Stakeholders’ Perceptions of Agronomic Iodine Biofortification: A SWOT-AHP Analysis in Northern Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stakeholder Sample
2.2. SWOT Method
2.3. AHP Method
2.4. Data Collection
2.5. Data Analysis
3. Results and Discussion
3.1. Stakeholders’ Key Factors Influencing Agronomic Iodine Biofortification (SWOT Analysis)
3.2. Comparison of Stakeholder Perceptions of Agronomic Iodine Biofortification (AHP Analysis)
3.2.1. Strengths
3.2.2. Opportunities
3.2.3. Weaknesses
3.2.4. Threats
4. Conclusions and Recommendations
Supplementary Materials
Acknowledgements
Conflicts of Interest
References
- Zhao, F.-J.; Shewry, P.R. Recent developments in modifying crops and agronomic practice to improve human health. Food Policy 2011, 36, S94–S101. [Google Scholar] [CrossRef]
- Welch, R.M.; Graham, R.D. Agriculture: The real nexus for enhancing bioavailable micronutrients in food crops. J. Trace Elem. Med. Biol. 2005, 18, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, S.M.; Vasconcelos, M.W. Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Res. Int. 2013, 54, 961–971. [Google Scholar] [CrossRef]
- Cakmak, I.; Guilherme, L.; Rashid, A.; Hora, K.; Yazici, A.; Savasli, E.; Kalayci, M.; Tutus, Y.; Phuphong, P.; Rizwan, M. Iodine biofortification of wheat, rice and maize through fertilizer strategy. Plant Soil 2017, 418, 319–335. [Google Scholar] [CrossRef]
- Govindaraj, M. Is fortification or bio fortification of staple food crops will offer a simple solution to complex nutritional disorder in developing countries. J. Nutr. Food Sci. 2015, 5, 2. [Google Scholar]
- Li, M.; Eastman, C.J. The changing epidemiology of iodine deficiency. Nat. Rev. Endocrinol. 2012, 8, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Gonzali, S.; Kiferle, C.; Perata, P. Iodine biofortification of crops: Agronomic biofortification, metabolic engineering and iodine bioavailability. Curr. Opin. Biotechnol. 2017, 44, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Smoleń, S.; Sady, W. Influence of iodine form and application method on the effectiveness of iodine biofortification, nitrogen metabolism as well as the content of mineral nutrients and heavy metals in spinach plants (Spinacia oleracea L.). Sci. Hortic. 2012, 143, 176–183. [Google Scholar] [CrossRef]
- Fuge, R.; Johnson, C.C. Iodine and human health, the role of environmental geochemistry and diet, a review. Appl. Geochem. 2015, 63, 282–302. [Google Scholar] [CrossRef]
- Miller, D.D.; Welch, R.M. Food system strategies for preventing micronutrient malnutrition. Food Policy 2013, 42, 115–128. [Google Scholar] [CrossRef]
- Pearce, E.N.; Andersson, M.; Zimmermann, M.B. Global iodine nutrition: Where do we stand in 2013? Thyroid 2013, 23, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Cerretani, L.; Comandini, P.; Fumanelli, D.; Scazzina, F.; Chiavaro, E. Evaluation of iodine content and stability in recipes prepared with biofortified potatoes. Int. J. Food Sci. Nutr. 2014, 65, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Hester, P. Analyzing stakeholders using fuzzy cognitive mapping. Procedia Comput. Sci. 2015, 61, 92–97. [Google Scholar] [CrossRef]
- Talsma, E.F.; Melse-Boonstra, A.; Brouwer, I.D. Acceptance and adoption of biofortified crops in low-and middle-income countries: A systematic review. Nutr. Rev. 2017, 75, 798–829. [Google Scholar] [CrossRef] [PubMed]
- Birol, E.; Meenakshi, J.; Oparinde, A.; Perez, S.; Tomlins, K. Developing country consumers’ acceptance of biofortified foods: A synthesis. Food Secur. 2015, 7, 555–568. [Google Scholar] [CrossRef]
- De Steur, H.; Wesana, J.; Blancquaert, D.; Der Straeten, D.; Gellynck, X. Methods matter: A meta-regression on the determinants of willingness-to-pay studies on biofortified foods. Ann. N. Y. Acad. Sci. 2017, 1390, 34–46. [Google Scholar] [CrossRef] [PubMed]
- De Steur, H.; Mogendi, J.B.; Wesana, J.; Makokha, A.; Gellynck, X. Stakeholder reactions toward iodine biofortified foods. An application of protection motivation theory. Appetite 2015, 92, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Talsma, E.F.; Melse-Boonstra, A.; de Kok, B.P.; Mbera, G.N.; Mwangi, A.M.; Brouwer, I.D. Biofortified cassava with pro-vitamin a is sensory and culturally acceptable for consumption by primary school children in Kenya. PLoS ONE 2013, 8, e73433. [Google Scholar] [CrossRef] [PubMed]
- Birol, E.; Asare-Marfo, D.; Karandikar, B.; Roy, D.; Diressie, M.T. Investigating demand for biofortified seeds in developing countries: High-iron pearl millet in India. J. Agribus. Dev. Emerg. Econ. 2015, 5, 24–43. [Google Scholar] [CrossRef]
- Birol, E.; Villalba, E.R.; Smale, M. Farmer preferences for milpa diversity and genetically modified maize in Mexico: A latent class approach. Environ. Dev. Econ. 2009, 14, 521–540. [Google Scholar] [CrossRef]
- Kajanus, M.; Leskinen, P.; Kurttila, M.; Kangas, J. Making use of MCDS methods in SWOT analysis—Lessons learnt in strategic natural resources management. For. Policy Econ. 2012, 20, 1–9. [Google Scholar] [CrossRef]
- Kangas, J.; Kurttila, M.; Kajanus, M.; Kangas, A. Evaluating the management strategies of a forestland estate—The SOS approach. J. Environ. Manag. 2003, 69, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Rutsaert, P.; Pieniak, Z.; Regan, Á.; McConnon, Á.; Kuttschreuter, M.; Lores, M.; Lozano, N.; Guzzon, A.; Santare, D.; Verbeke, W. Social media as a useful tool in food risk and benefit communication? A strategic orientation approach. Food Policy 2014, 46, 84–93. [Google Scholar] [CrossRef]
- Wentholt, M.; Rowe, G.; König, A.; Marvin, H.; Frewer, L. The views of key stakeholders on an evolving food risk governance framework: Results from a Delphi study. Food Policy 2009, 34, 539–548. [Google Scholar] [CrossRef]
- Shinno, H.; Yoshioka, H.; Marpaung, S.; Hachiga, S. Quantitative SWOT analysis on global competitiveness of machine tool industry. J. Eng. Des. 2006, 17, 251–258. [Google Scholar] [CrossRef]
- Reed, B.; Chan-Halbrendt, C.; Tamang, B.B.; Chaudhary, N. Analysis of conservation agriculture preferences for researchers, extension agents, and tribal farmers in Nepal using analytic hierarchy process. Agric. Syst. 2014, 127, 90–96. [Google Scholar] [CrossRef]
- Kauko, T. Sign value, topophilia, and the locational component in property prices. Environ. Plan. A 2004, 36, 859–878. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Sci. Iran. 2002, 9, 215–229. [Google Scholar] [CrossRef]
- Darshini, D.; Dwivedi, P.; Glenk, K. Capturing stakeholders’ views on oil palm-based biofuel and biomass utilisation in Malaysia. Energy Policy 2013, 62, 1128–1137. [Google Scholar] [CrossRef]
- Okello, C.; Pindozzi, S.; Faugno, S.; Boccia, L. Appraising bioenergy alternatives in Uganda using strengths, weaknesses, opportunities and threats (SWOT)-analytical hierarchy process (AHP) and a desirability functions approach. Energies 2014, 7, 1171–1192. [Google Scholar] [CrossRef]
- Bhatta, G.D.; Doppler, W. Farming differentiation in the rural-urban interface of the middle mountains, nepal: Application of analytic hierarchy process (AHP) modeling. J. Agric. Sci. 2010, 2, 37. [Google Scholar] [CrossRef]
- Stainback, G.A.; Masozera, M.; Mukuralinda, A.; Dwivedi, P. Smallholder agroforestry in rwanda: A swot-AHP analysis. Small-Scale For. 2012, 11, 285–300. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Alavalapati, J.R.; Kalmbacher, R.S. Exploring the potential for silvopasture adoption in south-central Florida: An application of SWOT–AHP method. Agric. Syst. 2004, 81, 185–199. [Google Scholar] [CrossRef]
- Uganda Bureau of Statistics (UBOS) and ICF International. Uganda Demographic and Health Survey, 2016: Key Indicators Report; UBOS: Rockville, MD, USA; Kampala, Uganda, 2017. [Google Scholar]
- Mogendi, J.B.; De Steur, H.; Gellynck, X.; Makokha, A. A novel framework for analysing stakeholder interest in healthy foods: A case study on iodine biofortification. Ecol. Food Nutr. 2016, 55, 182–208. [Google Scholar] [CrossRef] [PubMed]
- Bimenya, G.S.; Kaviri, D.; Mbona, N.; Byarugaba, W. Monitoring the severity of iodine deficiency disorders in Uganda. Afr. Health Sci. 2002, 2, 63–68. [Google Scholar] [PubMed]
- Shively, G.; Hao, J. A Review of Agriculture, Food Security and Human Nutrition Issues in Uganda; Department of Agricultural Economics, Purdue University: West Lafayette, IN, USA, 2012. [Google Scholar]
- FAO. Nutrition Country Profile; The Republic of Uganda; Nutrition and Consumer Protection Division, FAO: Rome, Italy, 2010. [Google Scholar]
- Zarafshani, K.; Sahraee, M.; Helms, M. Strategic potential of the vermicompost agribusiness in Iran: A SWOT analysis. J. Agric. Sci. Technol. 2015, 17, 1393–1408. [Google Scholar]
- Ahmed, A.M.; Zairi, M.; Almarri, K. SWOT analysis for air China performance and its experience with quality. Benchmarking 2006, 13, 160–173. [Google Scholar] [CrossRef]
- Falahati, A.; Veisi, E. Formulating strategies to improve doing business of small processing industries based on SWOT model in Kermanshah province. Afr. J. Bus. Manag. 2013, 7, 432. [Google Scholar]
- Shafieyan, M.; Homayounfar, M.; Fadaei, M. Identification of strategies for sustainable development of rice production in Guilan province using SWOT analysis. Int. J. Agric. Manag. Dev. 2017, 7, 141–153. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- FANTA-2. The Analysis of the Nutrition Situation in Uganda; Food and Nutrition Technical Assistance II Project (FANTA-2): Washington, DC, USA, 2010. [Google Scholar]
- World Health Organization (WHO). Review and Updating of Current Who Recommendations on Salt/Sodium and Potassium Consumption; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Bekunda, M.; Nkonya, E.; Mugendi, D.; Msaky, J. Soil fertility status, management, and research in east Africa. East Afr. J. Rural Dev. 2002, 20, 94–112. [Google Scholar] [CrossRef]
- Lawson, P.G.; Daum, D.; Czauderna, R.; Vorsatz, C. Factors influencing the efficacy of iodine foliar sprays used for biofortifying butterhead lettuce (Lactuca sativa). J. Plant Nutr. Soil Sci. 2016, 179, 661–669. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed]
- Meenakshi, J.; Johnson, N.L.; Manyong, V.M.; DeGroote, H.; Javelosa, J.; Yanggen, D.R.; Naher, F.; Gonzalez, C.; García, J.; Meng, E. How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev. 2010, 38, 64–75. [Google Scholar] [CrossRef]
- Olum, S.; Okello-Uma, I.; Tumuhimbise, G.A.; Taylor, D.; Ongeng, D. The relationship between cultural norms and food security in the Karamoja sub-region of Uganda. J. Food Nutr. Res. 2017, 5, 427–435. [Google Scholar] [CrossRef]
- Naspetti, S.; Mandolesi, S.; Buysse, J.; Latvala, T.; Nicholas, P.; Padel, S.; Van Loo, E.J.; Zanoli, R. Determinants of the acceptance of sustainable production strategies among dairy farmers: Development and testing of a modified technology acceptance model. Sustainability 2017, 9, 1805. [Google Scholar] [CrossRef]
- Pikkarainen, T.; Pikkarainen, K.; Karjaluoto, H.; Pahnila, S. Consumer acceptance of online banking: An extension of the technology acceptance model. Internet Res. 2004, 14, 224–235. [Google Scholar] [CrossRef]
- Mogendi, J.B. Stakeholders’ Reactions toward Iodine Biofortified Foods: An Application of Protection Motivation Theory and Technology Acceptance Model. Ph.D. Thesis, Ghent University, Gent, Belgium, 2016. [Google Scholar]
- Potts, M.J.; Nagujja, S. A Review of Agriculture and Health Policies in Uganda with Implications for the Dissemination of Biofortified Crops; HarvestPlus: Washington, DC, USA, 2007. [Google Scholar]
- Saltzman, A.; Birol, E.; Bouis, H.E.; Boy, E.; De Moura, F.F.; Islam, Y.; Pfeiffer, W.H. Biofortification: Progress toward a more nourishing future. Glob. Food Secur. 2013, 2, 9–17. [Google Scholar] [CrossRef]
- Saltzman, A.; Birol, E.; Oparinde, A.; Andersson, M.S.; Asare-Marfo, D.; Diressie, M.T.; Gonzalez, C.; Lividini, K.; Moursi, M.; Zeller, M. Availability, production, and consumption of crops biofortified by plant breeding: Current evidence and future potential. Ann. N. Y. Acad. Sci. 2017, 1390, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from harvestplus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 2008, 160, 83. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Chen, W.; Chang, A.C.; Page, A.L. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review. Environ. Pollut. 2012, 168, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.-L.; Weng, H.-X.; Qin, Y.-C.; Yan, A.-L.; Xie, L.-L. Transfer of iodine from soil to vegetables by applying exogenous iodine. Agron. Sustain. Dev. 2008, 28, 575–583. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Kaizzi, K.C.; Byalebeka, J.; Semalulu, O.; Alou, I.; Zimwanguyizza, W.; Nansamba, A.; Musinguzi, P.; Ebanyat, P.; Hyuha, T.; Wortmann, C.S. Maize response to fertilizer and nitrogen use efficiency in Uganda. Agron. J. 2012, 104, 73–82. [Google Scholar] [CrossRef]
- Okoboi, G.; Barungi, M. Constraints to fertilizer use in Uganda: Insights from Uganda census of agriculture 2008/9. J. Sustain. Dev. 2012, 5, 99. [Google Scholar] [CrossRef]
- Benson, T.; Lubega, P.; Bayite-Kasule, S.; Mogues, T.; Nyachwo, J. The supply of Inorganic Fertilizers to Smallholder Farmers in Uganda: Evidence for Fertilizer Policy Development; IFPRI Discussion Paper No. 01228; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2012. [Google Scholar]
- Singh, U.; Praharaj, C.; Singh, S.S.; Singh, N.P. Biofortification of Food Crops; Springer: New Delhi, India, 2016. [Google Scholar]
Increasing Importance | Equal Importance | Increasing Importance | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
Strength 1 | Strength 2 | |||||||||||||||||
Strength 1 | Strength 3 | |||||||||||||||||
Strength 2 | Strength 3 |
Strengths | Weaknesses |
---|---|
* Overall inexpensive approach for fighting iodine deficiency. * The technology is relatively simple and can be easily implemented by farmers. * Agronomic biofortification is culturally acceptable in Uganda. * Effective in reducing chronic disease risk. * Iodine fertilizers can be blended with other plant nutrients. Iodized products can offer other nutrients. - It addresses both food and health (nutrition) security. - It adds value to existing crops. | * Iodine fertilizers are not readily available. * Fertilizers are generally expensive and not affordable by most farmers in Uganda. * Iodine is highly volatile and can easily be lost after being applied to the soil or plants. * Continuous use of (iodine) fertilizers can accumulate in the soil and become toxic. * It takes a longer time for agronomic biofortification to supply iodine (as compared to, e.g., fortified foods). |
Opportunities | Threats |
* Government support and extension services for innovative agricultural technologies. * Increasing number of fertilizer companies in Uganda. * Existence of fertile soils that are deficient in iodine. - Does not increase salt intake, as compared to iodized salt. * Fertilizer policy exists in Uganda. Other types of fertilizers are already on the market. * High prevalence of iodine deficiency disorders, visible goiter patients are reported in society. - Existence of staple crops that are deficient in iodine. - Farmers in Northern Uganda have abundant land for the production of biofortified crops. - Government and international agencies are willing to fund agricultural development initiatives in North Uganda. | Ongoing campaigns to lower the use of synthetic fertilizers and become organic. * Limited knowledge and awareness of farmers on fertilizer application. * Fertilizer application is negatively affected by environmental factors, such as soil (e.g., organic matter, pH (acidity), texture) and weather. - High tendency of product counterfeiting in Uganda that will affect acceptance of biofortified products with no visible features. * Misconception of technology (e.g., agronomic biofortification versus GM technology). * There is generally low fertilizer use by farmers in Uganda. * Farmers have competing needs for increase in yield rather than quality of farm produce. - General negative attitude of people in the society on new products and technologies. |
SWOT Categories and Factors | Local Priority Scores (Within Factors) | Global Priority Scores (Across Factors) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACAD | NGO | GOV. ExT | CDO | AGRO. INPUT | FARM | ACAD | NGO | GOV. ExT | CDO | AGRO. INPUT | FARM | Overall | |
Strengths | 0.341 | 0.546 | 0.308 | 0.241 | 0.323 | 0.143 | 0.317 | ||||||
S1: Cheap way for fighting IDDs | 0.123 | 0.219 | 0.134 | 0.093 | 0.077 | 0.059 | 0.042 | 0.120 | 0.041 | 0.022 | 0.025 | 0.008 | 0.043 |
S2: Simple, easily to implement | 0.194 | 0.045 | 0.041 | 0.062 | 0.291 | 0.339 | 0.066 | 0.025 | 0.013 | 0.015 | 0.094 | 0.048 | 0.044 |
S3: Culturally acceptable in Uganda | 0.304 | 0.042 | 0.140 | 0.372 | 0.429 | 0.060 | 0.104 | 0.023 | 0.043 | 0.090 | 0.139 | 0.009 | 0.068 |
S4: Reduce risks for chronic diseases | 0.317 | 0.231 | 0.485 | 0.340 | 0.062 | 0.212 | 0.108 | 0.126 | 0.149 | 0.082 | 0.020 | 0.030 | 0.086 |
S5: Can be blended with other nutrients | 0.062 | 0.464 | 0.200 | 0.133 | 0.142 | 0.330 | 0.021 | 0.253 | 0.062 | 0.032 | 0.046 | 0.047 | 0.077 |
Weaknesses | 0.074 | 0.059 | 0.051 | 0.058 | 0.052 | 0.076 | 0.062 | ||||||
W1: Iodine fertilizers not readily available | 0.327 | 0.038 | 0.069 | 0.065 | 0.283 | 0.051 | 0.024 | 0.002 | 0.004 | 0.004 | 0.015 | 0.004 | 0.009 |
W2: Fertilizers are expensive | 0.231 | 0.056 | 0.131 | 0.100 | 0.103 | 0.052 | 0.017 | 0.003 | 0.007 | 0.006 | 0.005 | 0.004 | 0.007 |
W3: Overuse of fertilizers causes toxicity | 0.069 | 0.128 | 0.279 | 0.429 | 0.401 | 0.426 | 0.005 | 0.008 | 0.014 | 0.025 | 0.021 | 0.032 | 0.018 |
W4: Takes a long time to supply iodine | 0.313 | 0.471 | 0.448 | 0.169 | 0.107 | 0.259 | 0.023 | 0.028 | 0.023 | 0.010 | 0.006 | 0.020 | 0.018 |
W5: Iodine is volatile and can be lost | 0.059 | 0.306 | 0.073 | 0.237 | 0.107 | 0.213 | 0.004 | 0.018 | 0.004 | 0.014 | 0.006 | 0.016 | 0.010 |
Opportunities | 0.408 | 0.329 | 0.546 | 0.552 | 0.574 | 0.584 | 0.499 | ||||||
O1: Government support and extension | 0.262 | 0.244 | 0.082 | 0.305 | 0.077 | 0.104 | 0.107 | 0.080 | 0.045 | 0.168 | 0.044 | 0.061 | 0.084 |
O2: Existence of fertile soils, deficient in iodine | 0.156 | 0.075 | 0.390 | 0.033 | 0.185 | 0.370 | 0.064 | 0.025 | 0.213 | 0.018 | 0.106 | 0.216 | 0.107 |
O3: Emerging fertilizer companies | 0.098 | 0.047 | 0.069 | 0.290 | 0.241 | 0.070 | 0.040 | 0.015 | 0.038 | 0.160 | 0.138 | 0.041 | 0.072 |
O4: High prevalence of IDDs | 0.342 | 0.529 | 0.388 | 0.067 | 0.436 | 0.397 | 0.140 | 0.174 | 0.212 | 0.037 | 0.250 | 0.232 | 0.174 |
O5: Fertilizer policy in Uganda | 0.141 | 0.104 | 0.072 | 0.305 | 0.060 | 0.059 | 0.058 | 0.034 | 0.039 | 0.168 | 0.034 | 0.034 | 0.061 |
Threats | 0.176 | 0.067 | 0.095 | 0.149 | 0.052 | 0.198 | 0.123 | ||||||
T1: Low knowledge and awareness of farmers | 0.187 | 0.247 | 0.140 | 0.405 | 0.234 | 0.571 | 0.033 | 0.017 | 0.013 | 0.060 | 0.012 | 0.113 | 0.041 |
T2: Fertilization affected by environment | 0.053 | 0.064 | 0.071 | 0.062 | 0.124 | 0.062 | 0.009 | 0.004 | 0.007 | 0.009 | 0.006 | 0.012 | 0.008 |
T3: Low fertilizer use in Uganda | 0.311 | 0.286 | 0.457 | 0.299 | 0.124 | 0.130 | 0.055 | 0.019 | 0.043 | 0.045 | 0.006 | 0.026 | 0.032 |
T4: Likely misconception of technology | 0.147 | 0.106 | 0.079 | 0.054 | 0.049 | 0.095 | 0.026 | 0.007 | 0.008 | 0.008 | 0.003 | 0.019 | 0.012 |
T5: Competing needs for yield | 0.301 | 0.297 | 0.253 | 0.180 | 0.471 | 0.142 | 0.053 | 0.020 | 0.024 | 0.027 | 0.024 | 0.028 | 0.029 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olum, S.; Gellynck, X.; Okello, C.; Webale, D.; Odongo, W.; Ongeng, D.; De Steur, H. Stakeholders’ Perceptions of Agronomic Iodine Biofortification: A SWOT-AHP Analysis in Northern Uganda. Nutrients 2018, 10, 407. https://doi.org/10.3390/nu10040407
Olum S, Gellynck X, Okello C, Webale D, Odongo W, Ongeng D, De Steur H. Stakeholders’ Perceptions of Agronomic Iodine Biofortification: A SWOT-AHP Analysis in Northern Uganda. Nutrients. 2018; 10(4):407. https://doi.org/10.3390/nu10040407
Chicago/Turabian StyleOlum, Solomon, Xavier Gellynck, Collins Okello, Dominic Webale, Walter Odongo, Duncan Ongeng, and Hans De Steur. 2018. "Stakeholders’ Perceptions of Agronomic Iodine Biofortification: A SWOT-AHP Analysis in Northern Uganda" Nutrients 10, no. 4: 407. https://doi.org/10.3390/nu10040407
APA StyleOlum, S., Gellynck, X., Okello, C., Webale, D., Odongo, W., Ongeng, D., & De Steur, H. (2018). Stakeholders’ Perceptions of Agronomic Iodine Biofortification: A SWOT-AHP Analysis in Northern Uganda. Nutrients, 10(4), 407. https://doi.org/10.3390/nu10040407