Performance of Waist-To-Height Ratio, Waist Circumference, and Body Mass Index in Discriminating Cardio-Metabolic Risk Factors in a Sample of School-Aged Mexican Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessments
2.2.1. Anthropometry and Adiposity Indicators Definition
2.2.2. Biochemical Analysis and Cardio-Metabolic Risk Factors
2.2.3. Dietary Intake
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Childhood Overweight and Obesity. Available online: http://www.who.int/dietphysicalactivity/childhood/en/ (accessed on 23 November 2013).
- World Health Organization. Commission on Ending Childhood Obesity; Report of the Commission on Ending Childhood Obesity; World Health Organization: Geneva, Switzerland, 2016; ISBN 978-92-4-151006-6. [Google Scholar]
- Instituto Nacional de Salud Pública. Encuesta Nacional de Salud y Nutrición de Medio Camino 2016; Informe Final de Resultados; Instituto Nacional de Salud Pública: Cuernavaca, Mexico, 2016. [Google Scholar]
- Yoo, E.-G. Waist-to-height ratio as a screening tool for obesity and cardiometabolic risk. Korean J. Pediatr. 2016, 59, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skinner, A.C.; Perrin, E.M.; Moss, L.A.; Skelton, J.A. Cardiometabolic Risks and Severity of Obesity in Children and Young Adults. N. Engl. J. Med. 2015, 373, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Vorwieger, E.; Kelso, A.; Steinacker, J.M.; Kesztyüs, D.; Kesztyüs, D. Cardio-metabolic and socio-environmental correlates of waist-to-height ratio in German primary schoolchildren: A cross-sectional exploration. BMC Public Health 2018, 18. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.R.; Morrison, J.A.; Sprecher, D.L.; Khoury, P.; Kimball, T.R. Association of Body Fat Distribution and Cardiovascular Risk Factors in Children and Adolescents. Circulation 1999, 99, 541–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokha, J.S.; Srinivasan, S.R.; DasMahapatra, P.; Fernandez, C.; Chen, W.; Xu, J.; Berenson, G.S. Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa Heart Study. BMC Pediatr. 2010, 10. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-A.; Joo, H.J.; Cho, J.-Y.; Lee, S.H.; Park, J.H.; Hong, S.J.; Yu, C.W.; Lim, D.-S. Visceral Fat Area and Serum Adiponectin Level Predict the Development of Metabolic Syndrome in a Community-Based Asymptomatic Population. PLoS ONE 2017, 12, e0169289. [Google Scholar] [CrossRef] [PubMed]
- Arnaoutis, G.; Georgoulis, M.; Psarra, G.; Milkonidou, A.; Panagiotakos, D.B.; Kyriakou, D.; Bellou, E.; Tambalis, K.D.; Sidossis, L.S. Association of Anthropometric and Lifestyle Parameters with Fitness Levels in Greek Schoolchildren: Results from the EYZHN Program. Front. Nutr. 2018, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Aristizabal, J.; González-Zapata, L.; Estrada-Restrepo, A.; Monsalve-Alvarez, J.; Restrepo-Mesa, S.; Gaitán, D. Concentrations of Plasma Free Palmitoleic and Dihomo-Gamma Linoleic Fatty Acids Are Higher in Children with Abdominal Obesity. Nutrients 2018, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Schwandt, P. Defining central adiposity in terms of clinical practice in children and adolescents. Int. J. Prev. Med. 2011, 2, 1–2. [Google Scholar] [PubMed]
- Hsieh, S.D.; Yoshinaga, H. Do people with similar waist circumference share similar health risks irrespective of height? Tohoku J. Exp. Med. 1999, 188, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.J.; Klotsche, J.; Silber, S.; Stalla, G.K.; Wittchen, H.-U. Measuring Abdominal Obesity: Effects of Height on Distribution of Cardiometabolic Risk Factors Risk Using Waist Circumference and Waist-to-Height Ratio. Diabetes Care 2011, 34, e7. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, H.D.; Ashwell, M. A study of central fatness using waist-to-height ratios in UK children and adolescents over two decades supports the simple message—‘keep your waist circumference to less than half your height’. Int. J. Obes. 2006, 30, 988–992. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Dou, Y.; Xiong, F.; Zhang, L.; Zhu, G.; Wu, T.; Zhang, Y.; Yan, W. Waist-to-height ratio remains an accurate and practical way of identifying cardiometabolic risks in children and adolescents. Acta Paediatr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Gamboa, E.M.; Domínguez, C.L.; Quintero, D.C. Waist-To-Height Ratio and its relation with cardiometabolic risk factors in children from Bucaramanga, Colombia. Nutr. Hosp. 2017. [Google Scholar] [CrossRef] [PubMed]
- Mendes, E.L.; Andaki, A.C.R.; Brito, C.J.; Guedes, J.M.; Santos, M.P.M.; Mota, J. Waist circumference to height ratio predicts inflammatory risk in children. Ann. Hum. Biol. 2017, 44, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Ashwell, M.; Hsieh, S.D. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int. J. Food Sci. Nutr. 2005, 56, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Yang, M.; Yuan, Z.-P.; Zhang, D.-D.; Liang, L.; Wang, C.-L.; Zhang, S.; Zhu, H.-H.; Lai, M.-D.; Zhu, Y.-M. Waist-to-Height Ratio: A simple, effective and practical screening tool for childhood obesity and metabolic syndrome. Prev. Med. 2014, 67, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Lo, K.; Wong, M.; Khalechelvam, P.; Tam, W. Waist-to-height ratio, body mass index and waist circumference for screening paediatric cardio-metabolic risk factors: A meta-analysis: Screening cardio-metabolic risk factors. Obes. Rev. 2016, 17, 1258–1275. [Google Scholar] [CrossRef] [PubMed]
- López-González, D.; Miranda-Lora, A.; Klünder-Klünder, M.; Queipo-García, G.; Bustos-Esquivel, M.; Paez-Villa, M.; Villanueva-Ortega, E.; Chávez-Requena, I.; Laresgoiti-Servitje, E.; Garibay-Nieto, N. Diagnostic performance of waist circumference measurements for predicting cardiometabolic risk in mexican children. Endocr. Pract. 2016, 22, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Elizondo-Montemayor, L.; Serrano-González, M.; Ugalde-Casas, P.A.; Bustamante-Careaga, H.; Cuello-García, C. Waist-to-height: Cutoff matters in predicting metabolic syndrome in Mexican children. Metab. Syndr. Relat. Disord. 2011, 9, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Rodea-Montero, E.R.; Evia-Viscarra, M.L.; Apolinar-Jiménez, E. Waist-to-Height Ratio Is a Better Anthropometric Index than Waist Circumference and BMI in Predicting Metabolic Syndrome among Obese Mexican Adolescents. Int. J. Endocrinol. 2014, 2014, 195407. [Google Scholar] [CrossRef] [PubMed]
- The International Society for the Advancement in Kinanthropometry (ISAK). International Standards for Anthropometric Assessment; ISAK: Underdale, SA, Australia, 2001. [Google Scholar]
- Habicht, J.P. Estandarización de métodos epidemiológicos cuantitativos sobre el terreno. (Standardization of anthropometric methods in the field). PAHO Bull. 1974, 76, 375–384. [Google Scholar]
- World Health Organization (WHO). AnthroPlus for Personal Computers Manual: Software for Assessing Growth of the World’s Children and Adolescents; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- World Health Organization Growth Chart for Children 5–19 Years. Available online: http://www.who.int/growthref/who2007_bmi_for_age/en/ (accessed on 23 November 2018).
- Klünder-Klünder, M.; Flores-Huerta, S. Waist Circumference Values According to Height Percentiles: A Proposal to Evaluate Abdominal Obesity in Mexican Children and Adolescents between 6 and 16 Years of Age. Arch. Med. Res. 2011, 42, 515–522. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Classification and Diagnosis of Diabetes. Diabetes Care 2016, 39, S13–S22. [CrossRef] [PubMed]
- Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics 2011, 128 (Suppl. 5), S213–S256. [Google Scholar] [CrossRef] [PubMed]
- Dobiásová, M. [AIP—Atherogenic index of plasma as a significant predictor of cardiovascular risk: From research to practice]. Vnitr. Lek. 2006, 52, 64–71. [Google Scholar] [PubMed]
- Millán, J.; Pintó, X.; Muñoz, A.; Zúñiga, M.; Rubiés-Prat, J.; Pallardo, L.F.; Masana, L.; Mangas, A.; Hernández-Mijares, A.; González-Santos, P.; et al. Lipoprotein ratios: Physiological significance and clinical usefulness in cardiovascular prevention. Vasc. Health Risk Manag. 2009, 5, 757–765. [Google Scholar] [PubMed]
- Johnson, R.K.; Driscoll, P.; Goran, M.I. Comparison of Multiple-Pass 24-Hour Recall Estimates of Energy Intake With Total Energy Expenditure Determined By the Doubly Labeled Water Method in Young Children. J. Am. Diet. Assoc. 1996, 96, 1140–1144. [Google Scholar] [CrossRef]
- Heinze, G.; Schemper, M. A solution to the problem of separation in logistic regression. Stat. Med. 2002, 21, 2409–2419. [Google Scholar] [CrossRef] [PubMed]
- Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Xi, B.; Mi, J.; Zhao, M.; Zhang, T.; Jia, C.; Li, J.; Zeng, T.; Steffen, L.M.; Public Health Youth Collaborative; Innovative Study Group of Shandong University. Trends in abdominal obesity among U.S. children and adolescents. Pediatrics 2014, 134, e334–e339. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S.; Massaro, J.M.; Hoffmann, U.; Pou, K.M.; Maurovich-Horvat, P.; Liu, C.-Y.; Vasan, R.S.; Murabito, J.M.; Meigs, J.B.; Cupples, L.A.; et al. Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the Framingham Heart Study. Circulation 2007, 116, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, H. Waist circumference as an indicator of high blood pressure in preschool obese children. Asia Pac. J. Clin. Nutr. 2011, 20, 557–562. [Google Scholar] [PubMed]
- Kelishadi, R.; Mirmoghtadaee, P.; Najafi, H.; Keikha, M. Systematic review on the association of abdominal obesity in children and adolescents with cardio-metabolic risk factors. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2015, 20, 294–307. [Google Scholar]
- Kaul, S.; Rothney, M.P.; Peters, D.M.; Wacker, W.K.; Davis, C.E.; Shapiro, M.D.; Ergun, D.L. Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity 2012, 20, 1313–1318. [Google Scholar] [CrossRef] [PubMed]
- Ross, R. Advances in the application of imaging methods in applied and clinical physiology. Acta Diabetol. 2003, 40 (Suppl. 1), S45–S50. [Google Scholar] [CrossRef]
- Jensen, N.S.O.; Camargo, T.F.B.; Bergamaschi, D.P. Comparison of methods to measure body fat in 7-to-10-year-old children: A systematic review. Public Health 2016, 133, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, P.; Bedogni, G.; Heo, M.; Pietrobelli, A. Waist circumference-to-height ratio predicts adiposity better than body mass index in children and adolescents. Int. J. Obes. 2013, 37, 943–946. [Google Scholar] [CrossRef] [PubMed]
- Martin-Calvo, N.; Moreno-Galarraga, L.; Martinez-Gonzalez, M.A. Association between Body Mass Index, Waist-to-Height Ratio and Adiposity in Children: A Systematic Review and Meta-Analysis. Nutrients 2016, 8, 512. [Google Scholar] [CrossRef] [PubMed]
- Forkert, E.C.O.; Rendo-Urteaga, T.; Nascimento-Ferreira, M.V.; de Moraes, A.C.F.; Moreno, L.A.; de Carvalho, H.B. Abdominal obesity and cardiometabolic risk in children and adolescents, are we aware of their relevance? Nutrire 2016, 41. [Google Scholar] [CrossRef]
- Sardinha, L.B.; Santos, D.A.; Silva, A.M.; Grøntved, A.; Andersen, L.B.; Ekelund, U. A Comparison between BMI, Waist Circumference, and Waist-To-Height Ratio for Identifying Cardio-Metabolic Risk in Children and Adolescents. PLoS ONE 2016, 11, e0149351. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.-H.; Hur, Y.-I.; Kang, J.-H.; Kim, K.; Cho, Y.; Hong, S.-M.; Cho, E. Usefulness of the Waist Circumference-to-Height Ratio in Screening for Obesity and Metabolic Syndrome among Korean Children and Adolescents: Korea National Health and Nutrition Examination Survey, 2010–2014. Nutrients 2017, 9, 256. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, M.; Arata, N.; Miyazaki, C.; Mori, R.; Kikuchi, T.; Ogawa, Y.; Ota, E. Obesity and abnormal glucose tolerance in offspring of diabetic mothers: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0190676. [Google Scholar] [CrossRef] [PubMed]
- Pulgaron, E.R.; Delamater, A.M. Obesity and Type 2 Diabetes in Children: Epidemiology and Treatment. Curr. Diab. Rep. 2014, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maffeis, C.; Banzato, C.; Talamini, G. Waist-to-Height Ratio, a Useful Index to Identify High Metabolic Risk in Overweight Children. J. Pediatr. 2008, 152, 207–213.e2. [Google Scholar] [CrossRef] [PubMed]
- Khoury, M.; Manlhiot, C.; McCrindle, B.W. Role of the waist/height ratio in the cardiometabolic risk assessment of children classified by body mass index. J. Am. Coll. Cardiol. 2013, 62, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Cominato, L.; Di Biagio, G.F.; Lellis, D.; Franco, R.R.; Mancini, M.C.; de Melo, M.E. Obesity Prevention: Strategies and Challenges in Latin America. Curr. Obes. Rep. 2018. [Google Scholar] [CrossRef] [PubMed]
- Kline, L.; Jones-Smith, J.; Jaime Miranda, J.; Pratt, M.; Reis, R.S.; Rivera, J.A.; Sallis, J.F.; Popkin, B.M. A research agenda to guide progress on childhood obesity prevention in Latin America. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2017, 18 (Suppl. 2), 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lytle, L.A.; Nichaman, M.Z.; Obarzanek, E.; Glovsky, E.; Montgomery, D.; Nicklas, T.; Zive, M.; Feldman, H. Validation of 24-hour recalls assisted by food records in third-grade children. The CATCH Collaborative Group. J. Am. Diet. Assoc. 1993, 93, 1431–1436. [Google Scholar] [CrossRef]
Characteristic | All | Boys (n = 52) | Girls (n = 73) | p2 |
---|---|---|---|---|
Age (years) | 9 (8–10) | 9 (8–10) | 9 (8–10) | 0.564 |
z-BMI (SD) | 1.43 ± 1.19 | 1.52 ± 1.24 | 1.35 ± 1.15 | 0.407 |
Waist circumference (cm) | 73.42 ± 12.79 | 72.95 ± 13.62 | 73.76 ± 12.25 | 0.726 |
Waist-to-height ratio | 0.52 ± 0.07 | 0.52 ± 0.07 | 0.52 ± 0.07 | 0.803 |
Systolic BP (mmHg) | 96.83 ± 8.99 | 97.51 ± 8.88 | 96.35 ±9.10 | 0.481 |
Diastolic BP (mmHg) | 64.13 ± 6.68 | 64.19 ± 7.80 | 64.09 ± 5.8 | 0.934 |
Fasting plasma glucose (mmol/L) | 5.05 (4.89–5.22) | 5.05 (4.90–5.22) | 5.05 (4.83–5.22) | 0.534 |
Total cholesterol (mmol/L) | 4.21 ± 0.68 | 4.24 ± 0.67 | 4.20 ± 0.69 | 0.745 |
LDL cholesterol (mmol/L) | 2.66 ± 0.64 | 2.65 ± 0.62 | 2.66 ± 0.65 | 0.927 |
HDL cholesterol (mmol/L) | 1.27 (1.12–1.54) | 1.30 (1.13–1.59) | 1.24 (1.10–1.49) | 0.200 |
Triglycerides (mmol/L) | 1.01 (0.74–1.40) | 1.01 (0.69–1.35) | 1.01 (0.79–1.49) | 0.321 |
AI | 1.98 (1.61–2.44) | 1.95 (1.59–2.39) | 2.01 (1.61–2.59) | 0.595 |
AIP | 0.25 ± 0.26 | 0.21 ± 0.26 | 0.28 ± 0.26 | 0.163 |
Energy intake (kcal/day) | 1935 ± 610.2 | 2081 ± 692.6 | 1831 ± 524.4 | 0.030 |
Protein (g/day) | 76.95 ± 26.07 | 78.44 ± 28.5 | 75.88 ± 24.31 | 0.590 |
Total fat (g/day) | 62.9 (48.1–82.5) | 63.13 (49.81–105.93) | 62.9 (47.5–81.0) | 0.256 |
Saturated fat (g/day) | 23.8 (15.3–30.18) | 25.58 (15.9–31.8) | 22.5 (14.7–29.8) | 0.348 |
Carbohydrates (g/day) | 236.9 (186–319) | 260.14 (191–346) | 231.61 (181–294) | 0.564 |
Cardio-Metabolic Risk Marker | WHtR ≥ 0.5 n (%) | WC ≥ 90 Percentile n (%) | BMI z-Score > 1 SD n (%) |
---|---|---|---|
LDL-c ≥ 3.4 mmol/L (n = 12) | 12 (100) | 7 (58.3) | 11 (91.6) |
HDL-c < 1 mmol/L (n = 15) | 14 (93.3) | 10 (66.6) | 14 (93.3) |
TGs ≥1.1 mmol/L (0–9 years) or ≥ 1.5 mmol/L (10–19 years) (n = 40) | 37 (92.5) | 22 (55) | 34 (85) |
FPG ≥ 5.6 mmol/L (n = 6) | 3 (50) | 3 (50) | 3 (50) |
TC ≥ 5.2 mmol/L (n = 11) | 10 (90.9) | 5 (45.45) | 9 (81.8) |
AIP > 0.11 (n = 92) | 70 (76) | 44 (47.8) | 71 (77.1) |
AI > 3 for women and > 2.5 for men (n = 27) | 26 (96.2) | 17 (62.9) | 25 (92.6) |
Cardio-Metabolic Risk Marker | WHtR | WC | z-BMI | |
---|---|---|---|---|
AURC (95% CI) p Value | AURC (95% CI) p Value | AURC (95% CI) p Value | p * | |
LDL-c ≥ 3.4 mmol/L | 0.742 (0.63, 0.86) 0.006 | 0.685 (0.54, 0.83) 0.035 | 0.687 (0.55, 0.82) 0.034 | 0.1511 |
HDL-c < 1 mmol/L | 0.733 (0.60, 0.87) 0.004 | 0.719 (0.59, 0.85) 0.006 | 0.704 (0.57, 0.83) 0.011 | 0.8124 |
TGs ≥ 1.1 mmol/L (0–9 years) or ≥1.5 mmol/L (10–19 years) | 0.734 (0.65, 0.82) 0.000 | 0.690 (0.59, 0.79) 0.001 | 0.730 (0.64, 0.82) 0.000 | 0.2382 |
FPG ≥ 5.6 mmol/L | 0.507 (0.21, 0.80) 0.954 | 0.627 (0.32, 0.93) 0.293 | 0.574 (0.29, 0.86) 0.544 | 0.003 |
TC ≥ 5.2 mmol/L | 0.689 (0.55, 0.83) 0.039 | 0.630 (0.47, 0.80) 0.155 | 0.655 (0.50, 0.81) 0.090 | 0.3034 |
AIP > 0.11 | 0.811 (0.73, 0.89) 0.000 | 0.825 (0.75, 0.90) 0.000 | 0.831 (0.75, 0.91) 0.000 | 0.7050 |
AI > 3 for women and >2.5 for men | 0.699 (0.46, 0.94) 0.335 | 0.681 (0.56, 0.80) 0.381 | 0.652 (0.39, 0.92) 0.461 | 0.2392 |
Cardio-Metabolic Risk Marker | WHtR (Per Increase of 0.1 Units) * | WC (cm) * | z-BMI (SD) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β | 95% CI | Standardized β | p | β | 95% CI | Standardized β | p | β | 95% CI | Standardized β | p | |
LDL-c (mmol/L) Unadjusted model | 0.27 | 0.12, 0.41 | 0.31 | 0.000 | 0.01 | 0.00, 0.02 | 0.24 | 0.007 | 0.13 | 0.03, 0.21 | 0.24 | 0.008 |
Adjusted model 1 | 0.24 | 0.09, 0.38 | 0.28 | 0.002 | 0.01 | 0.00, 0.02 | 0.29 | 0.005 | 0.12 | 0.02, 0.21 | 0.22 | 0.015 |
HDL-c (mmol/L) Unadjusted model | −0.21 | −0.27, −0.14 | −0.49 | 0.000 | −0.01 | −0.02, −0.01 | −0.53 | 0.000 | −0.12 | −0.16, −0.08 | −0.45 | 0.000 |
Adjusted model 2 | −0.21 | −0.27, −0.14 | −0.49 | 0.000 | −0.01 | −0.02, −0.01 | −0.56 | 0.000 | −0.12 | −0.17, −0.08 | −0.47 | 0.000 |
TGs (mmol/L) Unadjusted model | 0.34 | 0.23, 0.46 | 0.47 | 0.000 | 0.02 | 0.02, 0.03 | 0.54 | 0.000 | 0.20 | 0.13, 0.27 | 0.45 | 0.000 |
Adjusted model 2 | 0.34 | 0.22, 0.45 | 0.47 | 0.000 | 0.02 | 0.02, 0.03 | 0.55 | 0.000 | 0.21 | 0.14, 0.29 | 0.48 | 0.000 |
TC (mmol/L) Unadjusted model | 0.13 | −0.03, 0.29 | 0.14 | 0.108 | 0.00 | −0.01, 0.01 | 0.07 | 0.424 | 0.06 | −0.05, 0.16 | 0.10 | 0.277 |
Adjusted model 1 | 0.10 | −0.06, 0.27 | 0.11 | 0.217 | 0.01 | −0.01, 0.02 | 0.11 | 0.299 | 0.05 | −0.06, 0.15 | 0.08 | 0.386 |
FPG (mmol/L) Unadjusted model | 0.03 | −0.04, 0.10 | 0.07 | 0.421 | 0.00 | −0.00, 0.01 | 0.15 | 0.089 | 0.03 | −0.02, 0.07 | 0.11 | 0.237 |
Adjusted model 3 | 0.02 | −0.06, 0.10 | 0.05 | 0.597 | 0.00 | −0.00, 0.01 | 0.14 | 0.119 | 0.02 | −0.02, 0.07 | 0.09 | 0.328 |
AIP Unadjusted model | 0.20 | 0.14, 0.25 | 0.54 | 0.000 | 0.01 | 0.01, 0.016 | 0.62 | 0.000 | 0.12 | 0.08, 0.15 | 0.52 | 0.000 |
Adjusted model 4 | 0.20 | 0.14, 0.25 | 0.55 | 0.000 | 0.01 | 0.01, 0.016 | 0.63 | 0.000 | 0.12 | 0.09, 0.16 | 0.55 | 0.000 |
AI Unadjusted model | 0.47 | 0.33, 0.63 | 0.49 | 0.000 | 0.03 | 0.02, 0.036 | 0.47 | 0.000 | 0.25 | 0.15, 0.35 | 0.41 | 0.000 |
Adjusted model 4 | 0.48 | 0.33, 0.64 | 0.50 | 0.000 | 0.03 | 0.02, 0.035 | 0.46 | 0.000 | 0.26 | 0.16, 0.36 | 0.43 | 0.000 |
Cardio-Metabolic Risk Marker | WHtR ≥ 0.5 * | WC ≥ 90 Percentile | BMI z-Score > 1 SD | ||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
LDL-c ≥ 3.4 mmol/L Unadjusted model | 2.91 ¥ | 0.84, 7.78 | 0.002 | 3.12 | 0.93, 10.51 | 0.066 | 7.01 | 0.86, 56.25 | 0.067 |
Adjusted model 1 | 2.82 ¥ | 0.75, 7.68 | 0.003 | 3.39 | 0.97, 11.81 | 0.055 | 6.47 | 0.79, 52.83 | 0.081 |
HDL-c < 1 mmol/L Unadjusted model | 11.02 | 1.41, 86.34 | 0.022 | 4.88 | 1.54, 15.39 | 0.007 | 9.33 | 1.18, 73.54 | 0.034 |
Adjusted model 2 | 11.05 | 1.36, 89.77 | 0.025 | 5.20 | 1.60, 16.90 | 0.006 | 11.06 | 1.37, 89.43 | 0.024 |
TGs ≥ 1.1 mmol/L for 0–9 years and ≥ 1.5 mmol/L for 10–19 years Unadjusted model | 13.90 | 3.99, 48.49 | 0.000 | 3.97 | 1.79, 8.84 | 0.001 | 4.80 | 1.83, 12.64 | 0.001 |
Adjusted model 2 | 17.36 | 4.65, 64.77 | 0.000 | 4.44 | 1.93, 10.23 | 0.000 | 5.32 | 1.94, 14.58 | 0.001 |
TC ≥ 5.2 mmol/L Unadjusted model | 7.60 | 0.95, 60.89 | 0.056 | 2.60 | 0.74, 9.08 | 0.134 | 2.73 | 0.56, 13.21 | 0.213 |
Adjusted model 1 | 6.83 | 0.82, 56.89 | 0.076 | 2.67 | 0.76, 9.41 | 0.126 | 2.54 | 0.51, 12.55 | 0.253 |
FPG ≥ 5.6 mmol/L Unadjusted model | 0.59 | 0.12, 3.06 | 0.532 | 2.05 | 0.40, 10.63 | 0.392 | 0.55 | 0.11, 2.82 | 0.470 |
Adjusted model 3 | 0.52 | 0.09, 3.00 | 0.464 | 2.07 | 0.40, 10.77 | 0.388 | 0.47 | 0.09, 2.57 | 0.383 |
AIP ≥ 0.11 Unadjusted model | 12.16 | 4.65, 31.79 | 0.000 | 4.00 ¥ | 2.00, 8.85 | 0.000 | 9.02 | 3.64, 22.35 | 0.000 |
Adjusted model 4 | 14.16 | 4.86, 41.25 | 0.000 | 4.16 ¥ | 2.14, 9.02 | 0.000 | 10.22 | 3.85, 27.11 | 0.000 |
AI > 3 for women and < 2.5 for men Unadjusted model | 11.06 | 2.48, 49.26 | 0.002 | 4.96 | 2.00, 12.25 | 0.001 | 9.77 | 2.19, 43.56 | 0.003 |
Adjusted model 4 | 12.39 | 2.71, 56.65 | 0.001 | 5.11 | 2.02, 12.94 | 0.001 | 10.78 | 2.33, 49.78 | 0.002 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Morales, I.; Colin-Ramirez, E.; Rivera-Mancía, S.; Vallejo, M.; Vázquez-Antona, C. Performance of Waist-To-Height Ratio, Waist Circumference, and Body Mass Index in Discriminating Cardio-Metabolic Risk Factors in a Sample of School-Aged Mexican Children. Nutrients 2018, 10, 1850. https://doi.org/10.3390/nu10121850
Aguilar-Morales I, Colin-Ramirez E, Rivera-Mancía S, Vallejo M, Vázquez-Antona C. Performance of Waist-To-Height Ratio, Waist Circumference, and Body Mass Index in Discriminating Cardio-Metabolic Risk Factors in a Sample of School-Aged Mexican Children. Nutrients. 2018; 10(12):1850. https://doi.org/10.3390/nu10121850
Chicago/Turabian StyleAguilar-Morales, Ibiza, Eloisa Colin-Ramirez, Susana Rivera-Mancía, Maite Vallejo, and Clara Vázquez-Antona. 2018. "Performance of Waist-To-Height Ratio, Waist Circumference, and Body Mass Index in Discriminating Cardio-Metabolic Risk Factors in a Sample of School-Aged Mexican Children" Nutrients 10, no. 12: 1850. https://doi.org/10.3390/nu10121850