Effects of Different Dietary Interventions on Calcitriol, Parathyroid Hormone, Calcium, and Phosphorus: Results from the DASH Trial
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Intervention
2.4. Measurements
2.5. Outcome
2.6. Statistical Analysis
3. Results
3.1. Changes in Outcomes
3.2. Subgroup Effects
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Availability of Data and Material
Additional Materials
Abbreviations
DASH | Dietary Approach to Stop Hypertension |
PTH | Parathyroid Hormone |
F&V | Fruit and Vegetable Diet |
BMI | Body Mass Index |
References
- Bikle, D.D. Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Van Driel, M.; van Leeuwen, J.P.T.M. Vitamin D endocrine system and osteoblasts. Bonekey Rep. 2014, 3, 493. [Google Scholar] [CrossRef] [PubMed]
- Judd, S.E.; Raiser, S.N.; Kumari, M.; Tangpricha, V. 1,25-Dihydroxyvitamin D3 reduces systolic blood pressure in hypertensive adults: A pilot feasibility study. J. Steroid Biochem. Mol. Biol. 2010, 121, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Kong, J.; Wei, M.; Chen, Z.-F.; Liu, S.Q.; Cao, L.-P. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Investig. 2002, 110, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Baynes, K.C.; Boucher, B.J.; Feskens, E.J.; Kromhout, D. Vitamin D, glucose tolerance and insulinaemia in elderly men. Diabetologia 1997, 40, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Muller, K.; Haahr, P.M.; Diamant, M.; Rieneck, K.; Kharazmi, A.; Bendtzen, K. 1,25-Dihydroxyvitamin D3 inhibits cytokine production by human blood monocytes at the post-transcriptional level. Cytokine 1992, 4, 506–512. [Google Scholar] [CrossRef]
- De Boer, I.H.; Ioannou, G.N.; Kestenbaum, B.; Brunzell, J.D.; Weiss, N.S. 25-Hydroxyvitamin D levels and albuminuria in the Third National Health and Nutrition Examination Survey (NHANES III). Am. J. Kidney Dis. 2007, 50, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.S.; Hewison, M. Update in vitamin D. J. Clin. Endocrinol. Metab. 2010, 95, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, D.; Katicic, D.; Gulin, T.; Josipovic, J. Vitamin D in the Patients with Chronic Kidney Disease: When, to Whom and in Which Form. Mater. Sociomed. 2015, 27, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Norman, A.W.; Henry, H.L. Hormones, 3rd ed.; Academic Press: San Diego, CA, USA, 2015. [Google Scholar]
- McLarnon, A. Nutrition: Dietary fat might influence serum vitamin D level. Nat. Rev. Endocrinol. 2011, 7, 562. [Google Scholar] [CrossRef] [PubMed]
- Dawson-Hughes, B.; Harris, S.S.; Lichtenstein, A.H.; Dolnikowski, G.; Palermo, N.J.; Rasmussen, H. Dietary fat increases vitamin d-3 absorption. J. Acad. Nutr. Diet. 2015, 115, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Niramitmahapanya, S.; Harris, S.S.; Dawson-Hughes, B. Type of dietary fat is associated with the 25-hydroxyvitamin D 3 increment in response to vitamin D supplementation. J. Clin. Endocrinol. Metab. 2011, 96, 3170–3174. [Google Scholar] [CrossRef] [PubMed]
- Dawson-Hughes, B.; Harris, S.S.; Palermo, N.J.; Ceglia, L.; Rasmussen, H. Meal conditions affect the absorption of supplemental vitamin D3 but not the plasma 25-hydroxyvitamin D response to supplementation. J. Bone Miner. Res. 2013, 28, 1778–1783. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T.; et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D.; Ettinger, B.; Sidney, S.; Tekawa, I.S.; Tolan, K. Differences in Calcium Metabolism between Black and White Men and Women. Miner. Electrol. Metab. 1999, 25, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Folsom, A.R.; Pankow, J.S.; Selvin, E.; Michos, E.D.; Alonso, A.; Tang, W.; Lutsey, P.L. Parathyroid hormone and the risk of incident hypertension: The Atherosclerosis Risk in Communities study. J. Hypertens. 2016, 34, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Vogt, T.M.; Appel, L.J.; Obarzanek, E.; Moore, T.J.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Cutler, J.A.; Windhauser, M.M.; et al. Dietary Approaches to Stop Hypertension: Rationale, design, and methods. DASH Collaborative Research Group. J. Am. Diet. Assoc. 1999, 99, S12–S18. [Google Scholar] [CrossRef]
- Swain, J.F.; Windhauser, M.M.; Hoben, K.P.; Evans, M.A.; McGee, B.B.; Steele, P.D. Menu design and selection for multicenter controlled feeding studies: Process used in the Dietary Approaches to Stop Hypertension trial. DASH Collaborative Research Group. J. Am. Diet. Assoc. 1999, 99, S54–S59. [Google Scholar] [CrossRef]
- Rothman, K.J. No Adjustments Are Needed for Multiple Comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Perneger, T.V. Adjusting for multiple testing in studies is less important than other concerns. BMJ 1999, 318, 1288. [Google Scholar] [CrossRef] [PubMed]
- Libon, F.; Cavalier, E.; Nikkels, A.F. Skin color is relevant to vitamin D synthesis. Dermatology 2013, 227, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Shahriari, M.; Kerr, P.E.; Slade, K.; Grant-Kels, J.E. Vitamin D and the skin. Clin. Dermatol. 2010, 28, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Clemens, T.L.; Henderson, S.L.; Adams, J.S.; Holick, M.F. Increased Skin Pigment Reduces the Capacity of Skin to Synthesise Vitamin D3. Lancet 1982, 319, 74–76. [Google Scholar] [CrossRef]
- Loomis, W.F. Skin-Pigment Regulation of Vitamin-D Biosynthesis in Man: Variation in solar ultraviolet at different latitudes may have caused racial differentiation in man. Science 1967, 157, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, S. Phosphate metabolism and vitamin D. Bonekey Rep. 2014, 3, 497. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.S.K.; Delansorne, R.; Man, R.Y.K.; Svenningsen, P.; Vanhoutte, P.M. Chronic treatment with vitamin D lowers arterial blood pressure and reduces endothelium-dependent contractions in the aorta of the spontaneously hypertensive rat. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1226–H1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mary, A.; Henaut, L.; Boudot, C.; Six, I.; Brazier, M.; Massy, Z.A.; Drueke, T.B.; Kamel, S.; Mentaverri, R. Calcitriol prevents in vitro vascular smooth muscle cell mineralization by regulating calcium-sensing receptor expression. Endocrinology 2015, 156, 1965–1974. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.S.K.; Leisegang, M.S.; Kruse, C.; Vogel, J.; Schürmann, C.; Dehne, N.; Weigert, A.; Herrmann, E.; Brüne, B.; Shah, A.M.; et al. Vitamin D promotes vascular regeneration. Circulation 2014, 130, 976–986. [Google Scholar] [CrossRef] [PubMed]
- Schleithoff, S.S.; Zittermann, A.; Tenderich, G.; Berthold, H.K.; Stehle, P.; Koerfer, R. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: A double-blind, randomized, placebo-controlled trial. Am. J. Clin. Nutr. 2006, 83, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Kamycheva, E.; Sundsfjord, J.; Jorde, R. Serum parathyroid hormone levels predict coronary heart disease: The Tromsø Study. Eur. J. Cardiovasc. Prev. Rehabil. 2004, 11, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Hagström, E.; Hellman, P.; Larsson, T.E.; Ingelsson, E.; Berglund, L.; Sundström, J.; Melhus, H.; Held, C.; Lind, L.; Michaëlsson, K.; et al. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation 2009, 119, 2765–2771. [Google Scholar] [CrossRef] [PubMed]
- Gruson, D.; Ahn, S.A.; Rousseau, M.F. Multiple biomarker strategy based on parathyroid hormone and natriuretic peptides testing for improved prognosis of chronic heart failure. Peptides 2015, 64, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Saleh, F.N.; Schirmer, H.; Sundsfjord, J.; Jorde, R. Parathyroid hormone and left ventricular hypertrophy. Eur. Heart J. 2003, 24, 2054–2060. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Zelnick, L.; Robinson-Cohen, C.; Hoofnagle, A.N.; Ix, J.H.; Lima, J.A.; Shoben, A.B.; Peralta, C.A.; Siscovick, D.S.; Kestenbaum, B.; et al. Serum parathyroid hormone and 25-hydroxyvitamin D concentrations and risk of incident heart failure: The multi-ethnic study of atherosclerosis. J. Am. Heart Assoc. 2014, 3, e001278. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Yamamoto, L.; Rousseau, L.; Brossard, J.H.; Lepage, R.; Gao, P.; Cantor, T.; D’Amour, P. Origin of parathyroid hormone (PTH) fragments detected by intact-PTH assays. Eur. J. Endocrinol. 2002, 147, 123–131. [Google Scholar] [CrossRef] [PubMed]
- D’Amour, P.; Segre, G.V.; Roth, S.I.; Potts, J.T. Analysis of parathyroid hormone and its fragments in rat tissues. Chemical identification and microscopical localization. J. Clin. Investig. 1979, 63, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-H.; Ginty, F.; Appel, L.J.; Aickin, M.; Bohannon, A.; Garnero, P.; Barclay, D.; Svetkey, L.P. The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults. J. Nutr. 2003, 133, 3130–3136. [Google Scholar] [CrossRef] [PubMed]
- McCarron, D.A. Low serum concentrations of ionized calcium in patients with hypertension. N. Engl. J. Med. 1982, 307, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Jorde, R.; Bonaa, K.H.; Sundsfjord, J. Population based study on serum ionised calcium, serum parathyroid hormone, and blood pressure. The Tromsø study. Eur. J. Endocrinol. 1999, 141, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Chandalia, M.; Adams-Huet, B.; Brinkley, L.J.; Sakhaee, K.; Grundy, S.M.; Garg, A. Effect of a high-fiber diet compared with a moderate-fiber diet on calcium and other mineral balances in subjects with type 2 diabetes. Diabetes Care 2009, 32, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Biber, J.; Hernando, N.; Forster, I. Phosphate transporters and their function. Annu. Rev. Physiol. 2013, 75, 535–550. [Google Scholar] [CrossRef] [PubMed]
- Verberckmoes, S.C.; Persy, V.; Behets, G.J.; Neven, E.; Hufkens, A.; Zebger-Gong, H.; Müller, D.; Haffner, D.; Querfeld, U.; Bohic, S.; et al. Uremia-related vascular calcification: More than apatite deposition. Kidney Int. 2007, 71, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Karanja, N.M.; Obarzanek, E.; Lin, P.H.; McCullough, M.L.; Phillips, K.M.; Swain, J.F.; Champagne, C.M.; Hoben, K.P. Descriptive characteristics of the dietary patterns used in the Dietary Approaches to Stop Hypertension Trial. DASH Collaborative Research Group. J. Am. Diet. Assoc. 1999, S99, S19–27. [Google Scholar] [CrossRef]
Characteristics | Total (n = 334) | Control Diet (n = 108) | Fruit and Vegetable Diet (n = 112) | DASH Diet‡ (n = 114) | ||||
---|---|---|---|---|---|---|---|---|
Age (Y) * | 45.7 | ±10.7 | 45.0 | ±11.2 | 45.3 | ±1.8 | 44.3 | ±10.2 |
Female (n, %) | 155 | 46 | 46 | 43 | 52 | 46 | 57 | 50 |
Female > 51 years (n, %) | 42 | 27 | 11 | 23 | 15 | 28 | 16 | 28 |
Race | ||||||||
Black (n, %) | 192 | 57 | 62 | 57 | 64 | 57 | 66 | 58 |
Weight (kg) | ||||||||
All | 82.8 | ±14.6 | 82.9 | ±14.6 | 81.8 | ±14.0 | 83.4 | ±15.0 |
Male | 88.0 | ±14.2 | 89.1 | ±12.7 | 86.1 | ±13.4 | 88.7 | ±16.7 |
Female | 76.8 | ±12.5 | 74.8 | ±13.0 | 76.9 | ±13.2 | 78.2 | ±11.4 |
Body Mass Index, BMI (kg/m2) † | ||||||||
All | 28.1 | ±3.9 | 28.0 | ±3.7 | 28.0 | ±4.1 | 28.4 | ±4.0 |
Male | 27.8 | ±3.7 | 28.0 | ±3.4 | 27.3 | ±3.5 | 28.1 | ±4.1 |
Female | 28.5 | ±4.1 | 28.7 | ±3.8 | 29.0 | ±3.6 | 29.8 | ±4.0 |
Hypertensive (n, %) | 105 | 31 | 28 | 35 | 37 | 33 | 30 | 26 |
Control Diet | Fruit and Vegetable Diet | DASH Diet | ||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
Calcitriol (pg/mL) | ||||||
run-in | 37.3 | ±10.1 | 37.6 | ±7.8 | 38.5 | ±9.7 |
intervention | 36.6 | ±10.2 | 36.1 | ±9.6 | 34.5 | ±7.8 |
difference | −0.7 | ±8.9 | −1.5 | ±7.8 | −4.0 | ±8.6 |
Parathyroid Hormone, PTH (pg/mL) | ||||||
run-in | 49.1 | ±20.1 | 44.7 | ±17.4 | 44.6 | ±17.7 |
intervention | 48.3 | ±20.0 | 46.7 | ±19.4 | 43.6 | ±18.6 |
difference | −0.9 | ±13.9 | 1.9 | ±17.5 | −1.0 | ±12.8 |
Ionized Calcium (mg/dL) | ||||||
run-in | 5.2 | ±0.23 | 5.2 | ±0.23 | 5.2 | ±0.23 |
intervention | 5.2 | ±0.21 | 5.2 | ±0.22 | 5.2 | ±0.23 |
difference | −0.0 | ±0.21 | 0.0 | ±0.26 | −0.0 | ±0.23 |
24 h Urinary Calcium (mg/24 h) | ||||||
run-in | 145.6 | ±75.8 | 155.4 | ±77.5 | 149.1 | ±80.1 |
intervention | 137.5 | ±71.4 | 106.7 | ±66.8 | 144.7 | ±88.7 |
difference | −8.1 | ±56.4 | −48.7 | ±68.0 | −4.4 | ±77.1 |
24 h Urinary Phosphate (mg/24 h) | ||||||
run-in | 683.0 | ±257.1 | 722.1 | ±243.7 | 717.8 | ±254.9 |
intervention | 725.7 | ±236.6 | 702.1 | ±249.1 | 835.4 | ±333.3 |
difference | 61.7 | ±252.0 | −21.0 | ±269.4 | 117.5 | ±272.7 |
Markers | Δ-Δ | (95% Confidence Interval) | p |
---|---|---|---|
Change in DASH Diet Minus Change in Control Diet | |||
Blood ‡ | |||
Calcitriol | −3.32 | (−3.05, −1.08) | 0.004 |
PTH | −0.15 | (−4.08, 3.78) | 0.941 |
Ionized Calcium | −0.003 | (−0.07, 0.06) | 0.931 |
24-h urine § | |||
Urinary Calcium | 3.67 | (−14.29, 21.60) | 0.689 |
Urinary Phosphate | 55.86 | (−14.33, 126.01) | 0.180 |
Markers | Change in F&V Diet Minus Change in Control Diet | ||
Blood ‡ | |||
Calcitriol | −0.81 | (−3.05, 1.44) | 0.481 |
PTH | 2.80 | (−1.14, 6.75) | 0.163 |
Ionized Calcium | 0.026 | (−0.04, 0.08) | 0.418 |
24-h urine § | |||
Urinary Calcium | −40.63 | (−58.66, −22.61) | <0.001 |
Urinary Phosphate | −82.66 | (−158.31, −12.01) | 0.022 |
Markers | Change in DASH Diet Minus Change in F&V Diet | ||
Blood ‡ | |||
Calcitriol | −2.52 | (−4.73, −0.30) | 0.026 |
PTH | −2.96 | (−6.85, −0.94) | 0.136 |
Ionized Calcium | −0.029 | (−0.09, 0.03) | 0.364 |
24-h urine § | |||
Urinary Calcium | 44.29 | (26.51, 62.07) | <0.001 |
Urinary Phosphate | 138.52 | (68.98, 208.06) | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassoon, A.; Michos, E.D.; Miller, E.R.; Crisp, Z.; Appel, L.J. Effects of Different Dietary Interventions on Calcitriol, Parathyroid Hormone, Calcium, and Phosphorus: Results from the DASH Trial. Nutrients 2018, 10, 367. https://doi.org/10.3390/nu10030367
Hassoon A, Michos ED, Miller ER, Crisp Z, Appel LJ. Effects of Different Dietary Interventions on Calcitriol, Parathyroid Hormone, Calcium, and Phosphorus: Results from the DASH Trial. Nutrients. 2018; 10(3):367. https://doi.org/10.3390/nu10030367
Chicago/Turabian StyleHassoon, Ahmed, Erin D. Michos, Edgar R. Miller, Zeni Crisp, and Lawrence J. Appel. 2018. "Effects of Different Dietary Interventions on Calcitriol, Parathyroid Hormone, Calcium, and Phosphorus: Results from the DASH Trial" Nutrients 10, no. 3: 367. https://doi.org/10.3390/nu10030367