Elucidating Adverse Nutritional Implications of Exposure to Endocrine-Disrupting Chemicals and Mycotoxins through Stable Isotope Techniques
Abstract
:1. Introduction
2. Endocrine Disruptors
- Key Messages:
2.1. The Link between Endocrine Disruptors and Pre-Natal and Early Childhood Growth and Long-Term Health and Development
2.2. The Potential Association between Endocrine Disruptors and Metabolic Dysfunction
2.3. The Link between Mycotoxins and Child Growth
3. The Role of Nuclear/Isotopic Techniques in Characterisation of Food and Environmental Hazards and Understanding Pathways through Which They Affect Human Health
Characterising Exposure to EDCs from Human Milk
4. Assessment of Metabolic Changes Linked to Exposure to EDCs
4.1. Body Composition
4.2. Nutrient Absorption
4.3. Energy Expenditure and Physical Activity
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- International food policy research institute. From promise to impact: Ending malnutrition by 2030. In Global Nutrition Report 2016; International Food Policy Research Institute: Washington, DC, USA, 2016. [Google Scholar]
- Hoddinott, J.; Behrman, J.R.; Maluccio, J.A.; Melgar, P.; Quisumbing, A.R.; Ramirez-Zea, M.; Stein, A.D.; Yount, K.M.; Martorell, R. Adult consequences of growth failure in early childhood. Am. J. Clin. Nutr. 2013, 98, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Work Programme of the United Nations Decade of Action on Nutrition (2016–2025). Available online: http://www.who.int/nutrition/decade-of-action/workprogramme-2016to2025/en/ (accessed on 23 November 2017).
- Kennedy, G.; Nantel, G.; Shetty, P. Assessment of the Double Burden of Malnutrition in Six Case Study Countries; FAO Food and Nutrients Paper; FAO: Rome, Italy, 2006; Volume 84, pp. 1–334. [Google Scholar]
- The World Bank. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 16 March 2018).
- Trends towards Overweight in Lower and Middle-Income Countries: Some Causes and Economic Policy Options. Available online: http://www.fao.org/docrep/009/a0442e/a0442e0x.htm (accessed on 23 December 2017).
- Bhutta, Z.A.; Ahmed, T.; Black, R.E.; Cousens, S.; Dewey, K.; Giugliani, E.; Haider, B.A.; Kirkwood, B.; Morris, S.S.; Sachdev, H.P.S.; et al. Maternal and child undernutrition 3–what works? Interventions for maternal and child undernutrition and survival. Lancet 2008, 371, 417–440. [Google Scholar] [CrossRef]
- Keusch, G.T.; Rosenberg, I.H.; Denno, D.M.; Duggan, C.; Guerrant, R.L.; Lavery, J.V.; Tarr, P.I.; Ward, H.D.; Black, R.E.; Nataro, J.P.; et al. Implications of acquired environmental enteric dysfunction for growth and stunting in infants and children living in low- and middle-income countries. Food Nutr. Bull. 2013, 34, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Mbuya, M.N.N.; Humphrey, J.H. Preventing environmental enteric dysfunction through improved water, sanitation and hygiene: An opportunity for stunting reduction in developing countries. Matern. Child Nutr. 2016, 12, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Owino, V.; Ahmed, T.; Freemark, M.; Kelly, P.; Loy, A.; Manary, M.; Loechl, C. Environmental enteric dysfunction and growth failure/stunting in global child health. Pediatrics 2016, 138. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D. Exposure to environmental endocrine disruptors and child development. Arch. Pediatr. Adolesc. Med. 2012, 166, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An endocrine society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed]
- Zoeller, R.T.; Brown, T.R.; Doan, L.L.; Gore, A.C.; Skakkebaek, N.E.; Soto, A.M.; Woodruff, T.J.; vom Saal, F.S. Endocrine-disrupting chemicals and public health protection: A statement of principles from The Endocrine Society. Endocrinology 2012, 153, 4097–4110. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Hounsa, A.; Egal, S.; Turner, P.C.; Sutcliffe, A.E.; Hall, A.J.; Cardwell, K.; Wild, C.P. Postweaning exposure to aflatoxin results in impaired child growth: A longitudinal study in Benin, west Africa. Environ. Health Perspect. 2004, 112, 1334–1338. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Watson, S.; Routledge, M. Aflatoxin exposure and associated human health effects. Food Saf. Off. J. Food Saf. Comm. Jpn. 2016, 4, 14–27. [Google Scholar]
- Fletcher, T.; Galloway, T.S.; Melzer, D.; Holcroft, P.; Cipelli, R.; Pilling, L.C.; Mondal, D.; Luster, M.; Harries, L.W. Associations between PFOA, PFOS and changes in the expression of genes involved in cholesterol metabolism in humans. Environ. Int. 2013, 57–58, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Zhang, J.; Sommer, K.; Basig, B.A.; Zhang, X.; Braun, J.; Xu, S.; Boyle, P.; Zhang, B.; Shi, K.; et al. Effects of environmental exposures on fetal and childhood growth trajectories. Ann. Glob. Health 2016, 82, 41–99. [Google Scholar] [CrossRef] [PubMed]
- Jaquet, D.; Deghmoun, S.; Chevenne, D.; Collin, D.; Czernichow, P.; Lévy-Marchal, C. Dynamic change in adiposity from fetal to postnatal life is involved in the metabolic syndrome associated with reduced fetal growth. Diabetologia 2005, 48, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Patandin, S.; Koopman-Esseboom, C.; de Ridder, M.A.; Weisglas-Kuperus, N.; Sauer, P.J. Effects of environmental exposure to polychlorinated biphenyls and dioxins on birth size and growth in Dutch children. Pediatr. Res. 1998, 44, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Fei, C.; McLaughlin, J.K.; Tarone, R.E.; Olsen, J. Perfluorinated chemicals and fetal growth: A study within the Danish National Birth Cohort. Environ. Health Perspect. 2007, 115, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Khlangwiset, P.; Shephard, G.S.; Wu, F. Aflatoxins and growth impairment: A review. Crit. Rev. Toxicol. 2011, 41, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.C.; Moore, S.E.; Hall, A.J.; Prentice, A.M.; Wild, C.P. Modification of immune function through exposure to dietary aflatoxin in Gambian children. Environ. Health Perspect. 2003, 111, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Velmurugan, G.; Ramprasath, T.; Gilles, M.; Swaminathan, K.; Ramasamy, S. Gut microbiota, endocrine-disrupting chemicals, and the diabetes epidemic. Trends Endocrinol. Metab. 2017, 28, 612–625. [Google Scholar] [CrossRef] [PubMed]
- Grenier, B.; Applegate, T.J. Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef] [PubMed]
- Petrakis, D.; Vassilopoulou, L.; Mamoulakis, C.; Psycharakis, C.; Anifantaki, A.; Sifakis, S.; Docea, A.O.; Tsiaoussis, J.; Makrigiannakis, A.; Tsatsakis, A.M. Endocrine disruptors leading to obesity and related diseases. Int. J. Environ. Res. Public Health 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- State of the Science of Endocrine Disrupting Chemicals–2012. Available online: http://www.who.int/ceh/publications/endocrine/en/ (accessed on 23 November 2017).
- Anupama Nair, P.; Sujatha, C. Organic pollutants as endocrine disruptors: Organometallics, PAHs, organochlorine, organophosphate and carbamate insecticides, phthalates, dioxins, phytoestrogens, alkyl phenols and bisphenol A. In Environmental Chemistry for a Sustainable World; Lichtfouse, E., Schwarzbauer, J., Robert, D., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 1, ISBN 978-94-007-2442-6. [Google Scholar]
- DiVall, S.A. The influence of endocrine disruptors on growth and development of children. Curr. Opin. Endocrinol. 2013, 20, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Newbold, R.R. Developmental exposure to endocrine-disrupting chemicals programs for reproductive tract alterations and obesity later in life. Am. J. Clin. Nutr. 2011, 94, 1939S–1942S. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J. Developmental Toxicology. In Casarett & Doull’s Toxicology: The Basic Science of Poisons, 8th ed.; Klaassen, C., Ed.; McGraw-Hill Education: New York, NY, USA, 2013; ISBN 9780071769259. [Google Scholar]
- World Health Organization (WHO). Endocrine Disorders and Children, Children’s Health and the Environment. Available online: http://www.portal.pmnch.org/ceh/capacity/endocrine.pdf (accessed on 5 September 2017).
- Yum, T.; Lee, S.; Kim, Y. Association between precocious puberty and some endocrine disruptors in human plasma. J. Environ. Sci. Health A 2013, 48, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Carel, J.C.; Lahlou, N.; Roger, M.; Chaussain, J.L. Precocious puberty and statural growth. Hum. Reprod. Update 2004, 10, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Birks, L.; Casas, M.; Garcia, A.M.; Alexander, J.; Barros, H.; Bergstrom, A.; Bonde, J.P.; Burdorf, A.; Costet, N.; Danileviciute, A.; et al. Occupational exposure to endocrine-disrupting chemicals and birth weight and length of gestation: A European meta-analysis. Environ. Health Perspect. 2016, 124, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Lucchese, T.A.; Grunow, N.; Ian Werner, I.; de Jesus, A.L.; Arbex, A.K. Endocrine disruptors and fetal programming. OJEMD 2017, 7, 59–76. [Google Scholar] [CrossRef]
- Legler, J.; Hamers, T.; van der Sluijs-van de Bor, M.V.; Schoeters, G.; van der Ven, L.; Eggesbo, M.; Koppe, J.; Feinberg, M.; Trnovec, T. The obelix project: Early life exposure to endocrine disruptors and obesity. Am. J. Clin. Nutr. 2011, 94, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.; Oliveira, T.; Fernandes, R. Biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci. 2013, 9, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Casals-Casas, C.; Feige, J.N.; Desvergne, B. Interference of pollutants with PPARs: Endocrine disruption meets metabolism. Int. J. Obes. 2008, 32, S53–S61. [Google Scholar] [CrossRef] [PubMed]
- Grun, F.; Blumberg, B. Endocrine disrupters as obesogens. Mol. Cell. Endocrinol. 2009, 304, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Hatch, E.E.; Nelson, J.W.; Stahlhut, R.W.; Webster, T.F. Association of endocrine disruptors and obesity: Perspectives from epidemiological studies. Int. J. Androl. 2010, 33, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Tang-Peronard, J.L.; Heitmann, B.L.; Andersen, H.R.; Steuerwald, U.; Grandjean, P.; Weihe, P.; Jensen, T.K. Association between prenatal polychlorinated biphenyl exposure and obesity development at ages 5 and 7 y: A prospective cohort study of 656 children from the Faroe Islands. Am. J. Clin. Nutr. 2014, 99, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Tang-Peronard, J.L.; Heitmann, B.L.; Jensen, T.K.; Vinggaard, A.M.; Madsbad, S.; Steuerwald, U.; Grandjean, P.; Weihe, P.; Nielsen, F.; Andersen, H.R. Prenatal exposure to persistent organochlorine pollutants is associated with high insulin levels in 5-year-old girls. Environ. Res. 2015, 142, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Yajnik, C. Interactions of perturbations in intrauterine growth and growth during childhood on the risk of adult-onset disease. Proc. Nutr. Soc. 2000, 59, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Groopman, J.D.; Egner, P.A.; Schulze, K.J.; Wu, L.S.; Merrill, R.; Mehra, S.; Shamim, A.A.; Ali, H.; Shaikh, S.; Gernand, A.; et al. Aflatoxin exposure during the first 1000 days of life in rural south Asia assessed by aflatoxin B1-lysine albumin biomarkers. Food Chem. Toxicol. 2014, 74, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [CrossRef] [PubMed]
- Egal, S.; Hounsa, A.; Gong, Y.Y.; Turner, P.C.; Wild, C.P.; Hall, A.J.; Hell, K.; Cardwell, K.F. Dietary exposure to aflatoxin from maize and groundnut in young children from Benin and Togo, West Africa. Int. J. Food Microbiol. 2005, 15, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Daniel, J.H.; Lewis, L.W.; Redwood, Y.A.; Kieszak, S.; Breiman, R.F.; Flanders, W.D.; Bell, C.; Mwihia, J.; Ogana, G.; Likimani, S.; et al. Comprehensive assessment of maize aflatoxin levels in eastern Kenya, 2005–2007. Environ. Health Perspect. 2011, 119, 1794–1799. [Google Scholar] [CrossRef] [PubMed]
- Modupeade, C.; Adetunji, A.O.; Chibundu, E.N. Risk Assessment of Mycotoxins in stored maize grains consumed by infants and young children in Nigeria. Children 2017, 4, 58. [Google Scholar] [CrossRef]
- Dalezios, J.I.; Hsieh, D.P.; Wogan, G.N. Excretion and metabolism of orally administered aflatoxin B1 by rhesus monkeys. Food Cosmet. Toxicol. 1973, 11, 605–616. [Google Scholar] [CrossRef]
- Gong, Y.Y.; Egal, S.; Hounsa, A.; Turner, P.C.; Hall, A.J.; Cardwell, K.F.; Wild, C.P. Determinants of aflatoxin exposure in young children from Benin and Togo, west Africa: The critical role of weaning. Int. J. Epidemiol. 2003, 32, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Gong, Y.Y.; Kimanya, M.E.; Shirima, C.P.; Routledge, M.N. Comparison of urinary aflatoxin M1 and aflatoxin albumin adducts as biomarkers for assessing aflatoxin exposure in Tanzanian children. Biomarkers 2018, 23, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Apeagyei, F.; Lamplugh, S.M.; Hendrickse, R.G.; Affram, K.; Lucas, S. Aflatoxins in the livers of children with kwashiorkor in Ghana. Trop. Geogr. Med. 1986, 38, 273–276. [Google Scholar] [PubMed]
- Knipstein, B.; Huang, J.; Barr, E.; Sossenheimer, P.; Dietzen, D.; Egner, P.A.; Groopman, J.D.; Rudnick, D.A. Dietary aflatoxin-induced stunting in a novel rat model: Evidence for toxin-induced liver injury and hepatic growth hormone resistance. Pediatr. Res. 2015, 78, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.D.; Jeppesen, D.L.; Kolte, L.; Clark, D.R.; Sorensen, T.U.; Dreves, A.M.; Ersboll, A.K.; Ryder, L.P.; Valerius, N.H.; Nielsen, J.O. Impaired progenitor cell function in HIV-negative infants of HIV-positive mothers results in decreased thymic output and low CD4 counts. Blood 2001, 98, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Arpadi, S.M. Growth failure in children with HIV infection. J. Acquir. Immune Defic. Syndr. 2000, 25, S37–S42. [Google Scholar] [CrossRef] [PubMed]
- Owino, V.O.; Slater, C.; Loechl, C.U. Using stable isotope techniques in nutrition assessments and tracking of global targets post–2015. Proc. Nutr. Soc. 2017, 76, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Attia, J.; Alauddin, M.; McEvoy, M.; McElduff, P.; Slater, C.; Islam, M.M.; Akhter, A.; d’Este, C.; Peel, R.; et al. Availability of arsenic in human milk in women and its correlation with arsenic in urine of breastfed children living in arsenic contaminated areas in Bangladesh. Environ. Health A Glob. 2014, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, M.; Asam, S. Stable isotope dilution assays in mycotoxin analysis. Anal. Bioanal. Chem. 2008, 390, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Rochat, T.J.; Houle, B.; Stein, A.; Coovadia, H.; Coutsoudis, A.; Desmond, C.; Newell, M.L.; Bland, R.M. Exclusive breastfeeding and cognition, executive function, and behavioural disorders in primary school-aged children in rural South Africa: A cohort analysis. PLoS Med. 2016, 13, e1002044. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Porta, M.; Jacobs, D.R.; Vandenberg, L.N. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr. Rev. 2014, 35, 557–601. [Google Scholar] [CrossRef] [PubMed]
- Vigh, E.; Colombo, A.; Benfenati, E.; Hakansson, H.; Berglund, M.; Bodis, J.; Garai, J. Individual breast milk consumption and exposure to PCBs and PCDD/Fs in Hungarian infants: A time-course analysis of the first three months of lactation. Sci. Total Environ. 2013, 449, 336–344. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency (IAEA). Stable Isotope Technique to Assess Intake of Human Milk in Breastfed Infants; Human Health Series No. 7; IAEA: Vienna, Austria, 2010; p. 67. [Google Scholar]
- Yajnik, C.S.; Fall, C.H.D.; Coyaji, K.J.; Hirve, S.S.; Rao, S.; Barker, D.J.P.; Joglekar, C.; Kellingray, S. Neonatal anthropometry: The thin-fat Indian baby. The Pune maternal nutrition study. Int. J. Obes. 2003, 27, 173–180. [Google Scholar] [CrossRef] [PubMed]
- International Atomic Energy Agency (IAEA). Introduction to Body Composition Assessment Using the Deuterium Dilution Technique with Analysis of Saliva Samples by Fourier Transform Infrared Spectrometry; Human Health Series No. 12; IAEA: Vienna, Austria, 2011; p. 77. [Google Scholar]
- International Atomic Energy Agency (IAEA). Dual Energy X ray Absorptiometry for Bone Mineral Density and Body Composition Assessment; Human Health Series No. 15; IAEA: Vienna, Austria, 2011; p. 118. [Google Scholar]
- International Atomic Energy Agency (IAEA). Assessment of Body Composition and Total Energy Expenditure in Humans Using Stable Isotope Techniques; Human Health Series No. 3; IAEA: Vienna, Austria, 2009; p. 133. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owino, V.O.; Cornelius, C.; Loechl, C.U. Elucidating Adverse Nutritional Implications of Exposure to Endocrine-Disrupting Chemicals and Mycotoxins through Stable Isotope Techniques. Nutrients 2018, 10, 401. https://doi.org/10.3390/nu10040401
Owino VO, Cornelius C, Loechl CU. Elucidating Adverse Nutritional Implications of Exposure to Endocrine-Disrupting Chemicals and Mycotoxins through Stable Isotope Techniques. Nutrients. 2018; 10(4):401. https://doi.org/10.3390/nu10040401
Chicago/Turabian StyleOwino, Victor O., Carolin Cornelius, and Cornelia U. Loechl. 2018. "Elucidating Adverse Nutritional Implications of Exposure to Endocrine-Disrupting Chemicals and Mycotoxins through Stable Isotope Techniques" Nutrients 10, no. 4: 401. https://doi.org/10.3390/nu10040401
APA StyleOwino, V. O., Cornelius, C., & Loechl, C. U. (2018). Elucidating Adverse Nutritional Implications of Exposure to Endocrine-Disrupting Chemicals and Mycotoxins through Stable Isotope Techniques. Nutrients, 10(4), 401. https://doi.org/10.3390/nu10040401