Isolated Soy Protein Supplementation and Exercise Improve Fatigue-Related Biomarker Levels and Bone Strength in Ovariectomized Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Animals, and Experimental Design
2.2. ISP Supplementation
2.3. Resistance Exercise Training (ET) Protocol
2.4. Forelimb Grip Strength Test
2.5. Swimming Exercise Performance Test
2.6. Clinical Biochemical Profiles
2.7. Tissue Glycogen and Weight Determination
2.8. Measurement of Bone Strength
2.9. Statistical Analysis
3. Results
3.1. Effects of BCAA-rich ISP Supplementation and ET on BW and Organ Weights
3.2. Effects of ISP Supplementation and ET on Performance on the Forelimb Grip Strength and Exhaustive Swimming Tests
3.3. Effects of ISP Supplementation and ET on Fatigue-Related Indicators after Acute Exercise
3.4. Effect of ISP Supplementation and ET on Hepatic and Muscular Glycogen Levels
3.5. Biochemical Analyses at the End of the Experiment
3.6. Bone Strength at the End of the Experiment
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Maltais, M.L.; Desroches, J.; Dionne, I.J. Changes in muscle mass and strength after menopause. J. Musculoskelet. Neuronal Interact. 2009, 9, 186–197. [Google Scholar]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.; Bernabei, R.; Onder, G. Sarcopenia as a risk factor for falls in elderly individuals: Results from the ilSIRENTE study. Clin. Nutr. 2012, 31, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Melton, L.J., 3rd; Christiansen, C.; Johnston, C.C.; Khaltaev, N. The diagnosis of osteoporosis. J. Bone Miner. Res. 1994, 9, 1137–1141. [Google Scholar] [CrossRef] [PubMed]
- Binkley, N.; Buehring, B. Beyond FRAX: It’s time to consider “sarco-osteopenia”. J. Clin. Densitom. 2009, 12, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Verschueren, S.; Gielen, E.; O’Neill, T.W.; Pye, S.R.; Adams, J.E.; Ward, K.A.; Wu, F.C.; Szulc, P.; Laurent, M.; Claessens, F.; et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos. Int. 2013, 24, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, W.J. What is sarcopenia? J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Anker, S.D.; von Haehling, S. Prevalence, incidence, and clinical impact of sarcopenia: Facts, numbers, and epidemiology-update 2014. J. Cachexia Sarcopenia Muscle 2014, 5, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Cermak, N.M.; Res, P.T.; de Groot, L.C.; Saris, W.H.; van Loon, L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1454–1464. [Google Scholar] [CrossRef] [PubMed]
- Tieland, M.; Dirks, M.L.; van der Zwaluw, N.; Verdijk, L.B.; van de Rest, O.; de Groot, L.C.; van Loon, L.J. Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: A randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 2012, 13, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Naseeb, M.A.; Volpe, S.L. Protein and exercise in the prevention of sarcopenia and aging. Nutr. Res. 2017, 40, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, Y.; Yamamoto, Y.; Bajotto, G.; Sato, J.; Murakami, T.; Shimomura, N.; Kobayashi, H.; Mawatari, K. Nutraceutical effects of branched-chain amino acids on skeletal muscle. J. Nutr. 2006, 136, 529S–532S. [Google Scholar] [CrossRef] [PubMed]
- Blomstrand, E.; Eliasson, J.; Karlsson, H.K.; Kohnke, R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J. Nutr. 2006, 136, 269S–273S. [Google Scholar] [CrossRef] [PubMed]
- Negro, M.; Giardina, S.; Marzani, B.; Marzatico, F. Branched-chain amino acid supplementation does not enhance athletic performance but affects muscle recovery and the immune system. J. Sports Med. Phys. Fitness 2008, 48, 347–351. [Google Scholar] [PubMed]
- Ham, D.J.; Caldow, M.K.; Lynch, G.S.; Koopman, R. Leucine as a treatment for muscle wasting: A critical review. Clin. Nutr. 2014, 33, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Churchward-Venne, T.A.; Breen, L.; Di Donato, D.M.; Hector, A.J.; Mitchell, C.J.; Moore, D.R.; Stellingwerff, T.; Breuille, D.; Offord, E.A.; Baker, S.K.; et al. Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: A double-blind, randomized trial. Am. J. Clin. Nutr. 2014, 99, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Holecek, M.; Siman, P.; Vodenicarovova, M.; Kandar, R. Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states. Nutr. Metab. 2016, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Holecek, M.; Sispera, L. Effects of Arginine Supplementation on Amino Acid Profiles in Blood and Tissues in Fed and Overnight-Fasted Rats. Nutrients 2016, 8, 206. [Google Scholar] [CrossRef] [PubMed]
- Holecek, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Holecek, M.; Muthny, T.; Kovarik, M.; Sispera, L. Effect of beta-hydroxy-beta-methylbutyrate (HMB) on protein metabolism in whole body and in selected tissues. Food Chem. Toxicol. 2009, 47, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.S.; Chuang, H.L.; Huang, W.C.; Chen, Y.M.; Huang, C.C.; Hsu, M.C. Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice. Molecules 2014, 19, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.M.; Sommer, A.J.; Starkoff, B.E.; Devor, S.T. Crossfit-based high-intensity power training improves maximal aerobic fitness and body composition. J. Strength Cond. Res. 2013, 27, 3159–3172. [Google Scholar] [CrossRef] [PubMed]
- Noyes, F.R.; Barber-Westin, S.D.; Smith, S.T.; Campbell, T.; Garrison, T.T. A training program to improve neuromuscular and performance indices in female high school basketball players. J. Strength Cond. Res. 2012, 26, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Huang, W.C.; Chiu, C.C.; Chang, Y.K.; Huang, C.C. Whey protein improves exercise performance and biochemical profiles in trained mice. Med. Sci. Sports Exerc. 2014, 46, 1517–1524. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Huang, W.C.; Liu, C.C.; Wang, M.F.; Ho, C.S.; Huang, W.P.; Hou, C.C.; Chuang, H.L.; Huang, C.C. Pumpkin (Cucurbita moschata) fruit extract improves physical fatigue and exercise performance in mice. Molecules 2012, 17, 11864–11876. [Google Scholar] [CrossRef] [PubMed]
- Vashishth, D. Small animal bone biomechanics. Bone 2008, 43, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Geary, N.; Asarian, L. Estradiol increases glucagon’s satiating potency in ovariectomized rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R1290–R1294. [Google Scholar] [CrossRef] [PubMed]
- Duval, K.; Prud’homme, D.; Rabasa-Lhoret, R.; Strychar, I.; Brochu, M.; Lavoie, J.M.; Doucet, E. Effects of the menopausal transition on dietary intake and appetite: A MONET Group Study. Eur. J. Clin. Nutr. 2014, 68, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L.; Wolfe, R.R. The danger of weight loss in the elderly. J. Nutr. Health Aging 2008, 12, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Cuthbertson, D.; Smith, K.; Babraj, J.; Leese, G.; Waddell, T.; Atherton, P.; Wackerhage, H.; Taylor, P.M.; Rennie, M.J. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 2005, 19, 422–424. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Selby, A.; Rankin, D.; Patel, R.; Atherton, P.; Hildebrandt, W.; Williams, J.; Smith, K.; Seynnes, O.; Hiscock, N.; et al. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J. Physiol. 2009, 587, 211–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greig, C.A.; Gray, C.; Rankin, D.; Young, A.; Mann, V.; Noble, B.; Atherton, P.J. Blunting of adaptive responses to resistance exercise training in women over 75y. Exp. Gerontol. 2011, 46, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Weisgarber, K.D.; Candow, D.G.; Farthing, J.P. Whey protein and high-volume resistance training in postmenopausal women. J. Nutr. Health Aging 2015, 19, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.C.; Lin, C.I.; Chiu, C.C.; Lin, Y.T.; Huang, W.K.; Huang, H.Y.; Huang, C.C. Chicken essence improves exercise performance and ameliorates physical fatigue. Nutrients 2014, 6, 2681–2696. [Google Scholar] [CrossRef] [PubMed]
- Carvalho-Peixoto, J.; Alves, R.C.; Cameron, L.C. Glutamine and carbohydrate supplements reduce ammonemia increase during endurance field exercise. Appl. Physiol. Nutr. Metab. 2007, 32, 1186–1190. [Google Scholar] [CrossRef] [PubMed]
- Duncan, R.L.; Turner, C.H. Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 1995, 57, 344–358. [Google Scholar] [CrossRef] [PubMed]
Nutrients | Content/40 g ISP |
---|---|
Protein | 23.2 g |
Fat | 0.8 g |
Saturated fat | 0.2 g |
Trans fat | 0 g |
Carbohydrate | 11 g |
Sugar | 10.6 g |
Dietary fiber | 0.4 g |
Sodium | 174 mg |
Total calories | 144.2 Kcal |
Hydrolyzed amino acid profiles | g/40 g |
Leucine | 1.08 |
Valine | 1.14 |
Isoleucine | 1.20 |
Cystine | 0.26 |
Tryptophan | 0.27 |
Methionine | 0.28 |
Threonine | 0.49 |
Histidine | 0.63 |
Tyrosine | 0.79 |
Alanine | 0.88 |
Glycine | 0.94 |
Serine | 1.12 |
Proline | 1.18 |
Phenylalanine | 1.26 |
Lysine | 1.50 |
Arginine | 1.89 |
Aspartic acid | 2.69 |
Glutamic acid | 4.81 |
Isoflavones | mg/40 g |
Daidzin | 1.5 |
Daidzein | 2.0 |
Genistin | 4.5 |
Genistein | 4.0 |
Characteristic | Sham OVX | OVX | OVX+ISP | OVX+ET | OVX+ISP+ET |
---|---|---|---|---|---|
Initial BW (g) | 31.7 ± 1.89 a | 36.9 ± 5.10 b | 36.2 ± 2.36 b | 36.1 ± 1.33 b | 35.7 ± 0.66 b |
Final BW (g) | 31.8 ± 2.18 a | 37.6 ± 4.89 b | 35.4 ± 2.12 b | 36.4 ± 2.22 b | 35.2 ± 1.99 b |
Food intake (g/day) | 6.31 ± 0.73 d | 4.80 ± 0.91 bc | 4.35 ± 0.73 a | 4.61 ± 0.69 ab | 5.09 ± 0.75 c |
Water intake (mL/day) | 7.43 ± 1.02 d | 6.50 ± 0.94 a | 5.40 ± 0.64 b | 5.95 ± 0.64 c | 6.19 ± 0.83 ac |
Weight (g) | |||||
Liver | 1.52 ± 0.21 a | 1.78 ± 0.40 b | 1.66 ± 0.15 ab | 1.64 ± 0.15 ab | 1.79 ± 0.03 b |
Kidney | 0.45 ± 0.09 a | 0.45 ± 0.07 a | 0.42 ± 0.03 a | 0.42 ± 0.03 a | 0.44 ± 0.03 a |
OFP | 0.27 ± 0.12 a | 0.61 ± 0.21 b | 0.65 ± 0.28 b | 0.64 ± 0.31 b | 0.50 ± 0.28 ab |
Heart | 0.20 ± 0.04 a | 0.21 ± 0.04 a | 0.18 ± 0.02 a | 0.18 ± 0.03 a | 0.18 ± 0.04 a |
Lung | 0.26 ± 0.04 a | 0.25 ± 0.05 ab | 0.20 ± 0.02 b | 0.22 ± 0.02 b | 0.22 ± 0.02 b |
Muscle | 0.32 ± 0.02 a | 0.38 ± 0.05 c | 0.34 ± 0.04 ab | 0.34 ± 0.03 ab | 0.35 ± 0.03 bc |
BAT | 0.12 ± 0.02 a | 0.14 ± 0.03 ab | 0.12 ± 0.01 a | 0.15 ± 0.04 a | 0.13 ± 0.03 ab |
Intestine | 3.00 ± 0.80 a | 3.80 ± 0.21 b | 3.34 ± 0.21 ab | 3.32 ± 0.29 ab | 3.60 ± 0.40 b |
Relative weight (%) | |||||
Liver | 4.8 ± 0.53 a | 4.7 ± 0.69 a | 4.7 ± 0.35 a | 4.5 ± 0.30 a | 4.9 ± 0.08 a |
Kidney | 1.4 ± 0.25 b | 1.2 ± 0.10 a | 1.2 ± 0.10 a | 1.2 ± 0.06 a | 1.2 ± 0.05 a |
OFP | 0.8 ± 0.36 a | 1.6 ± 0.53 b | 1.8 ± 0.71 b | 1.7 ± 0.79 b | 1.4 ± 0.84 ab |
Heart | 0.6 ± 0.15 b | 0.6 ± 0.10 ab | 0.5 ± 0.05 a | 0.5 ± 0.09 a | 0.5 ± 0.11 a |
Lung | 0.8 ± 0.14 b | 0.7 ± 0.12 a | 0.6 ± 0.04 a | 0.6 ± 0.04 a | 0.6 ± 0.05 a |
Muscle | 0.3 ± 0.02 a | 0.4 ± 0.05 c | 0.3 ± 0.04 ab | 0.3 ± 0.03 ab | 0.4 ± 0.03 bc |
BAT | 0.4 ± 0.05 a | 0.4 ± 0.06 a | 0.3 ± 0.05 a | 0.4 ± 0.09 b | 0.3 ± 0.06 a |
Intestine | 9.5 ± 1.19 a | 10.0 ± 0.73 a | 9.5 ± 0.73 a | 9.1 ± 0.81 a | 9.9 ± 1.03 a |
Characteristic | Sham OVX | OVX | OVX+ISP | OVX+ET | OVX+ISP+ET |
---|---|---|---|---|---|
Grip strength (g) | 133 ± 21 | 136 ± 44 | 135 ± 17 | 140 ± 20 | 143 ± 18 |
Grip strength (%) | 417 ± 69 | 388 ± 44 | 400 ± 55 | 403 ± 61 | 427 ± 52 |
Swimming time (min) | 39.9 ± 48.0 | 29.4 ± 29.7 | 53.4 ± 39 | 48.5 ± 20.7 | 52.0 ± 29.2 |
Characteristic | Sham OVX | OVX | OVX+ISP | OVX+ET | OVX+ISP+ET |
---|---|---|---|---|---|
Ammonia (umol/L) | 67 ± 11 b | 84 ± 13 c | 89 ± 14 c | 59 ± 7 ab | 52 ± 4 a |
GLU (mg/dL) | 163 ± 26 c | 125 ± 16 b | 117 ± 15 ab | 139 ± 20 b | 102 ± 10 ab |
LACT (mmol/L) | 9.1 ± 0.38 d | 8.0 ± 1.25 c | 6.4 ± 1.08 b | 6.3 ± 0.85 b | 4.2 ± 0.27 a |
BUN (mg/dL) | 17.7 ± 3.1 a | 18.9 ± 2.5 a | 41.6 ± 1.7 c | 31.5 ± 2.4 b | 39.2 ± 4.6 c |
CPK (U/L) | 376 ± 161 a | 643 ± 419 b | 386 ± 201 a | 390 ± 109 a | 284 ± 96 a |
GLY (mg/g liver) | 40.0 ± 11.66 b | 33.5 ± 8.50 ab | 24.1 ± 9.35 a | 27.3 ± 7.12 a | 33.5 ± 15.94 ab |
GLY (mg/g muscle) | 1.2 ± 0.22 b | 1.0 ± 0.22 a | 1.2 ± 0.17 b | 0.9 ± 0.16 a | 0. 9± 0.12 a |
Characteristic | Sham OVX | OVX | OVX+ISP | OVX+ET | OVX+ISP+ET |
---|---|---|---|---|---|
AST (U/L) | 96 ± 14 a | 119 ± 27 b | 98 ± 11 a | 98 ± 11 a | 96 ± 15 a |
ALT (U/L) | 51 ± 6 a | 70 ± 25 b | 54 ± 9 a | 56 ± 12 a | 51 ± 9 a |
Alkaline-P | 62 ± 11 a | 57 ± 10 a | 62 ± 12 a | 60 ± 7 a | 58 ± 11 a |
CPK (U/L) | 335 ± 196 ab | 584 ± 319 c | 325 ± 162 ab | 497 ± 171 bc | 280 ± 133 a |
Albumin (g/dL) | 3.1 ± 0.1 a | 3.2 ± 0.1 b | 3.2 ± 0.1 b | 3.2 ± 0.1 b | 3.3 ± 0.1 b |
TP (g/dL) | 5.0 ± 0.12 a | 5.0 ± 0.18 a | 5.1 ± 0.26 ab | 5.2 ± 0.10 b | 5.2 ± 0.05 b |
BUN (mg/dL) | 13.1 ± 1.39 a | 18.9 ± 2.29 b | 30.4 ± 6.21 c | 20.6 ± 2.15 b | 27.1 ± 2.08 c |
Creatinine (mg/dL) | 0.18 ± 0.04 a | 0.28 ± 0.04 c | 0.19 ± 0.04 a | 0.26 ± 0.03 bc | 0.24 ± 0.05 b |
UA (mg/dL) | 1.08 ± 0.15 a | 1.08 ± 0.30 a | 1.15 ± 0.25 a | 1.05 ± 0.20 a | 1.04 ± 0.23 a |
Glucose (mg/dL) | 121 ± 17 a | 121 ± 8 a | 115 ± 4 a | 121 ± 9 a | 122 ± 10 a |
TG (mg/dL) | 79 ± 12 a | 74 ± 20 a | 72 ± 12 a | 78 ± 7 a | 69 ± 17 a |
TC (mg/dL) | 89 ± 10 a | 125 ± 24 c | 105 ± 13 b | 110 ± 15 bc | 105 ± 10 b |
HDL-c | 63 ± 10 a | 71 ± 9 a | 88 ± 7 b | 83 ± 11 b | 90 ± 5 b |
LDL-c | 9.8 ± 2.4 b | 8.0 ± 2.0 a | 6.9 ± 1.0 a | 7.8 ± 1.2 a | 7.9 ± 1.0 a |
LDH | 343 ± 46 a | 420 ± 96 b | 337 ± 41 a | 390 ± 77 ab | 328 ± 55 a |
Characteristic | Sham OVX | OVX | OVX+ISP | OVX+ET | OVX+ISP+ET |
---|---|---|---|---|---|
Bone energy (mJ) | 5.4 ± 1.25 b | 3.9 ± 0.68 a | 4.5 ± 0.87 ab | 5.1 ± 2.0 ab | 5.4 ± 1.71 b |
Bone stiffness (N/mm) | 113.5 ± 15.37 b | 94.4 ± 10.76 a | 95.8 ± 13.07 a | 93.0 ± 16.12 a | 98.5 ± 15.63 a |
Bone strength (N) | 29.0 ±4.44 c | 23.6 ± 3.50 a | 25.1 ± 2.85 ab | 25.4 ± 1.30 ab | 29.0 ± 3.02 bc |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-L.; Lee, M.-C.; Hsu, Y.-J.; Huang, W.-C.; Huang, C.-C.; Huang, S.-W. Isolated Soy Protein Supplementation and Exercise Improve Fatigue-Related Biomarker Levels and Bone Strength in Ovariectomized Mice. Nutrients 2018, 10, 1792. https://doi.org/10.3390/nu10111792
Lin C-L, Lee M-C, Hsu Y-J, Huang W-C, Huang C-C, Huang S-W. Isolated Soy Protein Supplementation and Exercise Improve Fatigue-Related Biomarker Levels and Bone Strength in Ovariectomized Mice. Nutrients. 2018; 10(11):1792. https://doi.org/10.3390/nu10111792
Chicago/Turabian StyleLin, Che-Li, Mon-Chien Lee, Yi-Ju Hsu, Wen-Ching Huang, Chi-Chang Huang, and Shih-Wei Huang. 2018. "Isolated Soy Protein Supplementation and Exercise Improve Fatigue-Related Biomarker Levels and Bone Strength in Ovariectomized Mice" Nutrients 10, no. 11: 1792. https://doi.org/10.3390/nu10111792
APA StyleLin, C. -L., Lee, M. -C., Hsu, Y. -J., Huang, W. -C., Huang, C. -C., & Huang, S. -W. (2018). Isolated Soy Protein Supplementation and Exercise Improve Fatigue-Related Biomarker Levels and Bone Strength in Ovariectomized Mice. Nutrients, 10(11), 1792. https://doi.org/10.3390/nu10111792