Dietary Intakes of EPA and DHA Omega-3 Fatty Acids among US Childbearing-Age and Pregnant Women: An Analysis of NHANES 2001–2014
Abstract
:1. Introduction
2. Methods
2.1. The Continuous NHANES
2.2. Subjects
2.3. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Mean Usual Intakes of Seafood
3.3. Mean Usual Intakes of EPA and DHA from Foods and Dietary Supplements
3.4. Trends in the Mean Intakes of Combined EPA and DHA from Foods and Dietary Supplements
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Leaf, A.; Albert, C.M.; Josephson, M.; Steinhaus, D.; Kluger, J.; Kang, J.X.; Cox, B.; Zhang, H.; Schoenfeld, D. Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake. Circulation 2005, 112, 2762–2768. [Google Scholar] [CrossRef] [PubMed]
- Marchioli, R.; Barzi, F.; Bomba, E.; Chieffo, C.; Di Gregorio, D.; Di Mascio, R.; Franzosi, M.G.; Geraci, E.; Levantesi, G.; Maggioni, A.P.; et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: Time-course analysis of the results of the Gruppo Italiano per lo studio della sopravvivenza nell’infarto miocardico (GISSI)-prevenzione. Circulation 2002, 105, 1897–1903. [Google Scholar] [CrossRef] [PubMed]
- Witte, A.V.; Kerti, L.; Hermannstadter, H.M.; Fiebach, J.B.; Schreiber, S.J.; Schuchardt, J.P.; Hahn, A.; Floel, A. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb. Cortex 2014, 24, 3059–3068. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.K.; Shahar, S.; Chin, A.V.; Yusoff, N.A. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): A 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology 2013, 225, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, R.; Kumar, P.; Kumar, M.; Mehra, N.; Mishra, A. A randomized controlled trial of omega-3 fatty acids in dry eye syndrome. Int. J. Ophthalmol. 2013, 6, 811–816. [Google Scholar] [PubMed]
- Bhargava, R.; Kumar, P. Oral omega-3 fatty acid treatment for dry eye in contact lens wearers. Cornea 2015, 34, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Fortin, P.R.; Lew, R.A.; Liang, M.H.; Wright, E.A.; Beckett, L.A.; Chalmers, T.C.; Sperling, R.I. Validation of a meta-analysis: The effects of fish oil in rheumatoid arthritis. J. Clin. Epidemiol. 1995, 48, 1379–1390. [Google Scholar] [CrossRef]
- Miles, E.A.; Calder, P.C. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br. J. Nutr. 2012, 107 (Suppl. 2), S171–S184. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.E.; Colombo, J.; Gajewski, B.J.; Gustafson, K.M.; Mundy, D.; Yeast, J.; Georgieff, M.K.; Markley, L.A.; Kerling, E.H.; Shaddy, D.J. DHA supplementation and pregnancy outcomes. Am. J. Clin. Nutr. 2013, 97, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.F.; Secher, N.J. Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: Prospective cohort study. BMJ 2002, 324, 447. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.J.; Onyiaodike, C.C.; Brown, E.A.; Jordan, F.; Murray, H.; Nibbs, R.J.; Sattar, N.; Lyall, H.; Nelson, S.M.; Freeman, D.J. Maternal plasma dha levels increase prior to 29 days post-lh surge in women undergoing frozen embryo transfer: A prospective, observational study of human pregnancy. J. Clin. Endocrinol. Metab. 2016, 101, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- Clandinin, M.T.; Chappell, J.E.; Leong, S.; Heim, T.; Swyer, P.R.; Chance, G.W. Intrauterine fatty acid accretion rates in human brain: Implications for fatty acid requirements. Early Hum. Dev. 1980, 4, 121–129. [Google Scholar] [CrossRef]
- Clandinin, M.T.; Chappell, J.E.; Leong, S.; Heim, T.; Swyer, P.R.; Chance, G.W. Extrauterine fatty acid accretion in infant brain: Implications for fatty acid requirements. Early Hum. Dev. 1980, 4, 131–138. [Google Scholar] [CrossRef]
- Martinez, M. Tissue levels of polyunsaturated fatty acids during early human development. J. Pediatr. 1992, 120, S129–S138. [Google Scholar] [CrossRef]
- Moriguchi, T.; Greiner, R.S.; Salem, N., Jr. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J. Neurochem. 2000, 75, 2563–2573. [Google Scholar] [CrossRef] [PubMed]
- Catalan, J.; Moriguchi, T.; Slotnick, B.; Murthy, M.; Greiner, R.S.; Salem, N., Jr. Cognitive deficits in docosahexaenoic acid-deficient rats. Behav. Neurosci. 2002, 116, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Crawford, M.A.; Bloom, M.; Broadhurst, C.L.; Schmidt, W.F.; Cunnane, S.C.; Galli, C.; Gehbremeskel, K.; Linseisen, F.; Lloyd-Smith, J.; Parkington, J. Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids 1999, 34 (Suppl. 1), S39–S47. [Google Scholar] [CrossRef] [PubMed]
- Wurtman, R.J. Synapse formation and cognitive brain development: Effect of docosahexaenoic acid and other dietary constituents. Metabolism 2008, 57 (Suppl. 2), S6–S10. [Google Scholar] [CrossRef] [PubMed]
- Harbeby, E.; Jouin, M.; Alessandri, J.M.; Lallemand, M.S.; Linard, A.; Lavialle, M.; Huertas, A.; Cunnane, S.C.; Guesnet, P. N-3 PUFA status affects expression of genes involved in neuroenergetics differently in the fronto-parietal cortex compared to the CA1 area of the hippocampus: Effect of rest and neuronal activation in the rat. Prostaglandins Leukot. Essent. Fatty Acids 2012, 86, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Coti Bertrand, P.; O’Kusky, J.R.; Innis, S.M. Maternal dietary (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain. J. Nutr. 2006, 136, 1570–1575. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, M.; Emond, V.; Chen, C.T.; Julien, C.; Bourasset, F.; Oddo, S.; LaFerla, F.; Bazinet, R.P.; Calon, F. Diffusion of docosahexaenoic and eicosapentaenoic acids through the blood-brain barrier: An in situ cerebral perfusion study. Neurochem. Int. 2009, 55, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.T.; Domenichiello, A.F.; Trepanier, M.O.; Liu, Z.; Masoodi, M.; Bazinet, R.P. The low levels of eicosapentaenoic acid in rat brain phospholipids are maintained via multiple redundant mechanisms. J. Lipid Res. 2013, 54, 2410–2422. [Google Scholar] [CrossRef] [PubMed]
- Hussein, N.; Ah-Sing, E.; Wilkinson, P.; Leach, C.; Griffin, B.A.; Millward, D.J. Long-chain conversion of [13C]linoleic acid and alpha-linolenic acid in response to marked changes in their dietary intake in men. J. Lipid Res. 2005, 46, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Burdge, G.C.; Calder, P.C. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005, 45, 581–597. [Google Scholar] [CrossRef] [PubMed]
- Burdge, G.C.; Wootton, S.A. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 2002, 88, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (IOM). Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients); The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- US Department of Health and Human Services; US Department of Agriculture. 2015–2020 Dietary Guidelines for Americans, 8th ed.; US Dept. of Health and Human Services: Washington, DC, USA, 2015. Available online: https://health.Gov/dietaryguidelines/2015/guidelines/ (accessed on 25 May 2017).
- FDA-EPA Final Fish Consumption Advice. 2017. Available online: https://www.Epa.Gov/fish-tech/2017-epa-fda-advice-about-eating-fish-and-shellfish (accessed on 27 March 2018).
- National Oceanic and Atmospheric Administration. Seafood & Human Health. Available online: http://www.Nmfs.Noaa.Gov/aquaculture/faqs/faq_seafood_health.Html (accessed on 27 March 2018).
- Food and Agriculture Organization (FAO). Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation; FAO Food and Nutrition Paper 91; FAO: Rome, Italy, 2010. [Google Scholar]
- Koletzko, B.; Lien, E.; Agostoni, C.; Bohles, H.; Campoy, C.; Cetin, I.; Decsi, T.; Dudenhausen, J.W.; Dupont, C.; Forsyth, S.; et al. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: Review of current knowledge and consensus recommendations. J. Perinat. Med. 2008, 36, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Cetin, I.; Brenna, J.T. Dietary fat intakes for pregnant and lactating women. Br. J. Nutr. 2007, 98, 873–877. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461–1566. [Google Scholar]
- Simopoulos, A.P.; Leaf, A.; Salem, N., Jr. Workshop on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Asia Pac. J. Clin. Nutr. 1999, 8, 300–301. [Google Scholar] [CrossRef] [PubMed]
- IOM. Analysis of the balancing of benefits and risks of seafood consumption. In Seafood Choices: Balancing Benefits and Risks; National Academies Press: Washington, DC, USA, 2007; pp. 195–216. [Google Scholar]
- Coletta, J.M.; Bell, S.J.; Roman, A.S. Omega-3 fatty acids and pregnancy. Rev. Obstet. Gynecol. 2010, 3, 163–171. [Google Scholar] [PubMed]
- March of Dimes. Vitamins and Other Nutrients during Pregnancy. Available online: http://www.marchofdimes.org/pregnancy/vitamins-and-other-nutrients-during-pregnancy.aspx (accessed on 27 March 2018).
- American Academy of Pediatrics Policy Statement. Breastfeeding and the use of human milk. Pediatrics 2012, 129, e827–e841. [Google Scholar]
- Papanikolaou, Y.; Brooks, J.; Reider, C.; Fulgoni, V.L., 3rd. U.S. Adults are not meeting recommended levels for fish and omega-3 fatty acid intake: Results of an analysis using observational data from NHANES 2003–2008. Nutr. J. 2014, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Richter, C.K.; Bowen, K.J.; Mozaffarian, D.; Kris-Etherton, P.M.; Skulas-Ray, A.C. Total long-chain n-3 fatty acid intake and food sources in the United States compared to recommended intakes: NHANES 2003–2008. Lipids 2017, 52, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Razzaghi, H.; Tinker, S.C. Seafood consumption among pregnant and non-pregnant women of childbearing age in the United States, NHANES 1999–2006. Food Nutr. Res. 2014, 58, 23287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordgren, T.M.; Lyden, E.; Anderson-Berry, A.; Hanson, C. Omega-3 fatty acid intake of pregnant women and women of childbearing age in the United States: Potential for deficiency? Nutrients 2017, 9, 197. [Google Scholar] [CrossRef] [PubMed]
- Tooze, J.A.; Midthune, D.; Dodd, K.W.; Freedman, L.S.; Krebs-Smith, S.M.; Subar, A.F.; Guenther, P.M.; Carroll, R.J.; Kipnis, V. A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J. Am. Diet. Assoc. 2006, 106, 1575–1587. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Questionnaire (or Examination Protocol, or Laboratory Protocol); U.S. Department of Health and Human Services, Centers for Disease Control and Prevention: Hyattsville, MD, USA. Available online: https://www.cdc.gov/nchs/nhanes/index.htm (accessed on 27 March 2018).
- Mozurkewich, E.L.; Clinton, C.M.; Chilimigras, J.L.; Hamilton, S.E.; Allbaugh, L.J.; Berman, D.R.; Marcus, S.M.; Romero, V.C.; Treadwell, M.C.; Keeton, K.L.; et al. The mothers, omega-3, and mental health study: A double-blind, randomized controlled trial. Am. J. Obstet. Gynecol. 2013, 208, 313.e1–313.e9. [Google Scholar] [CrossRef] [PubMed]
- Makrides, M.; Gibson, R.A.; McPhee, A.J.; Yelland, L.; Quinlivan, J.; Ryan, P. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: A randomized controlled trial. JAMA 2010, 304, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Ertel, K.A.; Rich-Edwards, J.W.; Koenen, K.C. Maternal depression in the united states: Nationally representative rates and risks. J. Womens Health 2011, 20, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.P.; Lin, C.Y.; Lin, P.Y.; Shih, Y.H.; Chiu, T.H.; Ho, M.; Yang, H.T.; Huang, S.Y.; Galecki, P.; Su, K.P. Polyunsaturated fatty acids and inflammatory markers in major depressive episodes during pregnancy. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 80, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Pinto, T.J.; Vilela, A.A.; Farias, D.R.; Lepsch, J.; Cunha, G.M.; Vaz, J.S.; Factor-Litvak, P.; Kac, G. Serum n-3 polyunsaturated fatty acids are inversely associated with longitudinal changes in depressive symptoms during pregnancy. Epidemiol. Psychiatr. Sci. 2017, 26, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Doornbos, B.; van Goor, S.A.; Dijck-Brouwer, D.A.; Schaafsma, A.; Korf, J.; Muskiet, F.A. Supplementation of a low dose of DHA or DHA+AA does not prevent peripartum depressive symptoms in a small population based sample. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Keenan, K.; Hipwell, A.E.; Bortner, J.; Hoffmann, A.; McAloon, R. Association between fatty acid supplementation and prenatal stress in African Americans: A randomized controlled trial. Obstet. Gynecol. 2014, 124, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Su, K.P.; Huang, S.Y.; Chiu, T.H.; Huang, K.C.; Huang, C.L.; Chang, H.C.; Pariante, C.M. Omega-3 fatty acids for major depressive disorder during pregnancy: Results from a randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry 2008, 69, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, J.A.; Iznaola, C.; Pena, M.; Ruiz, J.; Pena-Quintana, L.; Kajarabille, N.; Rodriguez-Santana, Y.; Sanjurjo, P.; Aldamiz-Echevarria, L.; Ochoa, J.; et al. Effects of maternal omega-3 supplementation on fatty acids and on visual and cognitive development. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Meldrum, S.; Dunstan, J.A.; Foster, J.K.; Simmer, K.; Prescott, S.L. Maternal fish oil supplementation in pregnancy: A 12 year follow-up of a randomised controlled trial. Nutrients 2015, 7, 2061–2067. [Google Scholar] [CrossRef] [PubMed]
- Makrides, M.; Gould, J.F.; Gawlik, N.R.; Yelland, L.N.; Smithers, L.G.; Anderson, P.J.; Gibson, R.A. Four-year follow-up of children born to women in a randomized trial of prenatal DHA supplementation. JAMA 2014, 311, 1802–1804. [Google Scholar] [CrossRef] [PubMed]
- Mulder, K.A.; King, D.J.; Innis, S.M. Omega-3 fatty acid deficiency in infants before birth identified using a randomized trial of maternal DHA supplementation in pregnancy. PLoS ONE 2014, 9, e83764. [Google Scholar] [CrossRef] [PubMed]
- Judge, M.P.; Harel, O.; Lammi-Keefe, C.J. Maternal consumption of a docosahexaenoic acid-containing functional food during pregnancy: Benefit for infant performance on problem-solving but not on recognition memory tasks at age 9 mo. Am. J. Clin. Nutr. 2007, 85, 1572–1577. [Google Scholar] [CrossRef] [PubMed]
- Kannass, K.N.; Colombo, J.; Carlson, S.E. Maternal DHA levels and toddler free-play attention. Dev. Neuropsychol. 2009, 34, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, J.A.; Simmer, K.; Dixon, G.; Prescott, S.L. Cognitive assessment of children at age 2(1/2) years after maternal fish oil supplementation in pregnancy: A randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2008, 93, F45–F50. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, K.M.; Carlson, S.E.; Colombo, J.; Yeh, H.W.; Shaddy, D.J.; Li, S.; Kerling, E.H. Effects of docosahexaenoic acid supplementation during pregnancy on fetal heart rate and variability: A randomized clinical trial. Prostaglandins Leukot. Essent. Fatty Acids 2013, 88, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Sasaki, S.; Tanaka, K.; Ohfuji, S.; Hirota, Y. Maternal fat consumption during pregnancy and risk of wheeze and eczema in Japanese infants aged 16–24 months: The Osaka Maternal and Child Health Study. Thorax 2009, 64, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Soto-Ramirez, N.; Karmaus, W.; Zhang, H.; Liu, J.; Billings, D.; Gangur, V.; Amrol, D.; da Costa, K.A.; Davis, S.; Goetzl, L. Fatty acids in breast milk associated with asthma-like symptoms and atopy in infancy: A longitudinal study. J. Asthma 2012, 49, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.T.; Li, Y.F.; Langholz, B.; Gilliland, F.D. Maternal fish consumption during pregnancy and risk of early childhood asthma. J. Asthma 2005, 42, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Calvani, M.; Alessandri, C.; Sopo, S.M.; Panetta, V.; Pingitore, G.; Tripodi, S.; Zappala, D.; Zicari, A.M. Consumption of fish, butter and margarine during pregnancy and development of allergic sensitizations in the offspring: Role of maternal atopy. Pediatr. Allergy Immunol. 2006, 17, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Romero, V.C.; Somers, E.C.; Stolberg, V.; Clinton, C.; Chensue, S.; Djuric, Z.; Berman, D.R.; Treadwell, M.C.; Vahratian, A.M.; Mozurkewich, E. Developmental programming for allergy: A secondary analysis of the mothers, omega-3, and mental health study. Am. J. Obstet. Gynecol. 2013, 208, 316.e1–316.e6. [Google Scholar] [CrossRef] [PubMed]
- Granot, E.; Jakobovich, E.; Rabinowitz, R.; Levy, P.; Schlesinger, M. DHA supplementation during pregnancy and lactation affects infants’ cellular but not humoral immune response. Mediat. Inflamm. 2011, 2011, 493925. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, J.A.; Mori, T.A.; Barden, A.; Beilin, L.J.; Taylor, A.L.; Holt, P.G.; Prescott, S.L. Maternal fish oil supplementation in pregnancy reduces interleukin-13 levels in cord blood of infants at high risk of atopy. Clin. Exp. Allergy 2003, 33, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Furuhjelm, C.; Warstedt, K.; Fageras, M.; Falth-Magnusson, K.; Larsson, J.; Fredriksson, M.; Duchen, K. Allergic disease in infants up to 2 years of age in relation to plasma omega-3 fatty acids and maternal fish oil supplementation in pregnancy and lactation. Pediatr. Allergy Immunol. 2011, 22, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Furuhjelm, C.; Warstedt, K.; Larsson, J.; Fredriksson, M.; Bottcher, M.F.; Falth-Magnusson, K.; Duchen, K. Fish oil supplementation in pregnancy and lactation may decrease the risk of infant allergy. Acta Paediatr. 2009, 98, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, J.A.; Mori, T.A.; Barden, A.; Beilin, L.J.; Taylor, A.L.; Holt, P.G.; Prescott, S.L. Fish oil supplementation in pregnancy modifies neonatal allergen-specific immune responses and clinical outcomes in infants at high risk of atopy: A randomized, controlled trial. J. Allergy Clin. Immunol. 2003, 112, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Farina, M.; Rocha, J.B.; Aschner, M. Mechanisms of methylmercury-induced neurotoxicity: Evidence from experimental studies. Life Sci. 2011, 89, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Ceccatelli, S.; Bose, R.; Edoff, K.; Onishchenko, N.; Spulber, S. Long-lasting neurotoxic effects of exposure to methylmercury during development. J. Intern. Med. 2013, 273, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Rimm, E.B. Fish intake, contaminants, and human health: Evaluating the risks and the benefits. JAMA 2006, 296, 1885–1899. [Google Scholar] [CrossRef] [PubMed]
- Davidson, P.W.; Myers, G.J.; Cox, C.; Axtell, C.; Shamlaye, C.; Sloane-Reeves, J.; Cernichiari, E.; Needham, L.; Choi, A.; Wang, Y.; et al. Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: Outcomes at 66 months of age in the seychelles child development study. JAMA 1998, 280, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Oken, E.; Kleinman, K.P.; Berland, W.E.; Simon, S.R.; Rich-Edwards, J.W.; Gillman, M.W. Decline in fish consumption among pregnant women after a national mercury advisory. Obstet. Gynecol. 2003, 102, 346–351. [Google Scholar] [PubMed]
- McLean Pirkle, C.; Peek-Ball, C.; Outerbridge, E.; Rouja, P.M. Examining the impact of a public health message on fish consumption in bermuda. PLoS ONE 2015, 10, e0139459. [Google Scholar] [CrossRef] [PubMed]
- Kitson, A.P. Pan-frying salmon in an eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) enriched margarine prevents epa and dha loss. Food Chem. 2009, 114, 927–932. [Google Scholar] [CrossRef]
- Türkkan, A. Effects of cooking methods on the proximate composition and fatty acid composition of seabass (Dicentrarchus labrax, linnaeus, 1758). Food Bioprod. Process. 2008, 86, 163–166. [Google Scholar] [CrossRef]
- Campbell, F.M.; Gordon, M.J.; Dutta-Roy, A.K. Preferential uptake of long chain polyunsaturated fatty acids by isolated human placental membranes. Mol. Cell. Biochem. 1996, 155, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Friedman, Z.; Danon, A.; Lamberth, E.L., Jr.; Mann, W.J. Cord blood fatty acid composition in infants and in their mothers during the third trimester. J. Pediatr. 1978, 92, 461–466. [Google Scholar] [CrossRef]
- Ruyle, M.; Connor, W.E.; Anderson, G.J.; Lowensohn, R.I. Placental transfer of essential fatty acids in humans: Venous-arterial difference for docosahexaenoic acid in fetal umbilical erythrocytes. Proc. Natl. Acad. Sci. USA 1990, 87, 7902–7906. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.L.; Maude, M.; Anderson, R.E.; Heird, W.C. Effect of docosahexaenoic acid supplementation of lactating women on the fatty acid composition of breast milk lipids and maternal and infant plasma phospholipids. Am. J. Clin. Nutr. 2000, 71, 292s–299s. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, C.; Speake, B.K.; Cameron, A.; Sattar, N.; Weaver, L.T. Maternal docosahexaenoic acid supplementation and fetal accretion. Br. J. Nutr. 2003, 90, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Makrides, M.; Neumann, M.A.; Gibson, R.A. Effect of maternal docosahexaenoic acid (DHA) supplementation on breast milk composition. Eur. J. Clin. Nutr. 1996, 50, 352–357. [Google Scholar] [PubMed]
- Krauss-Etschmann, S.; Shadid, R.; Campoy, C.; Hoster, E.; Demmelmair, H.; Jimenez, M.; Gil, A.; Rivero, M.; Veszpremi, B.; Decsi, T.; et al. Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: A European randomized multicenter trial. Am. J. Clin. Nutr. 2007, 85, 1392–1400. [Google Scholar] [PubMed]
- Helland, I.B.; Saugstad, O.D.; Saarem, K.; Van Houwelingen, A.C.; Nylander, G.; Drevon, C.A. Supplementation of n-3 fatty acids during pregnancy and lactation reduces maternal plasma lipid levels and provides DHA to the infants. J. Matern. Fetal Neonatal Med. 2006, 19, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, J.A.; Mitoulas, L.R.; Dixon, G.; Doherty, D.A.; Hartmann, P.E.; Simmer, K.; Prescott, S.L. The effects of fish oil supplementation in pregnancy on breast milk fatty acid composition over the course of lactation: A randomized controlled trial. Pediatr. Res. 2007, 62, 689–694. [Google Scholar] [CrossRef] [PubMed]
Source | Note |
---|---|
Food and Agriculture Organization of the United Nations (FAO; 2010) [30] | 300 mg per day EPA + DHA, of which 200 mg per day DHA |
World Association of Perinatal Medicine (WAPM, 2008) [31] | 200 mg per day DHA |
Koletzko et al., Consensus recommendation on behalf of the European Commission research projects Perinatal Lipid Metabolism (PeriLip) and International Society for the Study of Fatty Acids and Lipids (ISSFAL) 2007 [32] | 200 mg per day DHA; aiming to consume 1–2 portions of sea fish per week, including oily fish |
European Food Safety Authority (EFSA), 2010 [33] | An additional 100–200 mg per day DHA beyond 250 mg per day EPA + DHA |
Simopoulos et al., 1999; Workshop sponsored by NIH and ISSFAL [34] | 300 mg per day DHA |
Analysis of the balancing of benefits and risks of seafood consumption. In: Nesheim MC Yaktine AL, eds. Seafood choices: balancing benefits and risks. Washington, DC:, National Academies Press, 2007 [35] | Two 3 oz. (cooked) servings of higher EPA- and DHA-containing seafood per week |
Coletta, et al., 2010; American College of Obstetricians and Gynecologists (ACOG) adopted FDA advise for pregnant women (2010) as well as Koletzko (2007) recommendations [36] | 340 g (two 6 oz. servings) seafood per week, providing approximately 200 mg per day DHA |
March of Dimes (U.S. National Foundation; 2009) [37] | 200 mg per day DHA |
American Academy of Pediatrics (AAP) Policy Statement—Breastfeeding and the use of human milk, 2012 [38] | 200–300 mg per day DHA |
Dietary Guidelines for Americans (DGA), 2015–2020 [27] | 8 oz. per week of a variety of seafood (approximately 250 mg per day of EPA and DHA) |
FDA-EPA final fish consumption advice, 2017 [28] | 2–3 servings (approximately 8–12 oz.) of fish from the “Best Choices” or 1 serving of fish from the “Good Choices” (approximately 4 oz.) |
Selected Seafood from Best Choices [28] (in Descending Order by Amount Consumed in the US [29]) | USDA Code | 2–3 Servings Per Week Recommended by FDA-EPA Final Advisory | ||
EPA per Day (mg) | DHA per Day (mg) | EPA + DHA per Day (mg) | ||
Shrimp, Mixed species | 15149 | 22.1–33.1 | 22.9–34.3 | 45.0–67.4 |
Tuna, light, canned in water | 15121 | 9.1–13.7 | 63.6–95.4 | 72.8–109.1 |
Tuna, light, canned in oil | 15119 | 9.1–13.7 | 33.1–49.7 | 42.3–63.4 |
Salmon, Atlantic | 15076 | 104.0–156.0 | 361.1–541.7 | 465.1–697.7 |
Tilapia | 15261 | 1.6–2.4 | 27.8–41.8 | 29.5–44.2 |
Pollock, Atlantic | 15065 | 22.9–34.3 | 113.1–169.7 | 136.0–204.0 |
Catfish | 15010 | 42.3–63.4 | 141.7–212.6 | 184.0–276.0 |
Crab, Blue | 15139 | 55.2–82.9 | 48.8–73.1 | 104.0–156.0 |
Cod | 15015 | 56.4–84.6 | 105.5–158.3 | 161.9–242.9 |
Clams, mixed species | 15157 | 14.1–21.1 | 17.1–25.7 | 31.2–46.9 |
Selected seafood from Good choices [28] (alphabetical ranking) | USDA code | 1 serving per week recommended by FDA-EPA final advisory | ||
EPA per day (mg) | DHA per day (mg) | EPA + DHA per day (mg) | ||
Bluefish | 15005 | 81.5 | 168.0 | 249.5 |
Carp | 15008 | 77.0 | 37.0 | 113.9 |
Grouper | 15031 | 8.8 | 71.2 | 80.0 |
Spanish mackerel | 15051 | 106.7 | 327.6 | 434.3 |
Tuna, yellowfin | 15127 | 3.8 | 28.6 | 32.4 |
Childbearing-Age | Pregnant | |||
---|---|---|---|---|
Variable | n = 11,465 | Weighted-Estimate Adjusted % (S.E) | n = 1180 | Weighted-Estimate Adjusted % (S.E.) |
Age (years) | ||||
15–30 * | 7121 | 53.8 (0.9) | 864 | 67.4 (2.6) |
31–44 | 4344 | 46.2 (0.9) | 316 | 32.6 (2.6) |
Race | ||||
Non-Hispanic White | 4370 | 62.0 (1.5) | 494 | 52.7 (2.9) |
Non-Hispanic Black | 2694 | 14.0 (0.9) | 217 | 17.8 (2.0) |
Mexican Americans | 2569 | 11.1 (0.8) | 319 | 15.6 (1.8) |
Education | ||||
Less than high school or equiv. | 4324 | 25.5 (0.7) | 367 | 21.5 (1.8) |
High school/equiv. & college/AA | 5238 | 51.3 (0.9) | 558 | 49.4 (2.3) |
College graduate & above | 1896 | 23.2 (0.9) | 255 | 29.1 (2.4) |
Poverty income ratio | ||||
<1.35 | 4371 | 31.6 (1.0) | 437 | 33.1 (2.3) |
1.35–1.85 | 1222 | 10.5 (0.4) | 122 | 11.6 (1.6) |
>1.85 | 5154 | 57.9 (1.1) | 555 | 55.4 (2.9) |
Smoking status | ||||
Yes | 1655 | 18.5 (0.7) | 75 | 6.3 (1.1) |
No | 9546 | 81.5 (0.7) | 1104 | 93.7 (1.1) |
Childbearing-Age Women | Pregnant Women | |||
---|---|---|---|---|
Seafood Intake per Day (oz. eq.) 1 | % Below Recommendation 2 | Seafood Intake per Day (oz. eq.) 1 | % of Sample Not Meeting Recommendation 2 | |
All | 0.44 ± 0.02 | 100% | 0.44 ± 0.06 | 100% |
Age (years) | ||||
15–30 | 0.36 ± 0.02 a | 100% | 0.39 ± 0.07 | 100% |
31–44 | 0.54 ± 0.03 b | 100% | 0.56 ± 0.10 | 100% |
Race | ||||
Non-Hispanic White | 0.36 ± 0.03 a | 100% | 0.23 ± 0.06 a | 100% |
Non-Hispanic Black | 0.62 ± 0.05 b | 100% | 0.88 ± 0.24 b | 100% |
Mexican Americans | 0.46 ± 0.05 a | 100% | 0.59 ± 0.16 b | 100% |
Education | ||||
Less than high school or equiv. | 0.36 ± 0.03 a | 100% | 0.56 ± 0.17 a,b | 100% |
High school/equiv. & college/AA | 0.45 ± 0.03 b | 100% | 0.54 ± 0.08 b | 100% |
College graduate & above | 0.53 ± 0.05 b | 100% | 0.24 ± 0.07 a | 100% |
Poverty income ratio | ||||
<1.35 | 0.40 ± 0.03 | 100% | 0.48 ± 0.14 | 99.9% |
1.35–1.85 | 0.42 ± 0.07 | 99.99% | 0.50 ± 0.14 | 100% |
>1.85 | 0.46 ± 0.03 | 100% | 0.44 ± 0.08 | 100% |
Smoking status | ||||
Yes | 0.33 ± 0.05 a | 100% | NA 3 | NA 3 |
No | 0.47 ± 0.02 b | 100% | 0.46 ± 0.07 | 100% |
EPA Intake (mg) | DHA Intake (mg) | EPA + DHA Intake (mg) | % of Sample Not Meeting 250 mg/d 2 | ||||
---|---|---|---|---|---|---|---|
Foods | Foods + Supplements | Foods | Foods + Supplements | Foods | Foods + Supplements | ||
All | 18.5 ± 0.7 | 26.8 ± 1.4 | 55.0 ± 1.8 | 62.2 ± 1.9 | 72.6 ± 2.3 | 88.1 ± 3.0 | 95.87 (0.50) |
Age (years) | |||||||
15–30 | 16.9 ± 0.6 a | 21.7 ± 1.2 a | 48.8 ± 1.7 a | 53.6 ± 1.9 a | 65.5 ± 2.2 a | 75.0 ± 2.8 a | 97.42 (0.42) b |
31–44 | 20.3 ± 0.9 b | 32.8 ± 2.3 b | 62.2 ± 2.6 b | 72.2 ± 2.9 b | 80.8 ± 3.2 b | 103.5 ± 4.7 b | 94.08 (0.73) a |
Race | |||||||
Non-Hispanic White | 15.1 ± 0.9 a | 25.0 ± 1.8 a,b | 44.6 ± 2.4 a | 52.9 ± 2.5 a | 58.6 ± 3.0 a | 76.7 ± 3.9 a | 96.46 (0.46) b |
Non-Hispanic Black | 26.7 ± 1.8 b | 29.5 ± 1.9 b | 68.4 ± 4.0 b | 71.4 ± 4.0 b | 102.8 ± 6.3 b | 108.2 ± 6.3 b | 93.52 (1.31) a |
Mexican Americans | 18.2 ± 1.4 a | 21.2 ± 1.4 a | 62.2 ± 3.5 b | 65.5 ± 3.6 b | 80.2 ± 5.0 c | 87.0 ± 5.0 a | 97.35 (0.76) b |
Education | |||||||
Less than high school or equiv. | 14.6 ± 0.9 a | 18.6 ± 2.3 a | 46.4 ± 2.5 a | 49.8 ± 2.9 a | 60.3 ± 3.2 a | 67.8 ± 4.8 a | 98.87 (0.45) c |
High school/equiv. & college/AA | 17.9 ± 0.9 b | 24.8 ± 1.8 b | 54.4 ± 2.3 b | 59.9 ± 2.6 b | 71.6 ± 3.1 b | 84.3 ± 4.0 b | 96.46 (0.66) b |
College graduate & above | 24.8 ± 2.0 c | 40.8 ± 2.8 c | 64.4 ± 4.7 c | 78.9 ± 4.7 c | 87.9 ± 6.2 c | 118.2 ± 6.8 c | 90.87 (1.18) a |
Poverty income ratio | |||||||
<1.35 | 16.0 ± 0.8 a | 21.0 ± 1.5 a | 49.3 ± 2.4 a | 53.4 ± 2.6 a | 64.4 ± 3.00 a | 73.6 ± 3.7 a | 98.01 (0.46) b |
1.35–1.85 | 16.0 ± 1.6 a | 24.1 ± 5.0 a,b | 50.3 ± 4.7 a,b | 56.7 ± 6.4 a,b | 64.0 ± 5.8 a | 78.5 ± 10.7 a,b | 95.85 (1.19) a,b |
>1.85 | 20.0 ± 1.1 b | 30.7 ± 1.9 b | 57.4 ± 2.9 b | 66.6 ± 3.0 b | 77.0 ± 3.8 b | 96.7 ± 4.6 b | 94.89 (0.76) a |
Smoking status | |||||||
Yes | 13.1 ± 1.1 a | 19.5 ±2.9 a | 40.4 ± 2.9 a | 45.5 ± 3.7 a | 52.9 ± 3.8 a | 64.6 ± 6.1 a | 98.11 (0.61) b |
No | 19.9 ± 0.8 b | 28.8 ± 1.5 b | 58.7 ± 2.1 b | 66.5 ± 2.1 b | 77.6 ± 2.8 b | 94.4 ± 3.3 b | 95.27 (0.63) a |
EPA Intake (mg) | DHA Intake (mg) | EPA + DHA Intake (mg) | % of Population Not Meeting Recommendation 2 | ||||
---|---|---|---|---|---|---|---|
Foods | Foods + Supplements | Foods | Foods + Supplements | Foods | Foods + Supplements | ||
All | 20.0 ± 2.0 | 23.0 ± 2.1 | 60.3 ± 5.0 | 76.7 ± 6.4 | 78.7 ± 6.8 | 97.7 ± 8.0 | 94.48 (1.48) |
Age (years) | |||||||
20–30 | 18.8 ± 2.1 | 20.0 ± 2.1 a | 57.6 ± 5.0 | 66.7 ± 6.6 a | 75.3 ± 7.1 | 85.1 ± 8.3 a | 96.35 (1.26) |
31–44 | 22.2 ± 2.8 | 29.5 ± 3.9 b | 65.1 ± 8.8 | 98.5 ± 12.5 b | 84.5 ± 10.2 | 123.3 ± 15.0 b | 90.41 (3.26) |
Race | |||||||
Non-Hispanic White | 12.6 ± 1.6 a | 16.0 ± 2.1 a | 38.9 ± 4.7 a | 58.4 ± 8.9 | 50.1 ± 5.5 a | 72.67 ± 9.6 | 95.7 (2.13) |
Non-Hispanic Black | 35.1 ± 8.9 b | 35.4 ± 8.8 b | 80.5 ± 14.3 b | 80.0 ± 14.2 | 115.4 ± 23.9 b | 116.7 ± 24.0 | 91.97 (6.11) |
Mexican Americans | 22.5 ± 5.2 a,b | 24.0 ± 5.2 a,b | 79.8 ± 14.3 b | 88.1 ± 14.9 | 99.6 ± 19.5 b | 109.3 ± 20.2 | 96.43 (2.04) |
Education | |||||||
Less than high school or equiv. | 24.5 ± 5.4 | 25.8 ± 5.3 | 73.7 ± 12.6 a,b | 83.9 ± 14.3 | 101.1 ± 20.5 | 112.6 ± 20.9 | 97.35 (1.86) |
High school/equiv. & college/AA | 20.6 ± 2.8 | 22.6 ± 2.8 | 61.2 ± 5.9 b | 72.2 ± 7.7 | 79.3 ± 8.4 | 92.3 ± 9.3 | 93.62 (2.14) |
College graduate & above | 16.4 ± 3.7 | 22.7 ± 4.3 | 48.8 ± 9.3 a | 80.3 ± 14.8 | 64.3 ± 15.0 | 101.5 ± 20.3 | 92.17 (3.24) |
Poverty income ratio | |||||||
<1.35 | 20.6 ± 3.5 | 22.9 ± 3.6 | 60.9 ± 8.1 | 64.8 ± 8.2 | 76.8 ± 10.7 | 85.1 ± 10.4 | 96.17 (2.04) |
1.35–1.85 | 18.9 ± 4.6 | 21.4 ± 4.8 | 59.3 ± 11.7 | 70.0 ± 13.9 | 76.6 ± 15.8 | 86.2 ± 19.3 | 94.45 (4.68) |
>1.85 | 20.6 ± 2.7 | 24.6 ± 3.2 | 64.8 ± 8.5 | 90.3 ± 12.4 | 84.3 ± 10.4 | 112.8 ± 15.9 | 93.40 (2.61) |
Smoking status | |||||||
Yes | 12.9 ± 5.8 | 14.4 ± 5.9 | 53.8 ± 16.9 | 54.9 ± 16.9 | 64.3 ± 21.1 | 66.7 ± 20.9 | 99.14 (0.98) b |
No | 20.5 ± 2.1 | 23.8 ± 2.3 | 60.6 ± 5.1 | 78.5 ± 6.8 | 79.0 ± 7.1 | 99.8 ± 8.6 | 93.89 (1.58) a |
Childbearing-Age Women | Pregnant Women | |||
---|---|---|---|---|
Variables | β (S.E.) | p-Value | β (S.E.) | p-Value |
Cycle | 3.5 (1.2) | 0.005 | 7.6 (2.5) | 0.002 |
Age (vs. 15–25 years of age) | ||||
26–44 years of age | 11.5 (3.3) | <0.001 | −6.2 (10.9) | 0.574 |
PIR (vs. <1.35) | ||||
1.35–1.85 | 5.0 (8.2) | 0.544 | 8.4 (9.0) | 0.353 |
>1.85 | 6.0 (3.3) | 0.066 | 20.7 (8.3) | 0.014 |
Smoking (vs. No) | ||||
Yes | −4.4 (5.3) | 0.411 | −5.4 (5.3) | 0.309 |
Race (vs. Non-Hispanic White) | ||||
Non-Hispanic Black | −12.0 (3.4) | 0.001 | −12.5 (5.4) | 0.023 |
Mexican American | −11.0 (3.4) | 0.002 | 1.4 (7.4) | 0.847 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Fulgoni, V.L., III; Kris-Etherton, P.M.; Mitmesser, S.H. Dietary Intakes of EPA and DHA Omega-3 Fatty Acids among US Childbearing-Age and Pregnant Women: An Analysis of NHANES 2001–2014. Nutrients 2018, 10, 416. https://doi.org/10.3390/nu10040416
Zhang Z, Fulgoni VL III, Kris-Etherton PM, Mitmesser SH. Dietary Intakes of EPA and DHA Omega-3 Fatty Acids among US Childbearing-Age and Pregnant Women: An Analysis of NHANES 2001–2014. Nutrients. 2018; 10(4):416. https://doi.org/10.3390/nu10040416
Chicago/Turabian StyleZhang, Zhiying, Victor L. Fulgoni, III, Penny M. Kris-Etherton, and Susan Hazels Mitmesser. 2018. "Dietary Intakes of EPA and DHA Omega-3 Fatty Acids among US Childbearing-Age and Pregnant Women: An Analysis of NHANES 2001–2014" Nutrients 10, no. 4: 416. https://doi.org/10.3390/nu10040416
APA StyleZhang, Z., Fulgoni, V. L., III, Kris-Etherton, P. M., & Mitmesser, S. H. (2018). Dietary Intakes of EPA and DHA Omega-3 Fatty Acids among US Childbearing-Age and Pregnant Women: An Analysis of NHANES 2001–2014. Nutrients, 10(4), 416. https://doi.org/10.3390/nu10040416