Almond Allergy: An Overview on Prevalence, Thresholds, Regulations and Allergen Detection
Abstract
:1. Introduction
2. Prevalence
3. Almond Allergens
3.1 Detection of Almond Allergens
3.1.1. Immunochemical Methods
ELISA Methods
Lateral Flow Devices or Dipstick Assays
Immunoblotting
3.1.2. DNA-Based Methods
3.1.3. Mass Spectrometry (MS)-Based Methods
3.1.4. Allergen Microarrays
3.1.5. Adenosine Tri-Phosphate and Total Protein Methods
4. Threshold Dose Distribution and Precautionary Allergen Labelling
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boyce, J.A.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fenton, M.J.; Arshad, S.H.; et al. Guidelines for the diagnosis and management of food allergy in the united states: Report of the niaid-sponsored expert panel. J. Allergy Clin. Immunol. 2010, 126, S5–S58. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.A.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fenton, M.J.; Arshad, S.H.; et al. Guidelines for the diagnosis and management of food allergy in the united states: Summary of the niaid-sponsored expert panel report. J. Allergy Clin. Immunol. 2010, 126, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Finding a Path to Safety in Food Allergy: Assessment of the Global Burden, Causes, Prevention, Management, and Public Policy; Stallings, V.A., Oria, M.P., Eds.; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Sicherer, S.H.; Sampson, H.A. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J. Allergy Clin. Immunol. 2018, 141, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Sicherer, S.H.; Allen, K.; Lack, G.; Taylor, S.L.; Donovan, S.M.; Oria, M. Critical issues in food allergy: A National Academies Consensus Report. Pediatrics 2017, 140, e20170194. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.J.; Koplin, J.J. Prospects for prevention of food allergy. J. Allergy Clin. Immunol. Pract. 2016, 4, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Du Toit, G.; Tsakok, T.; Lack, S.; Lack, G. Prevention of food allergy. J. Allergy Clin. Immunol. 2016, 137, 998–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luyt, D.K.; Vaughan, D.; Oyewole, E.; Stiefel, G. Ethnic differences in prevalence of cashew nut, pistachio nut and almond allergy. Pediatr. Allergy Immunol. 2016, 27, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, R.; Dennis, S.; Gendel, S.; Acheson, D.; Assimon, S.A.; Beru, N.; Bolger, P.; Carlson, D.; Carvajal, R.; Copp, C.; et al. Approaches to establish thresholds for major food allergens and for gluten in food. J. Food Prot. 2008, 71, 1043–1088. [Google Scholar] [PubMed]
- McWilliam, V.; Koplin, J.; Lodge, C.; Tang, M.; Dharmage, S.; Allen, K. The prevalence of tree nut allergy: A systematic review. Curr. Allergy Asthma Rep. 2015, 15. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shoshan, M.; Turnbull, E.; Clarke, A. Food allergy: Temporal trends and determinants. Curr. Allergy Asthma Rep. 2012, 12, 346–372. [Google Scholar] [CrossRef] [PubMed]
- Woods, R.K.; Abramson, M.; Raven, J.M.; Bailey, M.; Weiner, J.M.; Walters, E.H. Reported food intolerance and respiratory symptoms in young adults. Eur. Respir. J. 1998, 11, 151–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, K.S.; Chiu, W.H. Food hypersensitivity in primary school children in Taiwan: Relationship with asthma. Food Agric. Immunol. 2012, 23, 247–254. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Munoz-Furlong, A.; Sampson, H.A. Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit dial telephone survey: A 5-year follow-up study. J. Allergy Clin. Immunol. 2003, 112, 1203–1207. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Furlong, T.J.; Munoz-Furlong, A.; Burks, A.W.; Sampson, H.A. A voluntary registry for peanut and tree nut allergy: Characteristics of the first 5149 registrants. J. Allergy Clin. Immunol. 2001, 108, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Young, E.; Stoneham, M.D.; Petruckevitch, A.; Barton, J.; Rona, R. A population study of food intolerance. Lancet 1994, 343, 1127–1130. [Google Scholar] [CrossRef]
- Orhan, F.; Karakas, T.; Cakir, M.; Aksoy, A.; Baki, A.; Gedik, Y. Prevalence of immunoglobulin e-mediated food allergy in 6–9-year-old urban schoolchildren in the eastern black sea region of turkey. Clin. Exp. Allergy 2009, 39, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Brugman, E.; Meulmeester, J.F.; Spee-van der Wekke, A.; Beuker, R.J.; Radder, J.J.; Verloove-Vanhorick, S. Prevalence of self-reported food hypersensitivity among school children in the netherlands. Eur. J. Clin. Nutr. 1998, 52, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gimeno, A.; Del Castillo, P.; Garcia-Hernandez, G.; Luna-Paredes, C.; Garcia-Sanchez, J.A. Prevalence of food allergy/intolerance in children: Results from a population based survey. J. Allergy Clin. Immunol. 2000, 105, S130. [Google Scholar] [CrossRef]
- Burney, P.; Summers, C.; Chinn, S.; Hooper, R.; van Ree, R.; Lidholm, J. Prevalence and distribution of sensitization to foods in the european community respiratory health survey: A Europrevall analysis. Allergy 2010, 65, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Matricardi, P.M.; Kleine-Tebbe, J.; Hoffmann, H.J.; Valenta, R.; Hilger, C.; Hofmaier, S.; Aalberse, R.C.; Agache, I.; Asero, R.; Ballmer-Weber, B.; et al. EAACI molecular allergology user’s guide. Pediatr. Allergy Immunol. 2016, 27, 1–250. [Google Scholar] [CrossRef] [PubMed]
- Holzhauser, T.; Roder, M. Allergens in treenuts, sesame seeds, mustard and celery. In Food Allergens—Analysis, Instrumentation and Methods; Nollet, L.M.L., van Hengel, A.J., Eds.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Yeung, J.M. Criteria to determine priority allergens: Tree nut allergy review. In Allergen Management in the Food Industry; John Wiley and Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Clark, A.T.; Ewan, P.W. Interpretation of tests for nut allergy in one thousand patients, in relation to allergy or tolerance. Clin. Exp. Allergy 2003, 33, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Noble, K.A.; Liu, C.Q.; Sathe, S.K.; Roux, K.H. A cherry seed-derived spice, mahleb, is recognized by anti-almond antibodies including almond-allergic patient IgE. J. Food Sci. 2017, 82, 1786–1791. [Google Scholar] [CrossRef] [PubMed]
- Uotila, R.; Kukkonen, A.K.; Pelkonen, A.S.; Makela, M.J. Cross-sensitization profiles of edible nuts in a birch-endemic area. Allergy 2016, 71, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Couch, C.; Franxman, T.; Greenhawt, M. Characteristics of tree nut challenges in tree nut allergic and tree nut sensitized individuals. J. Allergy Clin. Immunol. 2017, 118, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Boyano, M.; Pedrosa, M.; Quirce, S.; Boyano-Martinez, T. Household almond and peanut consumption is related to the development of sensitization in young children. J. Allergy Clin. Immunol. 2016, 137, 1248–1251. [Google Scholar] [CrossRef] [PubMed]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J. 2014, 12. [Google Scholar] [CrossRef]
- Costa, J.; Mafra, I.; Carrapatoso, I.; Oliveira, M. Almond allergens: Molecular characterization, detection, and clinical relevance. J. Agric. Food Chem. 2012, 60, 1337–1349. [Google Scholar] [CrossRef] [PubMed]
- Gaur, V.; Sethi, D.K.; Salunke, D.M. Purification, identification and preliminary crystallographic studies of pru du amandin, an allergenic protein from prunus dulcis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2008, 64, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.C.; Albillos, S.M.; Guo, F.; Howard, A.; Fu, T.J.; Kothary, M.H.; Zhang, Y.Z. Crystal structure of prunin-1, a major component of the almond (Prunus dulcis) allergen amandin. J. Agric. Food Chem. 2009, 57, 8643–8651. [Google Scholar] [CrossRef] [PubMed]
- Tawde, P.; Venkatesh, Y.P.; Wang, F.; Teuber, S.S.; Sathe, S.K.; Roux, K.H. Cloning and characterization of profilin (pru du 4), a cross-reactive almond (Prunus dulcis) allergen. J. Allergy Clin. Immunol. 2006, 118, 915–922. [Google Scholar] [CrossRef] [PubMed]
- WHO/IUIS Allergen Nomenclature Sub-Committee. Allergen Nomenclature. Available online: http://www.allergen.org (accessed on 4 September 2018).
- Roux, K.H.; Teuber, S.S.; Robotham, J.M.; Sathe, S.K. Detection and stability of the major almond allergen in foods. J. Agric. Food Chem. 2001, 49, 2131–2136. [Google Scholar] [CrossRef] [PubMed]
- Willison, L.N.; Tripathi, P.; Sharma, G.; Teuber, S.S.; Sathe, S.K.; Roux, K.H. Cloning, expression and patient IgE reactivity of recombinant pru du 6, an 11s globulin from almond. Int. Arch. Allergy Immunol. 2011, 156, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Willison, L.N.; Zhang, Q.; Su, M.N.; Teuber, S.S.; Sathe, S.K.; Roux, K.H. Conformational epitope mapping of pru du 6, a major allergen from almond nut. Mol. Immunol. 2013, 55, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, M.; Teuber, S.S.; Roux, K.H.; Sathe, S.K. Effects of roasting, blanching, autoclaving, and microwave heating on antigenicity of almond (Prunus dulcis L.) proteins. J. Agric. Food Chem. 2002, 50, 3544–3548. [Google Scholar] [CrossRef] [PubMed]
- Mandalari, G.; Rigby, N.M.; Bisignano, C.; Lo Curto, R.B.; Mulholland, F.; Su, M.; Venkatachalam, M.; Robotham, J.M.; Willison, L.N.; Lapsley, K.; et al. Effect of food matrix and processing on release of almond protein during simulated digestion. LWT-Food Sci. Technol. 2014, 59, 439–447. [Google Scholar] [CrossRef]
- Holden, L.; Sletten, G.B.G.; Lindvik, H.; Faeste, C.K.; Dooper, M. Characterization of IgE binding to lupin, peanut and almond with sera from lupin-allergic patients. Int. Arch. Allergy Immunol. 2008, 146, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Poltronieri, P.; Cappello, M.S.; Dohmae, N.; Conti, A.; Fortunato, D.; Pastorello, E.A.; Ortolani, C.; Zacheo, G. Identification and characterisation of the IgE-binding proteins 2s albumin and conglutin gamma in almond (Prunus dulcis) seeds. Int. Arch. Allergy Immunol. 2002, 128, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Abolhassani, M.; Roux, K.H. Cdna cloning, expression and characterization of an allergenic 60s ribosomal protein of almond (Prunus dulcis). Iran. J. Allergy Asthma Immunol. 2009, 8, 77–84. [Google Scholar] [PubMed]
- Jackson, L.S.; Al-Taher, F.M.; Moorman, M.; DeVries, J.W.; Tippett, R.; Swanson, K.M.J.; Fu, T.J.; Salter, R.; Dunaif, G.; Estes, S.; et al. Cleaning and other control and validation strategies to prevent allergen cross-contact in food-processing operations. J. Food Prot. 2008, 71, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Young, O.A.; Karl, D.P. Evaluation of cleaning procedures for allergen control in a food industry environment. J. Food Sci. 2010, 75, T149–T155. [Google Scholar] [CrossRef] [PubMed]
- Blais, B.W.; Gaudreault, M.; Phillippe, L.M. Multiplex enzyme immunoassay system for the simultaneous detection of multiple allergens in foods. Food Control 2003, 14, 43–47. [Google Scholar] [CrossRef]
- Garber, E.A.E.; Perry, J. Detection of hazelnuts and almonds using commercial elisa test kits. Anal. Bioanal. Chem. 2010, 396, 1939–1945. [Google Scholar] [CrossRef] [PubMed]
- Schubert-Ullrich, P.; Rudolf, J.; Ansari, P.; Galler, B.; Fuhrer, M.; Molinelli, A.; Baumgartner, S. Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: An overview. Anal. Bioanal. Chem. 2009, 395, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, S.B.; Abbott, M.; Davies, D.; Cleroux, C.; Delahaut, P. Multi-allergen screening immunoassay for the detection of protein markers of peanut and four tree nuts in chocolate. Food Addit. Contam. 2005, 22, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.S.; Venkatachalam, M.; Sharma, G.M.; Su, M.; Roux, K.H.; Sathe, S.K. Effect of food matrix on amandin, almond (Prunus dulcis L.) major protein, immunorecognition and recovery. LWT-Food Sci. Technol. 2010, 43, 675–683. [Google Scholar] [CrossRef]
- Taylor, S.L.; Nordlee, J.A.; Niemann, L.M.; Lambrecht, D.M. Allergen immunoassays-considerations for use of naturally incurred standards. Anal. Bioanal. Chem. 2009, 395, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.Y.; Yang, W.; Krishnamurthy, K. Effects of pulsed uv-light on peanut allergens in extracts and liquid peanut butter. J. Food Sci. 2008, 73, C400–C404. [Google Scholar] [CrossRef] [PubMed]
- Su, M.N.; Venkatachalam, M.; Gradziel, T.M.; Liu, C.Q.; Zhang, Y.; Roux, K.H.; Sathe, S.K. Application of mouse monoclonal antibody (mAb) 4c10-based enzyme-linked immunosorbent assay (ELISA) for amandin detection in almond (Prunus dulcis L.) genotypes and hybrids. LWT-Food Sci. Technol. 2015, 60, 535–543. [Google Scholar] [CrossRef]
- Su, M.N.; Venkatachalam, M.; Liu, C.Q.; Zhang, Y.; Roux, K.H.; Sathe, S.K. A murine monoclonal antibody based enzyme-linked immunosorbent assay for almond (Prunus dulcis L.) detection. J. Agric. Food Chem. 2013, 61, 10823–10833. [Google Scholar] [CrossRef] [PubMed]
- Su, M.N.; Liu, C.Q.; Roux, K.H.; Gradziel, T.M.; Sathe, S.K. Effects of processing and storage on almond (Prunus dulcis L.) amandin immunoreactivity. Food Res. Int. 2017, 100, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Scheibe, B.; Weiss, W.; Rueff, F.; Przybilla, B.; Gorg, A. Detection of trace amounts of hidden allergens: Hazelnut and almond proteins in chocolate. J. Chromatogr. B Biomed. Sci. Appl. 2001, 756, 229–237. [Google Scholar] [CrossRef]
- Masir, J.; Benoit, L.; Meshgi, M.; Day, J.; Nadala, C.; Samadpour, M. A novel immunoassay test system for detection of modified allergen residues present in almond-, cashew-, coconut-, hazelnut-, and soy-based nondairy beverages. J. Food Prot. 2016, 79, 1572–1582. [Google Scholar] [CrossRef] [PubMed]
- Pafundo, S.; Gulli, M.; Marmiroli, N. Sybr® greenerTM real-time PCR to detect almond in traces in processed food. Food Chem. 2009, 116, 811–815. [Google Scholar] [CrossRef]
- Holzhauser, T.; Stephan, O.; Vieths, S. Detection of potentially allergenic hazelnut (Corylus avellana) residues in food: A comparative study with DNA PCR-ELISA and protein Sandwich-ELISA. J. Agric. Food Chem. 2002, 50, 5808–5815. [Google Scholar] [CrossRef] [PubMed]
- Van Hengel, A.J. Food allergen detection methods and the challenge to protect food-allergic consumers. Anal. Bioanal. Chem. 2007, 389, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Monaci, L.; De Angelis, E.; Montemurro, N.; Pilolli, R. Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis. Trends Anal. Chem. 2018, 106, 1337–1349. [Google Scholar] [CrossRef]
- Buhler, S.; Tedeschi, T.; Faccini, A.; Garino, C.; Arlorio, M.; Dossena, A.; Sforza, S. Isolation and full characterisation of a potentially allergenic lipid transfer protein (LTP) in almond. Food Addit. Contam. Part A Chem. Anal. Cont. Expo. Risk Assess. 2015, 32, 648–656. [Google Scholar]
- Johnson, P.E.; Baumgartner, S.; Aldick, T.; Bessant, C.; Giosafatto, V.; Heick, J.; Mamone, G.; O’Connor, G.; Poms, R.; Popping, B.; et al. Current perspectives and recommendations for the development of mass spectrometry methods for the determination of allergens in foods. J. AOAC Int. 2011, 94, 1026–1033. [Google Scholar] [PubMed]
- Bignardi, C.; Elviri, L.; Penna, A.; Careri, M.; Mangia, A. Particle-packed column versus silica-based monolithic column for liquid chromatography-electrospray-linear ion trap-tandem mass spectrometry multiallergen trace analysis in foods. J. Chromatogr. A 2010, 1217, 7579–7585. [Google Scholar] [CrossRef] [PubMed]
- Lupinek, C.; Wollmann, E.; Baar, A.; Banerjee, S.; Breiteneder, H.; Broecker, B.M.; Bublin, M.; Curin, M.; Flicker, S.; Garmatiuk, T.; et al. Advances in allergen-microarray technology for diagnosis and monitoring of allergy: The medall allergen-chip. Methods 2014, 66, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Derr, L.E. When food is poison: The history, consequences, and limitations of the food allergen labeling and consumer protection act of 2004. Food Drug Law J. 2006, 61, 65–165. [Google Scholar] [PubMed]
- Taylor, S.L.; Baumert, J.L.; Kruizinga, A.G.; Remington, B.C.; Crevel, R.W.R.; Brooke-Taylor, S.; Allen, K.J.; Houben, G.; Allergen Bur Australia New Zealand. Establishment of reference doses for residues of allergenic foods: Report of the vital expert panel. Food Chem. Toxicol. 2014, 63, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.M.; Pouillot, R.; Kwegyir-Afful, E.K.; Luccioli, S.; Gendel, S.M. A retrospective analysis of allergic reaction severities and minimal eliciting doses for peanut, milk, egg, and soy oral food challenges. Food Chem. Toxicol. 2015, 80, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Rivas, M.; Barreales, L.; Mackie, A.R.; Fritsche, P.; Vazquez-Cortes, S.; Jedrzejczak-Czechowicz, M.; Kowalski, M.L.; Clausen, M.; Gislason, D.; Sinaniotis, A.; et al. The europrevall outpatient clinic study on food allergy: Background and methodology. Allergy 2015, 70, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Ballmer-Weber, B.K.; Fernandez-Rivas, M.; Beyer, K.; Defernez, M.; Sperrin, M.; Mackie, A.R.; Salt, L.J.; Hourihane, J.O.; Asero, R.; Belohlavkova, S.; et al. How much is too much? Threshold dose distributions for 5 food allergens. J. Allergy Clin. Immunol. 2015, 135, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Mackie, A.; Knulst, A.; Le, T.M.; Bures, P.; Salt, L.; Mills, E.N.C.; Malcolm, P.; Andreou, A.; Ballmer-Weber, B.K. High fat food increases gastric residence and thus thresholds for objective symptoms in allergic patients. Mol. Nutr. Food Res. 2012, 56, 1708–1714. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, D.D.; Astwood, J.D.; Townsend, R.; Sampson, H.A.; Taylor, S.L.; Fuchs, R.L. Assessment of allergenic potential of foods derived from genetically engineered crop plants. Crit. Rev. Food Sci. Nutr. 1996, 36, S165–S186. [Google Scholar] [CrossRef] [PubMed]
- Lepski, S.; Brockmeyer, J. Impact of dietary factors and food processing on food allergy. Mol. Nutr. Food Res. 2013, 57, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Verhoeckx, K.C.M.; Vissers, Y.M.; Baumert, J.L.; Faludi, R.; Feys, M.; Flanagan, S.; Herouet-Guicheney, C.; Holzhauser, T.; Shimojo, R.; van der Bolt, N.; et al. Food processing and allergenicity. Food Chem. Toxicol. 2015, 80, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.N.C.; Mackie, A.R. The impact of processing on allergenicity of food. Curr. Opin. Allergy Clin. Immunol. 2008, 8, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Bargman, T.J.; Rupnow, J.H.; Taylor, S.L. IgE-binding proteins in almonds (Prunus.-Amygdalus)—Identification by immunoblotting with sera from almond-allergic adults. J. Food Sci. 1992, 57, 717–720. [Google Scholar] [CrossRef]
- De Leon, M.P.; Glaspole, I.N.; Drew, A.C.; Rolland, J.M.; O’Hehir, R.E.; Suphioglu, C. Immunological analysis of allergenic cross-reactivity between peanut and tree nuts. Clin. Exp. Allergy 2003, 33, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Venkatachalam, M.; Teuber, S.S.; Roux, K.H.; Sathe, S.K. Impact of gamma-irradiation and thermal processing on the antigenicity of almond, cashew nut and walnut proteins. J. Sci. Food Agric. 2004, 84, 1119–1125. [Google Scholar] [CrossRef]
- Dhakal, S.; Liu, C.Q.; Zhang, Y.; Roux, K.H.; Sathe, S.K.; Balasubramaniam, V.M. Effect of high pressure processing on the immunoreactivity of almond milk. Food Res. Int. 2014, 62, 215–222. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.Q.; Sheng, W.; Wang, S.; Fu, T.J. Effects of heat and high-pressure treatments on the solubility and immunoreactivity of almond proteins. Food Chem. 2016, 199, 856–861. [Google Scholar] [CrossRef] [PubMed]
- DunnGalvin, A.; Chan, C.H.; Crevel, R.; Grimshaw, K.; Poms, R.; Schnadt, S.; Taylor, S.L.; Turner, P.; Allen, K.J.; Austin, M.; et al. Precautionary allergen labelling: Perspectives from key stakeholder groups. Allergy 2015, 70, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Remington, B.C.; Baumert, J.L.; Blom, W.M.; Houben, G.F.; Taylor, S.L.; Kruizinga, A.G. Unintended allergens in precautionary labelled and unlabelled products pose significant risks to UK Allergic consumers. Allergy 2015, 70, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Muraro, A.; Hoffmann-Sommergruber, K.; Holzhauser, T.; Poulsen, L.K.; Gowland, M.H.; Akdis, C.A.; Mills, E.N.C.; Papadopoulos, N.; Roberts, G.; Schnadt, S.; et al. Eaaci food allergy and anaphylaxis guidelines. Protecting consumers with food allergies: Understanding food consumption, meeting regulations and identifying unmet needs. Allergy 2014, 69, 1464–1472. [Google Scholar] [CrossRef] [PubMed]
Name/Protein Family | Molecular Weight/Structural Details | Biological Function | Food Processing Effects | Clinical Relevance |
---|---|---|---|---|
Pru du 1 (PR-10 Protein) | 17 kDa (160 amino acids); various isoforms with different IgE binding capability | Protects against pathogens and adaption to a stressful environment | Wet heat processing changes eptitope conformation to reduce IgE reactivity | Mild immune reaction; severe allergic reactivity with birch pollen allergy |
Pru du 2 (PR-5 Protein/thaumatin-like protein) | 23–27 kDa (246 amino acids) | Response to pathogen infection, osmotic stressor fungal proteins | Very resistant to protease, pH, or heat treatment | Recognized as potential potent allergen, but the clinical evidence has not been studied |
Pru du 2S albumin (prolamin super family) | 12 kDa (28 amino acids) | Nut storage protein for seed development | Stable to heat treatment | Specific allergic symptoms not yet defined, more studies needed |
Pru du 3 (prolamin super family) | 9 kDa (116–123 amino acids) | Lipid transfer protein and defensive system against bacteria and fungi | Very resistant to pH, thermal and enzyme treatments | Systemic and life-threatening symptoms; cross reactivity among Rosaceae fruit |
Pru du 4 (profilin-specific IgE) | 14 kDa (131 amino acids) | Actin-binding protein for cellular function | Labile protein during heat processing | Symptoms are mild and limited to oral cavity |
Pru du 4 (profilin-specific IgE) | 14 kDa (131 amino acids) | Actin-binding protein for cellular function | Labile protein during heat processing | Symptoms are mild and limited to oral cavity |
Pru du 5 (r60sRP autoimmune reactions to human P2) | 10 kDa (113 amino acids) | Involved in protein synthesis | Unknown | Specific allergic symptoms not yet defined, more studies needed |
Pru du 6 (amandin; almond major protein (AMP)) The most widely studied almond allergen regarding molecular structure and biochemistry. | 360 kDa (1055 amino acids); 11S globulin hexameric amandine polypeptides subunits of 40–42 kDa acid α chain and a small β chain linked by a disulfide bond. | Major storage protein (about 65% of almond protein) | Thermally stable to dry heat such as roasting but it can be denatured by boiling. | Reported to induce severe IgE allergic reactions |
Pru du (γ-conglutin) | 45 kDa for each subunit (25 amino acids) | 7S vicillin storage protein | Unknown | Specific allergic symptoms not yet defined, more studies needed |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandalari, G.; Mackie, A.R. Almond Allergy: An Overview on Prevalence, Thresholds, Regulations and Allergen Detection. Nutrients 2018, 10, 1706. https://doi.org/10.3390/nu10111706
Mandalari G, Mackie AR. Almond Allergy: An Overview on Prevalence, Thresholds, Regulations and Allergen Detection. Nutrients. 2018; 10(11):1706. https://doi.org/10.3390/nu10111706
Chicago/Turabian StyleMandalari, Giuseppina, and Alan R. Mackie. 2018. "Almond Allergy: An Overview on Prevalence, Thresholds, Regulations and Allergen Detection" Nutrients 10, no. 11: 1706. https://doi.org/10.3390/nu10111706
APA StyleMandalari, G., & Mackie, A. R. (2018). Almond Allergy: An Overview on Prevalence, Thresholds, Regulations and Allergen Detection. Nutrients, 10(11), 1706. https://doi.org/10.3390/nu10111706