Comment on: The Vitamin D–Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas, Nutrients 2018, 10, 554
Funding
Conflicts of Interest
References
- Jones, P.; Lucock, M.; Veysey, M.; Beckett, E. The vitamin D-folate hypothesis as an evolutionary model for skin pigmentation: An update and integration of current ideas. Nutrients 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Blome, M.W.; Cohen, A.S.; Tryon, C.A.; Brooks, A.S.; Russell, J. The environmental context for the origins of modern human diversity: a synthesis of regional variability in African climate 150,000–30,000 years ago. J. Hum. Evol. 2012, 62, 563–592. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, N.G.; Chaplin, G. The evolution of human skin coloration. J. Hum. Evol. 2000, 39, 57–106. [Google Scholar] [CrossRef] [PubMed]
- Elias, P.M.; Williams, M.L. Basis for the gain and subsequent dilution of epidermal pigmentation during human evolution: The barrier and metabolic conservation hypotheses revisited. Am. J. Phys. Anthropol. 2016, 161, 189–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, P.M.; Menon, G.; Wetzel, B.K.; Williams, J.J. Evidence that stress to the epidermal barrier influenced the development of pigmentation in humans. Pigment Cell Melanoma Res. 2009, 22, 420–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, P.M.; Williams, M.L. Re-appraisal of current theories for the development and loss of epidermal pigmentation in hominins and modern humans. J. Hum. Evol. 2013, 64, 687–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunathilake, R.; Schurer, N.Y.; Shoo, B.A.; Celli, A.; Hachem, J.P.; Crumrine, D.; Sirimanna, G.; Feingold, K.R.; Mauro, T.M.; Elias, P.M. pH-regulated mechanisms account for pigment-type differences in epidermal barrier function. J. Invest. Dermatol. 2009, 129, 1719–1729. [Google Scholar] [CrossRef] [PubMed]
- Man, M.Q.; Lin, T.K.; Santiago, J.L.; Celli, A.; Zhong, L.; Huang, Z.M.; Roelandt, T.; Hupe, M.; Sundberg, J.P.; Silva, K.A.; et al. Basis for enhanced barrier function of pigmented skin. J. Invest. Dermatol. 2014, 134, 2399–2407. [Google Scholar] [CrossRef] [PubMed]
- Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, N.G.; Chaplin, G. The colours of humanity: The evolution of pigmentation in the human lineage. Philos. Trans. R. Soc. Lond B Biol. Sci. 2017, 372, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Off, M.K.; Steindal, A.E.; Porojnicu, A.C.; Juzeniene, A.; Vorobey, A.; Johnsson, A.; Moan, J. Ultraviolet photodegradation of folic acid. J. Photochem. Photobiol. B. 2005, 80, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Lucock, M.; Veysey, M.; Jablonski, N.; Chaplin, G.; Beckett, E. Frequency of folate-related polymorphisms varies by skin pigmentation. Am. J. Hum. Biol. 2018, 30. [Google Scholar] [CrossRef] [PubMed]
- Parrish, J.A.; Jaenicke, K.F.; Anderson, R.R. Erythema and melanogenesis action spectra of normal human skin. Photochem. Photobiol. 1982, 36, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Juzeniene, A.; Thu Tam, T.T.; Iani, V.; Moan, J. 5-Methyltetrahydrofolate can be photodegraded by endogenous photosensitizers. Free Radic. Biol. Med. 2009, 47, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Vorobey, P.; Steindal, A.E.; Off, M.K.; Vorobey, A.; Moan, J. Influence of human serum albumin on photodegradation of folic acid in solution. Photochem. Photobiol. 2006, 82, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Northrup, H.; Volcik, K.A. Spina bifida and other neural tube defects. Curr. Probl. Pediatr. 2000, 30, 313–332. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.; Partington, M.; Section, S. On neurologic, congenital brain and spinal cord malformations and their associated cutaneous markers. Pediatrics 2015, 136, e1105–e1119. [Google Scholar] [CrossRef] [PubMed]
- Juzeniene, A.; Stokke, K.T.; Thune, P.; Moan, J. Pilot study of folate status in healthy volunteers and in patients with psoriasis before and after UV exposure. J. Photochem. Photobiol. B. 2010, 101, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Cicarma, E.; Juzeniene, A.; Porojnicu, A.C.; Bruland, O.S.; Moan, J. Latitude gradient for melanoma incidence by anatomic site and gender in Norway 1966–2007. J. Photochem. Photobiol. B. 2010, 101, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Gambichler, T.; Bader, A.; Sauermann, K.; Altmeyer, P.; Hoffmann, K. Serum folate levels after UVA exposure: a two-group parallel randomised controlled trial. BMC Dermatol. 2001, 1. [Google Scholar] [CrossRef] [Green Version]
- Elias, P.M.; Williams, M.L. Evolution: Skin color. In Basics in Human Evolution, 1st ed.; Michael, P., Ed.; Academic Press: London, UK, 2015; pp. 273–283. [Google Scholar]
- Loomis, W.F. Skin-pigment regulation of vitamin-D biosynthesis in man. Science 1967, 157, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, J.P.; Bikle, D.D.; Elias, P.M. Evidence that loss-of-function filaggrin gene mutations evolved in northern Europeans to favor intracutaneous vitamin D3 production. Evol. Biol. 2014, 41, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Olalde, I.; Allentoft, M.E.; Sanchez-Quinto, F.; Santpere, G.; Chiang, C.W.; DeGiorgio, M.; Prado-Martinez, J.; Rodriguez, J.A.; Rasmussen, S.; Quilez, J.; et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 2014, 507, 225–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilde, S.; Timpson, A.; Kirsanow, K.; Kaiser, E.; Kayser, M.; Unterlander, M.; Hollfelder, N.; Potekhina, I.D.; Schier, W.; Thomas, M.G.; et al. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proc. Natl. Acad. Sci. USA 2014, 111, 4832–4837. [Google Scholar] [CrossRef] [PubMed]
- Witsch-Baumgartner, M.; Schwentner, I.; Gruber, M.; Benlian, P.; Bertranpetit, J.; Bieth, E.; Chevy, F.; Clusellas, N.; Estivill, X.; Gasparini, G.; et al. Age and origin of major Smith-Lemli-Opitz syndrome (SLOS) mutations in European populations. J. Med. Genet. 2008, 45, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elias, P.M.; Williams, M.L. Comment on: The Vitamin D–Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas, Nutrients 2018, 10, 554. Nutrients 2018, 10, 1753. https://doi.org/10.3390/nu10111753
Elias PM, Williams ML. Comment on: The Vitamin D–Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas, Nutrients 2018, 10, 554. Nutrients. 2018; 10(11):1753. https://doi.org/10.3390/nu10111753
Chicago/Turabian StyleElias, Peter M., and Mary L. Williams. 2018. "Comment on: The Vitamin D–Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas, Nutrients 2018, 10, 554" Nutrients 10, no. 11: 1753. https://doi.org/10.3390/nu10111753
APA StyleElias, P. M., & Williams, M. L. (2018). Comment on: The Vitamin D–Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas, Nutrients 2018, 10, 554. Nutrients, 10(11), 1753. https://doi.org/10.3390/nu10111753