 | 0.270 | 0.461 | 0.069 | 0.144 | 0.313 | <0.001 | <0.001 | <0.001 | |
Desaturases | ||||||||||
D6D | R | 0.308 | 0.144 | 0.132 | 0.262 | 0.262 | 0.347 | −0.174 | 0.174 | 0.235 |
P | <0.001 | 0.033 | 0.051 | <0.001 | <0.001 | 0.001 | 0.010 | 0.010 | <0.001 | |
D5D | R | −0.195 | −0.037 | −0.027 | −0.222 | −0.176 | −0.264 | 0.226 | −0.215 | −0.209 |
P | 0.004 | 0.583 | 0.695 | 0.001 | 0.009 | 0.015 | 0.001 | 0.001 | 0.002 | |
SCD | R | 0.316 | 0.120 | 0.169 | 0.198 | 0.286 | 0.441 | −0.168 | 0.245 | 0.455 |
P | <0.001 | 0.075 | 0.012 | 0.003 | <0.001 | <0.001 | 0.012 | <0.001 | <0.001 | |
D9D | R | 0.192 | 0.108 | 0.101 | 0.213 | 0.182 | 0.227 | −0.400 | 0.229 | 0.655 |
P | 0.004 | 0.112 | 0.134 | 0.002 | 0.007 | 0.037 | <0.001 | 0.001 | <0.001 |
Glucose (Fasting) | Insulin (Fasting) | HOMA-IR | HOMA-β-Cell | Glucose AUC | Insulin AUC | HbA1c | ||
---|---|---|---|---|---|---|---|---|
n = 220 | n = 216 | n = 214 | n = 214 | n = 176 | n = 166 | n = 220 | ||
ω-3 PUFAs | ||||||||
ALA (18:3n3) | R | 0.181 | 0.247 | 0.289 | 0.183 | 0.243 | 0.283 | 0.111 |
P | 0.007 | <0.001 | <0.001 | 0.007 | 0.001 | <0.001 | 0.100 | |
EPA (20:5n3) | R | 0.060 | 0.029 | 0.046 | −0.030 | −0.113 | −0.120 | 0.003 |
P | 0.374 | 0.676 | 0.504 | 0.665 | 0.137 | 0.125 | 0.969 | |
DPA (22:5n3) | R | 0.061 | −0.121 | −0.046 | −0.200 | −0.073 | −0.169 | 0.032 |
P | 0.368 | 0.077 | 0.501 | 0.003 | 0.333 | 0.030 | 0.634 | |
DHA (22:6n3) | R | 0.005 | −0.126 | −0.109 | −0.131 | −0.239 | −0.149 | −0.059 |
P | 0.940 | 0.064 | 0.113 | 0.056 | 0.001 | 0.056 | 0.382 | |
ω-6 PUFAs | ||||||||
LA (18:2n6) | R | −0.239 | −0.351 | −0.395 | −0.093 | −0.346 | −0.294 | −0.164 |
P | <0.001 | <0.001 | <0.001 | 0.177 | <0.001 | <0.001 | 0.015 | |
GLA (18:3n6) | R | 0.010 | 0.119 | 0.105 | 0.090 | 0.145 | 0.172 | 0.108 |
P | 0.882 | 0.080 | 0.127 | 0.188 | 0.055 | 0.027 | 0.110 | |
DGLA (20:3n6) | R | −0.132 | 0.205 | 0.079 | 0.222 | 0.144 | 0.315 | −0.117 |
P | 0.051 | 0.002 | 0.250 | 0.001 | 0.056 | <0.001 | 0.083 | |
AA (20:4n6) | R | −0.008 | −0.187 | −0.169 | −0.196 | −0.219 | −0.220 | −0.001 |
P | 0.904 | 0.006 | 0.013 | 0.004 | 0.003 | 0.004 | 0.982 | |
MUFAs | ||||||||
POA (16:1n7) | R | 0.063 | 0.286 | 0.256 | 0.104 | 0.432 | 0.277 | 0.054 |
P | 0.350 | <0.001 | <0.001 | 0.130 | <0.001 | <0.001 | 0.422 | |
Vaccenic acid (18:1n7) | R | 0.055 | 0.084 | 0.108 | <0.001 | 0.129 | 0.012 | −0.024 |
P | 0.420 | 0.220 | 0.114 | 0.995 | 0.088 | 0.878 | 0.719 | |
Oleic acid (18:1n9) | R | 0.201 | 0.297 | 0.331 | 0.126 | 0.334 | 0.297 | 0.125 |
P | 0.003 | <0.001 | <0.001 | 0.066 | <0.001 | <0.001 | 0.064 | |
Saturated FAs | ||||||||
Myristic acid (14:0) | R | 0.059 | 0.253 | 0.256 | 0.168 | 0.298 | 0.304 | 0.062 |
P | 0.380 | <0.001 | <0.001 | 0.014 | <0.001 | <0.001 | 0.357 | |
Palmitic acid (16:0) | R | 0.175 | 0.239 | 0.292 | 0.081 | 0.273 | 0.180 | 0.188 |
P | 0.009 | <0.001 | <0.001 | 0.240 | <0.001 | 0.020 | 0.005 | |
Stearic acid (18:0) | R | −0.117 | −0.085 | −0.125 | −0.050 | −0.176 | −0.086 | −0.132 |
P | 0.084 | 0.212 | 0.068 | 0.465 | 0.020 | 0.270 | 0.051 | |
Desaturases | ||||||||
D6D | R | −0.016 | 0.331 | 0.232 | 0.216 | 0.290 | 0.392 | −0.038 |
P | 0.818 | <0.001 | 0.001 | 0.002 | <0.001 | <0.001 | 0.578 | |
D5D | R | 0.101 | −0.258 | −0.152 | −0.262 | −0.256 | −0.351 | 0.093 |
P | 0.135 | <0.001 | 0.026 | <0.001 | 0.001 | <0.001 | 0.167 | |
SCD | R | 0.011 | 0.268 | 0.214 | 0.110 | 0.411 | 0.279 | −0.004 |
P | 0.868 | <0.001 | 0.002 | 0.107 | <0.001 | <0.001 | 0.949 | |
D9D | R | 0.234 | 0.227 | 0.300 | 0.083 | 0.340 | 0.239 | 0.203 |
P | <0.001 | 0.001 | <0.001 | 0.227 | <0.001 | 0.002 | 0.003 |
NGT or IGT (n = 32) | T2D (n = 21) | P | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Ethnicity (% Scandinavian) | 29 | 27 | 0.57 | ||
BMI (kg/m2) | 29.3 | 4.9 | 29.1 | 4.9 | 0.92 |
BMI change from pre-pregnancy (kg/m2) | −1.27 | 3.82 | −0.41 | 3.06 | 0.38 |
BP Systolic (mmHg) | 121 | 13 | 120 | 12 | 0.72 |
BP Diastolic (mmHg) | 78 | 9 | 78 | 9 | 0.81 |
Waist (cm) | 96 | 10 | 95 | 14 | 0.81 |
Hip (cm) | 108 | 10 | 107 | 10 | 0.82 |
s-HDL (mM) | 1.33 | 0.33 | 1.33 | 0.50 | 0.96 |
s-LDL (mM) | 3.20 | 0.66 | 3.04 | 0.63 | 0.38 |
s-Triglycerides (mM) | 1.07 | 0.34 | 1.48 | 1.62 | 0.18 |
b-HbA1c (mmol/mol) | 40 | 5 | 57 | 23 | <0.001 |
p-Glucose fasting (mM) | 5.8 | 0.4 | 9.0 | 4.3 | 0.001 |
Significantly different FAs: | |||||
Palmitic acid (16:0) | 23.0 | 1.8 | 24.7 | 2.2 | 0.005 |
LA (18:2n6) | 30.4 | 4.3 | 27.0 | 3.9 | 0.007 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersson-Hall, U.; Carlsson, N.-G.; Sandberg, A.-S.; Holmäng, A. Circulating Linoleic Acid is Associated with Improved Glucose Tolerance in Women after Gestational Diabetes. Nutrients 2018, 10, 1629. https://doi.org/10.3390/nu10111629
Andersson-Hall U, Carlsson N-G, Sandberg A-S, Holmäng A. Circulating Linoleic Acid is Associated with Improved Glucose Tolerance in Women after Gestational Diabetes. Nutrients. 2018; 10(11):1629. https://doi.org/10.3390/nu10111629
Chicago/Turabian StyleAndersson-Hall, Ulrika, Nils-Gunnar Carlsson, Ann-Sofie Sandberg, and Agneta Holmäng. 2018. "Circulating Linoleic Acid is Associated with Improved Glucose Tolerance in Women after Gestational Diabetes" Nutrients 10, no. 11: 1629. https://doi.org/10.3390/nu10111629
APA StyleAndersson-Hall, U., Carlsson, N. -G., Sandberg, A. -S., & Holmäng, A. (2018). Circulating Linoleic Acid is Associated with Improved Glucose Tolerance in Women after Gestational Diabetes. Nutrients, 10(11), 1629. https://doi.org/10.3390/nu10111629