Nutritional Status and Nutritional Treatment Are Related to Outcomes and Mortality in Older Adults with Hip Fracture
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Sources and Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Prevalence of Malnutrition and Nutritional Status Aspects in Hip Fracture Patients
3.2. Influence upon Outcomes and Complications
3.3. Malnutrition and Mortality in Older People with Hip Fractures
3.4. Effects of Nutritional Intervention
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Huang, Z.; Himes, J.H.; McGovem, P.G. Nutrition and subsequent fracture risk among a national cohort of white women. Am. J. Epidemiol. 1996, 144, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Peeters, C.M.M.; Visser, E.; Van De Ree, C.L.P.; Gosens, T.; Den Oudsten, B.L.; De Vries, J. Quality of life after hip fracture in the elderly: A systematic literature review. Injury 2016, 47, 1369–1382. [Google Scholar] [CrossRef] [PubMed]
- Uriz-Otano, F.; Uriz-Otano, J.I.; Malafarina, V. Factors associated with short-term functional recovery in elderly people with a hip fracture. Influence of cognitive impairment. J. Am. Med. Dir. Assoc. 2015, 16, 215–220. [Google Scholar] [CrossRef] [PubMed]
- NICE. The National Institute for Health. Hip Fracture in Adults. Available online: https://www.nice.org.uk/guidance/qs16 (accessed on 10 December 2017).
- Bellelli, G.; Mazzola, P.; Corsi, M.; Zambon, A.; Corrao, G.; Castoldi, G.; Zatti, G.; Annoni, G. The combined effect of ADL impairment and delay in time from fracture to surgery on 12-month mortality: An observational study in orthogeriatric patients. J. Am. Med. Dir. Assoc. 2012, 13, 664.e9–664.e14. [Google Scholar] [CrossRef] [PubMed]
- Leal, J.; Gray, A.M.; Prieto-Alhambra, D.; Arden, N.K.; Cooper, C.; Javaid, M.K.; Judge, A. Impact of hip fracture on hospital care costs: A population-based study. Osteoporos. Int. 2016, 27, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Pioli, G.; Lauretani, F.; Pellicciotti, F.; Pignedoli, P.; Bendini, C.; Davoli, M.L.; Martini, E.; Zagatti, A.; Giordano, A.; Nardelli, A.; et al. Modifiable and non-modifiable risk factors affecting walking recovery after hip fracture. Osteoporos. Int. 2016, 27, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, R.; Toots, A.; Conradsson, M.; Olofsson, B.; Holmberg, H.; Rosendahl, E.; Gustafson, Y.; Littbrand, H. Risk factors for hip fracture in very old people: A population-based study. Osteoporos. Int. 2016, 27, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.J.; Féart, C.; Samieri, C.; Dorigny, B.; Luiking, Y.; Berr, C.; Barberger-Gateau, P.; Letenneur, L. Poor nutritional status is associated with a higher risk of falling and fracture in elderly people living at home in France: The Three-City cohort study. Osteoporos. Int. 2015, 26, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Hedstrom, M.; Ljungqvist, O.; Cederholm, T. Metabolism and catabolism in hip fracture patients: Nutritional and anabolic intervention—A review. Acta Orthop. 2006, 77, 741–747. [Google Scholar] [CrossRef] [PubMed]
- National Heart Lung and Blood Institute. Study Quality Assessment Tools. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 10 December 2017).
- Lumbers, M.; New, S.A.; Gibson, S.; Murphy, M.C. Nutritional status in elderly female hip fracture patients: Comparison with an age-matched home living group attending day centres. Br. J. Nutr. 2001, 85, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Durillo, F.T.P.; Durántez, J.T.; Villar, A.B.V.; Vico, A.B.S.; Camarero, M.D.M.C.; Durillo, J.P. Estudio comparativo de la ingesta alimentaria y el estado nutricional en ancianas con y sin fractura de cadera. Atención Primaria 2011, 43, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Nematy, M.; Hickson, M.; Brynes, A.E.; Ruxton, C.H.S.; Frost, G.S. Vulnerable patients with a fractured neck of femur: Nutritional status and support in hospital. J. Hum. Nutr. Diet. 2006, 19, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.C.; Brooks, C.N.; New, S.A.; Lumbers, M.L. The use of the Mini-Nutritional Assessment (MNA) tool in elderly orthopaedic patients. Eur. J. Clin. Nutr. 2000. [Google Scholar] [CrossRef]
- Eneroth, M.; Olsson, U.B.; Thorngren, K.G. Insufficient fluid and energy intake in hospitalised patients with hip fracture. A prospective randomised study of 80 patients. Clin. Nutr. 2005, 24, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Anbar, R.; Beloosesky, Y.; Cohen, J.; Madar, Z.; Weiss, A.; Theilla, M.; Koren Hakim, T.; Frishman, S.; Singer, P. Tight Calorie Control in geriatric patients following hip fracture decreases complications: A randomized, controlled study. Clin. Nutr. 2014, 33, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Koren-Hakim, T.; Weiss, A.; Hershkovitz, A.; Otzrateni, I.; Grosman, B.; Frishman, S.; Salai, M.; Beloosesky, Y. The relationship between nutritional status of hip fracture operated elderly patients and their functioning, comorbidity and outcome. Clin. Nutr. 2012, 31, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Pérez Durillo, F.T.; Ruiz López, M.D.; Bouzas, P.R.; Martín-Lagos, Y.A. Estado nutricional en ancianos con fractura de cadera. Nutr. Hosp. 2010, 25, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Maffulli, N.; Dougall, T.W.; Brown, M.T.; Golden, M.H. Nutritional differences in patients with proximal femoral fractures. Age Ageing 1999, 28, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Bohl, D.D.; Shen, M.R.; Hannon, C.P.; Fillingham, Y.A.; Darrith, B.; Della Valle, C.J. Serum Albumin Predicts Survival and Postoperative Course Following Surgery for Geriatric Hip Fracture. J. Bone Joint Surg. Am. 2017, 99, 2110–2118. [Google Scholar] [CrossRef] [PubMed]
- Schaller, F.; Sidelnikov, E.; Theiler, R.; Egli, A.; Staehelin, H.B.; Dick, W.; Dawson-Hughes, B.; Grob, D.; Platz, A.; Can, U.; et al. Mild to moderate cognitive impairment is a major risk factor for mortality and nursing home admission in the first year after hip fracture. Bone 2012, 51, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Fabian, E.; Gerstorfer, I.; Thaler, H.W.; Stundner, H.; Biswas, P.; Elmadfa, I. Nutritional supplementation affects postoperative oxidative stress and duration of hospitalization in patients with hip fracture. Wien. Klin. Wochenschr. 2011, 123, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Botella-Carretero, J.I.; Iglesias, B.; Balsa, J.A.; Arrieta, F.; Zamarrón, I.; Vázquez, C. Perioperative oral nutritional supplements in normally or mildly undernourished geriatric patients submitted to surgery for hip fracture: A randomized clinical trial. Clin. Nutr. 2010, 29, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, J.C.; Goosen, J.H.; de Wolf, G.S.; Verheyen, C.C. Effectiveness of multidisciplinary nutritional care on nutritional intake, nutritional status and quality of life in patients with hip fractures: A controlled prospective cohort study. Clin. Nutr. 2011, 30, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Drevet, S.; Bioteau, C.; Mazière, S.; Couturier, P.; Merloz, P.; Tonetti, J.; Gavazzi, G. Prevalence of protein-energy malnutrition in hospital patients over 75 years of age admitted for hip fracture. Orthop. Traumatol. Surg. Res. 2014, 100, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Goisser, S.; Schrader, E.; Singler, K.; Bertsch, T.; Gefeller, O.; Biber, R.; Bail, H.J.; Sieber, C.C.; Volkert, D. Malnutrition According to Mini Nutritional Assessment Is Associated With Severe Functional Impairment in Geriatric Patients Before and up to 6 Months After Hip Fracture. J. Am. Med. Dir. Assoc. 2015, 16, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Li, H.J.; Cheng, H.S.; Liang, J.; Wu, C.C.; Shyu, Y.I.L. Functional recovery of older people with hip fracture: Does malnutrition make a difference? J. Adv. Nurs. 2013, 69, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Wyers, C.E.; Reijven, P.L.M.; Evers, S.M.A.A.; Willems, P.C.; Heyligers, I.C.; Verburg, A.D.; Van Helden, S.; Dagnelie, P.C. Cost-effectiveness of nutritional intervention in elderly subjects after hip fracture. A randomized controlled trial. Osteoporos. Int. 2013, 24, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Misu, S.; Tanaka, T.; Sakamoto, H.; Iwata, K.; Chuman, Y.; Ono, R. Pre-fracture nutritional status is predictive of functional status at discharge during the acute phase with hip fracture patients: A multicenter prospective cohort study. Clin. Nutr. 2017, 36, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Helminen, H.; Luukkaala, T.; Saarnio, J.; Nuotio, M. Comparison of the Mini-Nutritional Assessment short and long form and serum albumin as prognostic indicators of hip fracture outcomes. Injury 2017, 48, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, P.; Ward, L.; Zazzetta, S.; Broggini, V.; Anzuini, A.; Valcarcel, B.; Brathwaite, J.S.; Pasinetti, G.M.; Bellelli, G.; Annoni, G. Association Between Preoperative Malnutrition and Postoperative Delirium After Hip Fracture Surgery in Older Adults. J. Am. Geriatr. Soc. 2017, 65, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Mansell, P.I.; Rawlings, J.; Allison, S.P.; Bendall, M.J.; Pearson, M.; Bassey, E.J.; Bastow, M. Low anthropometric indices in elderly females with fractured neck of femur. Clin. Nutr. 1990, 9, 190–194. [Google Scholar] [CrossRef]
- Villani, A.M.; Miller, M.D.; Cameron, I.D.; Kurrle, S.; Whitehead, C.; Crotty, M. Development and relative validity of a new field instrument for detection of geriatric cachexia: Preliminary analysis in hip fracture patients. J. Cachexia. Sarcopenia Muscle 2013, 4, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.J.; Bauer, J.D.; Capra, S.; Pulle, R.C. Concurrent and predictive evaluation of malnutrition diagnostic measures in hip fracture inpatients: A diagnostic accuracy study. Eur. J. Clin. Nutr. 2014, 68, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Espaulella, J.; Guyer, H.; Diaz-Escriu, F.; Mellado-Navas, J.A.; Castells, M.; Pladevall, M. Nutritional supplementation of elderly hip fracture patients. A randomized, double-blind, placebo-controlled trial. Age Ageing 2000, 29, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Baumgarten, M.; Margolis, D.J.; Orwig, D.L.; Shardell, M.D.; Hawkes, W.G.; Langenberg, P.; Palmer, M.H.; Jones, P.S.; McArdle, P.F.; Sterling, R.; et al. Pressure Ulcers in Elderly Patients with Hip Fracture Across the Continuum of Care. J. Am. Geriatr. Soc. 2009, 57, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Penrod, J.D.; Litke, A.; Hawkes, W.G.; Magaziner, J.; Koval, K.J.; Doucette, J.T.; Silberzweig, S.B.; Siu, A.L. Heterogeneity in hip fracture patients: Age, functional status, and comorbidity. J. Am. Geriatr. Soc. 2007, 55, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Hommel, A.; Bjorkelund, K.B.; Thorngren, K.-G.; Ulander, K. Nutritional status among patients with hip fracture in relation to pressure ulcers. Clin. Nutr. 2007, 26, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Cabrerizo, S.; Cuadras, D.; Gomez-Busto, F.; Artaza-Artabe, I.; Marin-Ciancas, F.; Malafarina, V. Serum albumin and health in older people: Review and meta analysis. Maturitas 2015, 81, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Formiga, F.; Chivite, D.; Mascaró, J.; Ramón, J.M.; Pujol, R. No correlation between mini-nutritional assessment (short form) scale and clinical outcomes in 73 elderly patients admitted for hip fracture. Aging Clin. Exp. Res. 2005, 17, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Perez-Barquero, M.M. Desnutricion como factor pronostico en ancianos con fractura de cadera. Med. Clin. 2007, 128, 721–728. [Google Scholar] [CrossRef]
- Miyanishi, K.; Jingushi, S.; Torisu, T. Mortality after hip fracture in Japan: The role of nutritional status. J. Orthop. Surg. 2010, 18, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Flodin, L.; Laurin, A.; Lökk, J.; Cederholm, T.; Hedström, M. Increased 1-year survival and discharge to independent living in overweight hip fracture patients. Acta Orthop. 2016, 87, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Cenzer, I.S.; Tang, V.; Boscardin, W.J.; Smith, A.K.; Ritchie, C.; Wallhagen, M.I.; Espaldon, R.; Covinsky, K.E. One-Year Mortality After Hip Fracture: Development and Validation of a Prognostic Index. J. Am. Geriatr. Soc. 2016, 64, 1863–1868. [Google Scholar] [CrossRef] [PubMed]
- Gumieiro, D.N.; Rafacho, B.P.M.; Gonçalves, A.F.; Tanni, S.E.; Azevedo, P.S.; Sakane, D.T.; Carneiro, C.A.S.; Gaspardo, D.; Zornoff, L.A.M.; Pereira, G.J.C.; et al. Mini Nutritional Assessment predicts gait status and mortality 6 months after hip fracture. Br. J. Nutr. 2013, 109, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Uriz-Otano, F.; Pla-Vidal, J.; Tiberio-Lopez, G.; Malafarina, V. Factors associated to institutionalization and mortality over three years, in elderly people with a hip fracture-An observational study. Maturitas 2016, 89, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.H.; Nelson, C.L.; Klimberg, V.S.; Bopp, M.M. Nightly enteral nutrition support of elderly hip fracture patients: A pilot study. J. Am. Coll. Nutr. 2004, 23, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.G.; Beck, S.J.; Hood, K.; Johansen, A. Using dietetic assistants to improve the outcome of hip fracture: A randomised controlled trial of nutritional support in an acute trauma ward. Age Ageing 2006, 35, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Schurch, M.-A. Protein Supplements Increase Serum Insulin-Like Growth Factor-I Levels and Attenuate Proximal Femur Bone Loss in Patients with Recent Hip Fracture. Ann. Intern. Med. 1998, 128, 801. [Google Scholar] [CrossRef] [PubMed]
- Bruce, D.; Laurance, I.; McGuiness, M.; Ridley, M.; Goldswain, P. Nutritional supplements after hip fracture: Poor compliance limits effectiveness. Clin. Nutr. 2003, 22, 497–500. [Google Scholar] [CrossRef]
- Myint, M.W.; Wu, J.; Wong, E.; Chan, S.P.; To, T.S.; Chau, M.W.; Ting, K.H.; Fung, P.M.; Au, K.S. Clinical benefits of oral nutritional supplementation for elderly hip fracture patients: A single blind randomised controlled trial. Age Ageing 2013, 42, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Tidermark, J.; Ponzer, S.; Carlsson, P.; Soderqvist, A.; Brismar, K.; Tengstrand, B.; Cederholm, T. Effects of protein-rich supplementation and nandrolone in lean elderly women with femoral neck fractures. Clin. Nutr. 2004, 23, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Malafarina, V.; Uriz-Otano, F.; Malafarina, C.; Martinez, J.A.; Zulet, M.A. Effectiveness of nutritional supplementation on sarcopenia and recovery in hip fracture patients. A multi-centre randomized trial. Maturitas 2017, 101, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, O.; Yanik, S.; Terzioglu Bebitoglu, B.; Yilmaz Akyuz, E.; Dokuyucu, A.; Erdem, S. Effect of Calcium beta-Hydroxy-beta-Methylbutyrate (CaHMB), Vitamin D, and Protein Supplementation on Postoperative Immobilization in Malnourished Older Adult Patients With Hip Fracture: A Randomized Controlled Study. Nutr. Clin. Pract. 2016. [Google Scholar] [CrossRef] [PubMed]
- Houwing, R. A randomised, double-blind assessment of the effect of nutritional supplementation on the prevention of pressure ulcers in hip-fracture patients. Clin. Nutr. 2003, 22, 401–405. [Google Scholar] [CrossRef]
- Agarwal, E.; Miller, M.; Yaxley, A.; Isenring, E. Malnutrition in the elderly: A narrative review. Maturitas 2013, 76, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Camina-Martin, M.A.; de Mateo-Silleras, B.; Malafarina, V.; Lopez-Mongil, R.; Nino-Martin, V.; Lopez-Trigo, J.A.; Redondo-del-Rio, M.P. Nutritional status assessment in geriatrics: Consensus declaration by the Spanish Society of Geriatrics and Gerontology Nutrition Work Group. Maturitas 2015, 81, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Mendonça, N.; Hill, T.; Jagger, C.; Stevenson, E.; Mathers, J.; Sayer, A. Nutrition in the Very Old. Nutrients 2018, 10, 269. [Google Scholar] [CrossRef] [PubMed]
- Watterson, C.; Fraser, A.; Banks, M.; Isenring, E.; Miller, M.; Silvester, C.; Hoevenaars, R.; Bauer, J.; Vivanti, A.; Ferguson, M. Evidence based practice guidelines for the nutritional management of malnutrition in adult patients across the continuum of care. Nutr. Diet. 2009, 66, S1–S34. [Google Scholar] [CrossRef]
- Leggo, M.; Banks, M.; Isenring, E.; Stewart, L.; Tweeddale, M. A quality improvement nutrition screening and intervention program available to Home and Community Care eligible clients. Nutr. Diet. 2008, 65, 162–167. [Google Scholar] [CrossRef]
- García Lázaro, M.; Montero Pérez-Barquero, M.; Carpintero Benítez, P. Importancia de la malnutrición y otros factores médicos en la evolución de los pacientes con fractura de cadera. An. Med. Interna 2004, 21, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Malafarina, V.; Uriz-Otano, F.; Gil-Guerrero, L.; Iniesta, R. The anorexia of ageing: Physiopathology, prevalence, associated comorbidity and mortality. A systematic review. Maturitas 2013, 74, 293–302. [Google Scholar] [CrossRef] [PubMed]
- De Laet, C.; Kanis, J.A.; Oden, A.; Johanson, H.; Johnell, O.; Delmas, P.; Eisman, J.A.; Kroger, H.; Fujiwara, S.; Garnero, P.; et al. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos. Int. 2005, 16, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Malafarina, V.; Úriz-Otano, F.; Iniesta, R.; Gil-Guerrero, L. Sarcopenia in the elderly: Diagnosis, physiopathology and treatment. Maturitas 2012, 71. [Google Scholar] [CrossRef] [PubMed]
- Ben-Yacov, L.; Ainembabazi, P.; Stark, A.H. Is it time to update body mass index standards in the elderly or embrace measurements of body composition? Eur. J. Clin. Nutr. 2017, 71, 1029–1032. [Google Scholar] [CrossRef] [PubMed]
- Rolland, Y.; Gallini, A.; Cristini, C.; Schott, A.; Blain, H.; Beauchet, O.; Cesari, M. Body-composition predictors of mortality in women aged $ 75 y: Data from a large population-based cohort study with a 17-y follow-up 1–4. Am. J. Clin. Nutr. 2014, 1352–1361. [Google Scholar] [CrossRef] [PubMed]
- Graf, C.E.; Karsegard, V.L.; Spoerri, A.; Makhlouf, A.M.; Ho, S.; Herrmann, F.R.; Genton, L. Body composition and all-cause mortality in subjects older than 65 y. Am. J. Clin. Nutr. 2015, 101, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Iwata, M.; Kuzuya, M.; Kitagawa, Y.; Iguchi, A. Prognostic value of serum albumin combined with serum C-reactive protein levels in older hospitalized patients: Continuing importance of serum albumin. Aging Clin. Exp. Res. 2006, 18, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Drescher, T.; Singler, K.; Ulrich, A.; Koller, M.; Keller, U.; Christ-Crain, M.; Kressig, R.W. Comparison of two malnutrition risk screening methods (MNA and NRS 2002) and their association with markers of protein malnutrition in geriatric hospitalized patients. Eur. J. Clin. Nutr. 2010, 64, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Brooke, J.; Ojo, O. Enteral nutrition in dementia: A systematic review. Nutrients 2015, 7, 2456–2468. [Google Scholar] [CrossRef] [PubMed]
- Portegijs, E.; Buurman, B.M.; Essink-Bot, M.L.; Zwinderman, A.H.; de Rooij, S.E. Failure to Regain Function at 3 months After Acute Hospital Admission Predicts Institutionalization Within 12 Months in Older Patients. J. Am. Med. Dir. Assoc. 2012, 13, 569.e1–569.e7. [Google Scholar] [CrossRef] [PubMed]
- Ethgen, O.; Hiligsmann, M.; Burlet, N.; Reginster, J.Y. Cost-effectiveness of personalized supplementation with vitamin D-rich dairy products in the prevention of osteoporotic fractures. Osteoporos. Int. 2016, 27, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Rolland, Y.; Pillard, F.; Lauwers-Cances, V.; Busquere, F.; Vellas, B.; Lafont, C. Rehabilitation outcome of elderly patients with hip fracture and cognitive impairment. Disabil. Rehabil. 2004, 26, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-W.; Lin, J.-W.; Liou, T.-H.; Lin, H.-W. Cohort study evaluating the risk of hip fracture among patients with dementia in Taiwan. Int. J. Geriatr. Psychiatry 2015, 30, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Penrod, J.D.; Litke, A.; Hawkes, W.G.; Magaziner, J.; Doucette, J.T.; Koval, K.J.; Silberzweig, S.B.; Egol, K.A.; Siu, A.L. The association of race, gender, and comorbidity with mortality and function after hip fracture. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 867–872. [Google Scholar] [CrossRef]
- Karampampa, K.; Ahlbom, A.; Michaëlsson, K.; Andersson, T.; Drefahl, S.; Modig, K. Declining incidence trends for hip fractures have not been accompanied by improvements in lifetime risk or post-fracture survival—A nationwide study of the Swedish population 60 years and older. Bone 2015, 78, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pascual, C.; Vilches-Moraga, A.; Paredes-Galán, E.; Ferrero-Marinez, A.I.; Torrente-Carballido, M.; Rodríguez-Artalejo, F. Comprehensive geriatric assessment and hospital mortality among older adults with decompensated heart failure. Am. Heart J. 2012, 164, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ros, P.; Martinez-Arnau, F.M.; Malafarina, V.; Tarazona-Santabalbina, F.J. A one-year proprioceptive exercise programme reduces the incidence of falls in community-dwelling elderly people: A before–after non-randomised intervention study. Maturitas 2016, 94, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, N.S.; Bhatia, V.; Sanam, K.; Ather, S.; Hashim, T.; Morgan, C.; Fonarow, G.C.; Nanda, N.C.; Prabhu, S.D.; Adamopoulos, C.; et al. Impact of atrial fibrillation and heart failure, independent of each other and in combination, on mortality in community-dwelling older adults. Am. J. Cardiol. 2015, 114, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Butrous, H.; Hummel, S.L. Heart Failure in Older Adults. Can. J. Cardiol. 2016, 32, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Foss, N.B.; Kehlet, H. Mortality analysis in hip fracture patients: Implications for design of future outcome trials. Br. J. Anaesth. 2005, 94, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Berner, Y.N.; Berry, E.; Cederholm, T.; Bertrand, P.C.; Milne, A.; Palmblad, J.; Schneider, S.; Sobotka, L.; Stanga, Z.; et al. ESPEN guidelines on enteral nutrition: Geriatrics. Clin. Nutr. 2006, 25, 330–360. [Google Scholar] [CrossRef] [PubMed]
Reference | Total n | WN n | RMN n | MN n | Cut-Off for Malnutrition |
[21] | 17,651 | 9549 | - | 8102 | Albumin < 3.5 g/dL |
[22] | 173 | 49 | - | 57 | BMI < 22 kg/m2 |
[23] | 23 | 9 | 7 | 7 | BMI † |
[20] | 96 | 59 | - | 37 | BMI < 18.5 kg/m2 |
[24] | 60 | 34 | - | 26 | Weight loss ≥ 5% 1 m, or ≥ 10% 6 m, and/or albumin < 2.7 g/dL |
[14] | 25 | 11 | 11 | 3 | Hospital’s own screening tool § |
Total of subjects | 18,028 | 9711 | 18 | 8232 | |
Percentage | 53.9% | 45.7% | |||
Reference | Total n | WN n | RMN n | MN n | Cut-Off for Malnutrition |
[15] | 49 | 18 | 23 | 8 | MNA ‡ |
[19] | 80 | 38 | 35 | 7 | MNA |
[25] | 127 | 89 | 36 | 2 | MNA |
[17] | 50 | 32 | 18 | 0 | MNA |
[26] | 50 | 7 | 29 | 14 | MNA |
[27] | 97 | 44 | 37 | 16 | MNA |
[28] | 162 | 59 | - | 103 | MNA |
[29] | 152 | 87 | - | 65 | MNA |
[18] | 215 | 95 | 95 | 25 | MNA-SF ¥ |
[30] | 204 | 55 | 98 | 51 | MNA-SF |
[31] | 594 | 316 | 236 | 42 | MNA-SF |
[32] | 415 | 152 | 185 | 78 | MNA-SF |
Total of subjects | 2195 | 992 | 774 | 411 | |
Percentage | 45.2% | 35.3% | 18.7% |
Authors Origin Publication Year | Design Aim Setting | n (Male/Female) Age, Mean ± SD (Years) BMI (kg/m2) | Anthropometry Measurement of Body Composition Biomarkers | (1) Exclusion Criteria (2) Definition of Malnutrition | Main Outcomes |
---|---|---|---|---|---|
Mansell UK 1990 [33] | Observational Comparison of anthropometric measurements of women with HF, with healthy volunteers in the community (C) and patients admitted to geriatric wards (G) | n 663 (0/663) HF 470 Community 103 Geriatric 90 | MAC (cm) HF 22.8 ± 0.2 Community 28.6 ± 0.27 Geriatric 25.9 ± 0.41 | (1) For healthy female: housebound or wheelchairs (2) NA | Fractured group were older than healthy subjects (p < 0.001). HF vs. Community: ↓ MAC ↓ AMA ↓↓ TSF ↓↓ AFA (p < 0.001) Significant MAC reduction per year of age: −0.20 ± 0.03 cm/year (HF) −0.15 ± 0.06 cm/year (Community) Significant TSF reduction per year of age: −0.16 ± 0.03 mm/year (HF) |
HF = 77.3 ± 0.3 years Community 72.5 ± 0.5 years Geriatric 79.1 ± 0.8 years | TSF (mm) HF 13.0 ± 0.6 Community 24.7 ± 0.6 | ||||
Maffulli UK 1999 [20] | Observational Nutritional differences in patients with intertrochanteric (IT) and intracapsular (IC) fractures | n 119 (91/28) IT 17–54 IC 11–37 80.8 ± 9.1 years 21.5 ± 4.1 kg/m2 | Intertrochanteric TSF 11.6 ± 4.5 mm BSF 6.1 ± 4 mm MAC 23.5 ± 3.6 cm Intracapsular TSF 10.6 ± 4 mm BSF 5.4 ± 2.4 mm MAC 21.9 ± 3.1cm | (1) Pathologic fracture (2) BMI < 18 kg/m2 | Malnourished → 45% IC vs. 20% IT (p < 0.001) 19% Overweight or obese → 22% IT vs. 2% IC Complications 15% IC vs. 3% IT (p < 0.05) BMI: IC < IT (20.1 ± 3.3 vs. 22.5 ± 4.6 kg/m2, p < 0.01) |
Murphy UK 2000 [15] | Observational Assess the sensitivity and specificity of MNA, and its comparability with other nutritional tools | n 49 (0/49) 79.5 ± 9 years 23.7 ± 4.3 kg/m2 | Albumin 36.9 ± 4.7 g/L | (1) Cognitive impairment (2) MNA | Patients had low mean values for body weight, albumin and transferrin Mean energy intake was below the estimated average requirementMNA < 17: Sensitivity: 27–57% Specificity: 66–100% |
Lumbers UK 2001 [12] | Cross-sectional Intake and nutritional status in HF compared to day center attendees (DC) | n 125 HF 75 (0/75) DC 50 (0/50) 80.2 ± 7.9 years 25.5 ± 4.8 kg/m2 | HF MAC 27.1 ± 4.3 cm TSF 17 ± 2.7 mm MUAMC 21.4 ± 3.4 cm Day Centers MAC 31.3 ± 4.7 cm TSF 18.9 ± 2.8 mm MUAMC 23.3 ± 3.8 cm | (1) Mental function test < 7 (2) NA | HF patients vs. day center attendees have: lower BMI (24.1 ± 4.7 vs. 27.5 ± 4.9 kg/m2, p < 0.001); lower MUAMC, albumin, proteins and energy intake and higher CRP (p < 0.01) Albumin ↔ RCP (r = −0.45) |
Nematy UK 2006 [14] | Observational Nutritional status and energy intake | n 25 (7/18) 85.3 ± 1.5 years 21.9 ± 1.0 kg/m2 | Albumin 36 ± 2.6 g/L | (1) Pathological fracture or elective surgery (2) Changes in dietary intake, weight loss, pressure sore, infection, and need help for eating | At risk of malnutrition group (n 17) had lower BMI and lower energy intake versus well-nourished group (n 8) BMI: ARM 19.6 ± 1.1 vs. WN 25 ± 1.5 kg/m2 Energy intake: ARM 3602 ± 320 vs. WN 5044 ± 528 kJ/day |
Perez Spain 2010 [19] | Observational Prevalence of malnutrition | n 80 (24/56) 80.6 ± 6.3 years 27.1 ± 4.4 kg/m2 | TSF 5.5 ± 2.3 mm BSF 8.1 ± 4.8 mm MAC 26.8 ± 3.9 mm CC 31.9 ± 4 cm | (1) NA (2) MNA | Length of hospital stay: men 15.3 ± 5.8 days; women 14.9 ± 12 days MNA ↔ BMI r = 0.6 |
Perez Spain 2011 [13] | Observational Nutritional status and intake of HF vs. community dwelling study participants | n 86 (0/86) HF = 44 Community = 42 | MAC (cm) HF 27.3 ± 3.2 Community 29.1 ± 4.1 | (1) No osteoporotic fractures or major trauma (2) NA | HF has lower BMI, arm and leg circumference than community dwelling (p < 0.05) Energy intake (kcal): HF 1417; community dwelling 2052 (p < 0.001) Calcium (mg/dL): HF 827; community dwelling 1265 (p < 0.001) Vitamin D (μg/dL): HF 1.6; community dwelling: 5.2 (p < 0.001) |
Age HF = 77.9 ± 4.7 years Community = 76.2 ± 4.6 years | |||||
Calf circumference (cm) HF 32.5 ± 3.6 Community 35.1 ± 4.4 | |||||
BMI kg/m2 HF = 27.6 ± 3.7 Community = 31.3 ± 4.6 | |||||
Koren-Hakim Israel 2012 [18] | Retrospective Association of MNA-SF with functional status, comorbidity, and mortality (36 months) | n 215 (61/154) 83.5 ± 6.1 years 26.4 ± 4.9 kg/m2 | WN28.1 ± 4.0 kg/m2 ARM 25.5 ± 5.1 kg/m2 MN 22.7 ± 3.7 kg/m2 | (1) Terminal illnesses and multi-trauma (2) MNA | MNA ↔ BMI, ADL, cognitive status, readmission, mortality 36 m, CCI and CIRS-G Independent variables for mortality → Charlson comorbidity index and functional status (ADL) |
Villani Germany 2013 [34] | Cross-sectional Evaluate new screening tool for detection cachexia | n 71(19/52) 82.2 ± 5.8 years Men 23.9 ± 2.9 kg/m2 Women 25.9 ± 3.8 kg/m2 | M: MAC (cm) 26.7 ± 3.3 TSF (mm) 11.5 ± 4.8 W: MAC (cm) 27.1 ± 3.9 TSF (mm) 16.4 ± 5.4 | (1) Pathological fracture or malignancy, residing in residential care (2) NA | Patients with cachexia: 5 new tool 4 (consensus definition) New tool: Sensitivity 75% and specificity 97% Positive predictive value 60%, negative predictive value 99% |
Bell Australia 2014 [35] | Prospective Concurrent and predictive validity of malnutrition diagnostic measures | n 142 (45/97) 83.5 years | NA | (1) NA (2) MNA-SF < 8 BMI < 18.5 kg/m2 ALB < 35 g/L ICD10-AM Geriatrician (subjective clinical assessment) | Malnutrition prevalence with different tools: BMI (12.7%), MNA-SF (27%), ICD10-AM (48.2%), Albumin (53.2%), subjective assessment (55.1%) MNA-SF ↔ ICD10-AM (r = 0.3) and BMI (r = 0.2) ICD10-AM ↔ subjective assessment (r = 0.6) ICD10-AM independent predictor of 4-month mortality (OR 3.6, 95%CI 1.1–11.8) |
Authors Origin | Design Aim | n (Male/Female) Age, Mean ± SD (Years) | BMI (kg/m2) Biomarkers | Exclusion Criteria MN Definition Tool | Main Outcomes |
---|---|---|---|---|---|
Formiga Spain 2005 [41] | Prospective observational Relationship between nutritional status and complications | n 73 (12/61) 81.5 ± 7.1 years | Cholesterol 4.3 ± 1.1 mmol/L Albumin 30.6 ± 3.6 g/L TLC/mm3 1278 ± 463 | Pathological or multiple fractures, terminally ill patients, surgery delayed >48 h or lipid-lowering drug MNA-SF <11 | MNA-SF → 11 ± 0.5 MNA-SF not predict → nosocomial infections and pressure ulcers Albumin predict → nosocomial infections ↓ TLC years ↓ Albumin predict → pressure ulcers Barthel index ↔ Charlson comorbidity index r = −0.9 (p < 0.0001) Length of hospital stay = 16.4 days |
Montero Spain 2007 [42] | Prospective cohort Relationship between malnutrition and recovery | n 110 (22/88) 81.4 ± 7.3 years | 25(OH)vitD 10.8 ± 5.3 ng/ml TLC/ mm3 1545 ± 592 Albumin 32.6 ± 3.8 g/L Prealbumin 15.3 ± 4.7 mg/dL Cholesterol 160.5 ± 40.8 mg/dL Transferrin 195.9 ± 47.1 mg/dL | Pathologic or major trauma fractures Anthropometric and blood biomarkers | 38.8% regained pre-fracture functional state Dementia ↔ ↓ functional recovery 25(OH)vit D <10 ng/ml ↔ ↓ pre-fracture functional state, with bedridden (1 year) and with no functional recovery (p < 0.05) Factors associated to bedridden (1 year) OR, 95%CI
|
Baumgarten USA 2009 [37] | Prospective cohort Identify care settings associated with increased pressure ulcers risk | n 658 (152/506) 83.2 ± 6.6 years | 23.8 ± 5.1 kg/m2 | Fractures occurred during hospital stay Subjective Global Assessment (SGA) | Pressure ulcers at baseline ↔ ↑ severe illness, ↑ comorbidity, ↓ nutritional status, ↓cognitive status (p < 0.05) Albumin < 30 g/L: 31.5% Length of hospital stay 5.6 ± 2.8 (no pressure ulcers) vs. 6.6 ± 3.8 (pressure ulcers) (p < 0.001) |
Drevet France 2014 [26] | Prospective observational Protein Energy Malnutrition prevalence | n 50 (15/35) 86.1 ± 4.4 years | 22.6 ± 4.3 kg/m2 | Road accident MNA | Prevalence of PEM was 28% (n 14) Mean hospital stay: PEM 21.9 ± 16.7 vs. 13.4 ± 6.7 in non-PEM (p = 0.012) |
Goisser Germany 2015 [27] | Observational Relationship between nutritional status (MNA) and functional and clinical course | n 97 (20/77) 84 ± 5 years | NA | Terminal state, cancer-related pathologic fractures, cancer with acute radiation or chemotherapy MNA | Patients at risk for malnutrition and malnourished:
|
Bohl USA 2017 [21] | Retrospective Association between albumin with death, and postoperative complications | n 17,651 (12,595/5056) 84.4 ± 7.2 years | 24.6 ± 5.6 kg/m2 Albumin 35 ± 5 g/dL | Preoperative serum albumin concentration not available Albumin concentration | 18.5% had BMI < 20 kg/m2 Patients with hypoalbuminemia had higher rates:
|
Helminen Finland 2017 [31] | Prospective Prognostic significance of MNA and albumin | n 594 (169/425) 84 years | 24.9 kg/m2 Albumin 33.5 g/L | Pathological or periprosthetic fractures, institutionalization, prefecture inability to walk MNA-SF | All nutritional measures were significantly associated with mortality Being at risk for malnutrition or being malnourished were significantly associated with impaired mobility at 4 months and 1 year |
Mazzola Italy 2017 [32] | Prospective If nutritional status predict postoperative delirium | n 415 (104/309) 84 ± 6.6 years | NA Albumin 33 ± 5.4 g/L | Nonoperative approach and preoperative delirium MNA-SF | Risk to develop postoperative delirium:
|
Inoue Japan 2017 [30] | Prospective Relationship between nutritional status and functional recovery | 204 (39/165) 82.7 ± 9.2 years | 20.2 ± 2.5 kg/m2 Albumin 36 ± 9 g/L | Terminal disease, chronic liver disease, pre-fracture ambulation difficulty, no weight-bearing, discontinued postoperative rehabilitation MNA-SF | Well-nourished had higher motor-FIM score at discharge Motor-FIM at discharge was significant associated with MNA-SF |
Authors Origin Year Design | n (Male/Female) Age, Mean ± SD (Years) | BMI kg/m2 (Mean ± SD) | Exclusion Criteria | Main Outcomes |
---|---|---|---|---|
Miyanishi Japan 2010 Retrospective [43] | n 129 (24/103) 79 years Survivors 78 ± 11 years Non-survivors 81 ± 10 years | 21 ± 2.9 (Survivors) 18.9 ± 3.5 (Non Survivors) | NA | Non-survivors have: ↓* BMI, hemoglobin, albumin and ↑* dementia, complications Mortality predictors (4-year mortality): Albumin (<36 g/L) OR = 5.85 and BMI (<18.9 kg/m2); OR = 1.16 |
Schaller Switzerland 2012 Sub-analysis of RCT [22] | n 173 (36/137) 84.2 ± 6.7 years | NA | Severe cognitive impairment (MMSE > 15) or delirium | Risk factor for ↑mortality (1-year mortality): MMSE <25 (HR = 5.77, 95%CI: 1.55–21.55) Male sex (HR = 3.55, 95%CI: 1.26–97) BMI <22 vs. >25 (HR = 7.25, 95%CI: 1.61–33.74) Vitamin D per 1ng/ml (HR = 0.93, 95%CI: 0.87–0.998) |
Gumieiro Brasil 2013 Prospective [46] | n 86 (20/66) 80.2 ± 7.3 years | NA | Pathological fracture | MNA ↔ gait impairment OR = 0.77 (0.66–0.90) p = 0.001 ↑ 1 point MNA → ↑* 29% chance of walking MNA ↔ mortality HR = 0.87 (0.76–0.99) p = 0.04 ↑ 1 point MNA → ↓* 15% mortality risk |
Flodin Sweden 2016 Prospective [44] | n 843 (227/616) 82 ± 7 years | 22.7 ± 3.8 kg/m2 | Severe cognitive impairment, admitted from nursing-homes | 1-year mortality (p = 0.006): BMI > 26 = 6% BMI 22–26 = 18% BMI < 22 = 16% BMI > 26 indicates a higher likelihood of returning to independent living (OR 2.6, 95%CI 1.4–5.0) |
Uriz-Otano Spain 2016 Prospective [47] | n 430 (97/333) 84.2 ± 7.4 years | NA | Tumor, high impact fracture | 3-year mortality: Albumin HR 0.61, 95%CI 0.42–0.90 Predictors of 3-year mortality: Age, HR 1.04, 95%CI 1.01–1.06 Comorbidity, HR 1.19, 95%CI 1.09–1.30 Complications, HR 1.17, 95%CI 1.05–1.31 |
Reference | In-Hospital | <6 Months | 1 Year | 36 Months | >36 Months | n |
---|---|---|---|---|---|---|
[18] | 6% | 36.7% | 215 | |||
[20] | 6% | 119 | ||||
[21] | 7.4% | 17,651 | ||||
[22] | 27% | 173 | ||||
[27] | 15% | 97 | ||||
[29] | 7.70% | 152 | ||||
[31] | 30% | 26% | 594 | |||
[35] | 4.9% | 14.8% | 142 | |||
[36] | 4% | 21.1% | 171 | |||
[39] | 29.1% | 42.40% | 420 | |||
[41] | 10% | 73 | ||||
[42] | 6.4% | 11.8% | 19.4% | 110 | ||
[43] | 48% | 129 | ||||
[45] | 27% | 857 | ||||
[46] | 12.8% | 86 | ||||
[48] | 1.7% | 17.9% | 57 | |||
[49] | 11.6% | 20.6% | 302 | |||
23,093 | ||||||
Total mortality (%) | 7.4% | 20.4% | 29.3% | 39.4% | 48% |
Author Year Origin | Design Aim | n (Male/Female) Age, Mean ± SD (years) Follow-Up (FU) | BMI kg/m2 (Mean ± SD) Measurement of Body Composition | Exclusion Criteria | Results |
---|---|---|---|---|---|
Schürch [50] 1998 Switzerland | RCT Effects of oral protein supplements on bone metabolism | n 82 (8/74) IG 41 CG 41 80.7 ± 7.4 years 6 months | 24.3 ± 4.0 kg/m2 MAC (cm) 24.1 ± 3.1 | Pathologic fracture, fracture caused by severe trauma, history of contralateral hip fracture, severe mental impairment, bone disease, renal failure, and life expectancy < 1 year | IG (at 6m): ↓ rehabilitation stay (42.2 ± 6.6 vs. 53 ± 4.6 days) p = 0.018 ↑increase IGF-1 and IgM p < 0.05 50% reduction of proximal femur bone loss (1 year) |
Espaulella [36] 2000 Spain | RCT Nutritional supplement and functional recovery, complications and mortality | n 171 (36/135) IG 85 CG 86 82.6 ± 6.6 years Follow-up: 6 months | 25.4 ± 5 kg/m2 MAC: 24.6 ± 3.8 cm Albumin: 35 ± 5.5 g/L | Advanced dementia, intravenous nutrition, pathologic fractures, and accidental falls | Patients with ≥1 complication (6 months): IG 44 (55%) CG 57 (70.4%) p = 0.04 IG: ↑ increase albumin (3 months and 6 months) |
Bruce [51] 2003 Australia | RCT Nutritional supplements and prevention of weight loss and improvement of outcomes | n 109 (0/109) IG 50 CG 59 83.9 ± 7.7 years Follow-up: 6 months | 22.8 ± 2.6 kg/m2 Albumin 38.8 ± 4.1 g/L | BMI < 20 or BMI > 30 kg/m2, residents of nursing homes, diseases that influence nutritional intake, diabetes, and fracture due to a major trauma | Weight loss (all patients): At 4 weeks 31.5% > 5% weight loss 20.7% > 7.5% weight loss At 8 weeks 27.4% > 5% weight loss 14.6% > 5% weight loss Fewer weight loss ↔ ↑ number of cane (p = 0.019) and ↑duration of supplementation (p < 0.05) |
Houwing [56] 2003 The Netherlands | RCT Effect of a high-protein supplement on the development of pressure ulcers | n 103 (19/84) 81.0 ± 1.1 years | 23.9 ± 0.5 kg/m2 | Terminal care, metastatic hip fracture, insulin-dependent diabetes, renal disease, hepatic disease, BMI > 40 kg/m2. | 55.3% developed pressure ulcers stage I or II. Incidence of pressure ulcers stage II: supplement 18%, placebo 28% 57% of patients developed pressure ulcers by the second day |
Sullivan [48] 2004 USA | RCT Efficacy of enteral nutrition to decrease complications and long-term outcomes | n 57 (39/19) IG 27 CG 30 79 ± 7.6 years Follow-up: 6 months | 22.1 ± 4.4 kg/m2 BSF: 6.4 ± 3.3 mm Albumin: 33.9 ± 4.5 g/L | Pathological fracture, significant trauma to other organ systems, metastatic cancer, cirrhosis of the liver, and organ failure | IG: ↑ intake of total nutrients p = 0.012 At discharge: ↑ Albumin: IG 29 ± 5 vs. CG 25 ± 5 g/L p = 0.002 |
Tidermark [53] 2004 Sweden | RCT Effects of nutritional treatment on nutritional and functional status | n 60 (0/60) 82.9 ± 5.4 years Follow-up: 12 months | 20.4 ± 2.3 kg/m2 | <70 years, BMI > 24 kg/m2, cognitive impairment and institutionalized, dependent to walk, fractures older than 24 h, pathological fractures, rheumatoid arthritis. | Lean body mass decreased in the CG and protein groups, but remained the same in the protein plus nandrolone group. ADL declined only in the CG. |
Eneroth [16] 2005 Sweden | RCT Effects of nutritional supplements on nutritional status and intake. | n 80 IG 40 (7/33) CG 40 (10/30) 81.4 ± 7.6 years | 23.9 ± 3.8 kg/m2 | Multiple and pathologic fractures, malignant disease, inflammatory joint disease, dementia, depression, acute psychosis, epileptic seizures, insulin-treated diabetes mellitus, heart, kidney, or liver insufficiency | PEM baseline: CG 33%, IG 38% Fluid intake: IG = 1856 ml, CG = 1300ml (p < 0.0001) Energy intake during days 1–10: IG = 1296 kcal/day CG = 916 kcal/day (p = 0.003) Difference between actual and needed energy intake: IG = −228 kcal/day CG = −783 kcal/day (p = 0.0003) |
Duncan [49] 2006 UK | RCT Effectiveness of dietetic assistants (DAs) to reduce in-hospital and 4 months mortality. | n 302 (0/302) GT 145 GC 157 83.5 years Follow-up: 4 months | NA | Pathologic fracture | Mortality In trauma unit IG 4%, CG 10% (p = 0.048) At 4 months IG 13%, CG 23% (p = 0.036)
|
Hommel [39] 2007 Sweden | Quasi-experimental Effects of an improved care intervention in relation to nutritional status and pressure ulcers | n 420 IG 210 (70/140) CG 210 (62/148) 81 ± 10.4 years | 24.3 ± 4.4 kg/m2 MAC 27.7 ± 4.4 cm TSF 14.8 ± 6.8 mm | NA | Length of hospital stay: IG 11.8 ± 7.4 vs. CG 10.8 ± 5.8 days Pressure ulcers: IG 10%; CG 20.5% (p = 0.009) |
Botella-Carretero [24] 2010 Spain | RCT Effect of perioperative supplements on nutritional status and postop complications | n 60 (16/44) IG 30 (6/24) CG 30 (10/20) 83.6 ± 5.8 years | 24.4 ± 3.1 kg/m2 TSF 11.9 ± 4.1 mm MAC 24.4 ± 3.2 cm MNA 18.6 ± 3.4 Albumin 33 ± 4g/L | Weight loss > 5% in 1 month or weight loss > 10% in 6 months, albumin < 27 g/L, renal failure, hepatic insufficiency, respiratory failure, and any gastrointestinal condition, any nutritional support in the past 6 months | CG: decrease and worse recovery of albumin and prealbumin (p = 0.002; p = 0.001) IG: ↑ energy and protein intake (p = 0.042; p < 0.001) ↑ protein intake → ↓ post-operative complications OR = 0.925 (0.869–0.985) (p = 0.003) |
Fabian [23] 2011 Austria | RCT Effect of nutritional supplement on post-operative oxidative stress and length of hospital stay | n 23 (0/23) IG 14 CG 9 83.8 ± 7.4 years Follow-up: 3 weeks | 21.2 ± 3.4 kg/m2 Albumin 36.6 ± 3.8 g/L | Renal disease, liver failure, severe congestive heart failure, severe pulmonary disease, and any gastrointestinal condition that might preclude the patient from adequate oral nutritional intake | IG ↑ energy and protein intake (p < 0.05) Albumin, total protein, and total antioxidant capacity (post-operative): ↓ CG (p < 0.05) ↓ IG Advance oxidation protein products and malondialdehyde: in CG levels still elevated during time but not in IG Length of hospital stay: IG 17 ± 4 vs. CG 19 ± 9 days Albumin ↔ CRP and total antioxidant capacity (p < 0.05) Length of hospital stay ↔ AOPP and MDA (p < 0.01) |
Hoekstra [25] 2011 The Netherlands | Prospective Effectiveness of a multidisciplinary intervention on nutritional status | n 127 (31/96) IG 61 CG 66 80.3 ± 8.3 years | 26.8 ± 4.5 kg/m2 | Severe dementia, cancer, pathologic fracture, renal and hepatic dysfunction, pacemaker | IG ↑ energy intake protein, vitamin D, zinc, calcium (p < 0.01) IG lower reduction of EuroQol-5D (p < 0.05) ↓* BMI, BCM, and FM (3 months) (both groups) |
Li [28] 2013 Taiwan | Randomized (1 year) Effects of protein-energy malnutrition on the functional recovery | n 162 (51/111) IG 80 CG 82 78.2 years | NA | Cognitive impairment, terminally ill | Malnutrition prevalence: IG 60% vs. CG 67% MN → ↓ performance of ADL, IADL, and recovery of walking ability (p < 0.05) IG → ↑ performance of ADL, IADL, and recovery of walking ability (p < 0.01) |
Wyers [29] 2013 The Netherlands | RCT Cost-effectiveness of dietary intervention comprising combined dietetic counseling and ONS | n 152 (108/44) IG 73 CG 79 78.5 years | NA | Pathological or periprosthetic fracture, disease of bone metabolism, life expectancy < 1 year, ONS before hospital admission, dementia. | The additional cost of the nutritional intervention was only 3% of the total cost Total cost was not significantly different between both groups Nutritional intervention was likely to be cost effective for weight as the outcome over 3 months |
Myint [52] 2013 Hong Kong | RCT Clinical, nutritional and rehabilitation effects of an oral nutritional supplementation | n 121 (41/80) IG 61 CG 60 81.3 ± 6.5 years Follow-up: 6 months | 20.7 ± 2.9 kg/m2 TSF 12.6 ± 5.6 mm MAC 24.3 ± 3 cm Albumin 29.3 ± 4.6 g/L | Tube feeding, unstable medical condition, BMI ≥ 25 kg/m2, malignancy, contraindication for high-protein diet, and mentally incapacitated | BMI decrease of 0.25 and 0.003 kg/m2 in the ONS group, and 0.72 and 0.49 kg/m2 at hospital and follow-up (p = 0.012) Length of hospital stay was shortened by 3.8 days in the ONS group (p = 0.04) Intake adequate: 67% in the ONS group, 9% in the control group (p < 0.001) |
Anbar [17] 2014 Israel | RCT Optimization of supplementation by measurement of resting energy requirements and the effect on outcomes | n 50 (17/33) IG 22 CG 28 83.1 ± 6.3 years | 24.9 ± 3.9 kg/m2 | Presented to hospital >48 h after the injury, steroids and/or immunosuppression therapy, oncologic disease, multiple fractures, dementia | ONS = 19.6% of total energy IG: ↑ Energy and protein intake (p = 0.001) ↓ complications (p = 0.012) and infections (p = 0.008) ↓ length of hospital stay (p = 0.061) In all patients: Energy balance ↔ complications (r = −0.417; p = 0.003) and with length of hospital stay (r = −0.282; p = 0.049) |
Ekinci [55] 2016 Turkey | RCT Effects of CaHMB on wound healing, mobilization, fat-free mass and muscle strength | n 62 (0/62) IG 32 CG 30 82.6 ± 7.1 years | 22.0 ± 2.4 kg/m2 | Diabetes, renal and hepatic failure, gastrointestinal intolerance, endocrine pathology, and dementia. | Patients who were mobile on day 30: - IG 81.3% vs. CG 26.7% (p = 0.001) Muscle strength on day 30 was higher in IG vs. CG (p = 0.026) |
Malafarina [54] 2017 Spain | RCT Effects of ONS on muscle mass and nutritional biomarkers | n 107 IG 55 CG 52 85.4 ± 6.3 years | 25.4 ± 4.9 kg/m2 Albumin 3.1 ± 0.4 g/dL | Diabetes, Barthel index <40 prior to the fracture, tumor, pathological or high-impact fractures | BMI and ALM was stable in IG, but decreased in CG. ONS (p = 0.006), function ambulation categories prior to the fracture (p = 0.007) and Barthel index prior to the fracture (p = 0.007) are protective for loss of ALM |
Author Year Origin | Type of Supplement Administration Method | kcal | Nutritional Composition | Treatment Duration Adherence Rate (%) | Control Group |
---|---|---|---|---|---|
Schürch [50] 1998 Switzerland | Oral liquid supplement; single oral dose of vit D3 200.000 UI Ca: 550 mg/day | 250 kcal/day | 20 g protein, 3.1 g lipid, 35.7 g carbohydrates, 90% milk proteins | 5 days a week for 6 months AR: IG 73% CG 80% | Placebo: 54.5 g carbohydrates Single oral dose of vitamin D 200.000 UI Calcium: 550 mg/day |
Espaulella [36] 2000 Spain | Oral liquid supplement 200 mL | 149 kcal | 20 g protein, 800 mg calcium, 25 IU vitamin D3 | 60 days AR: IG 94.1% CG 94.2% | Placebo 200 mL, 155 kcal; mainly carbohydrates |
Bruce [51] 2003 Australia | Oral liquid supplement (235 mL/day) | 352 kcal | 17.6 g protein, 11.8 g fat, 44.2 g carbohydrate, vitamins and minerals | 28 days after surgery | Hospital diet only |
Houwing [56] 2003 The Netherlands | Oral liquid supplement (400 mL/day) | 500 kcal | 40 g protein | Immediately postoperatively during 4 weeks or until discharge AR: 75% of patients consumed >75% of daily dose | Non-caloric placebo supplement |
Sullivan [48] 2004 USA | Standard care + post-operative nightly via enteral feeding tube: 1375 mL (125 mL/h) over 11 h | 1031 kcal | 85.8 g protein | When volitional intake exceeded 90% of estimated requirements for 3 consecutive days or was discharged: mean 15.8 ± 16.4 days AR: 83.3% | Standard care |
Tidermark [53] 2004 Sweden | PR: protein-rich liquid supplement (200 mL/day) PR-N: PR + nandrolone decanoate injections (every third week) 1 g of calcium + 400 IE vitamin D3 | 200 kcal/day nandrolone: 25 mg intramuscular injection | 20 g protein | 6 months | Standard treatment 1 g of calcium + 400 IE vitamin D3 |
Eneroth [16] 2005 Sweden | Hospital diet + intravenous nutrition (1 l/day) followed by 400 mL/day oral supplement | Oral supplement 400 kcal/day | IV: amino acids, fat, carbohydrate, and electrolytes | 3 days → IV 7 days → oral | Hospital diet only |
Duncan [49] 2006 UK | NA | Mean supplement: 409 kcal/day | NA | NA | Mean standard supplement: 123 kcal/day |
Hommel [39] 2007 Sweden | Oral nutritional supplement twice a day | 125 kcal/100 mL enriched with arginine, zinc, vitamins A, B, C, and E, selenium, and carotenoids | NA | From post-surgery to discharge | NA |
Botella-Carretero [24] 2010 Spain | Oral nutritional supplement intake (2 × 200 mL/day) | 400 kcal/day | 40 g protein/day | From admission until discharge AR 52.2 ± 12.1% | Control group: no supplement |
Fabian [23] 2011 Austria | Oral liquid supplement | Supplements were administered when intake of energy < 20 kcal and/or protein < 1 g/kg body weight/day | 40% protein, 41% carbohydrate, 19% fat, vitamins and minerals | From post-surgery to discharge | Standard medical treatment |
Hoekstra [25] 2011 The Netherlands | Nurse and doctor encouraged and motivated patients to eat and drink; if MNA < 24, dietician consulted with the patient | NA | NA | NA | Standard nutritional care |
Wyers [29] 2013 The Netherlands | Oral liquid nutritional supplement (500 mL/day) Dietetic counseling | 500 kcal | 40 g protein | Started during hospital admission and continued until 3 months after surgery | Usual care ONS on demand: 13% received ONS and 23% received dietetic counseling |
Myint [52] 2013 Hong Kong | Oral liquid nutritional supplement (240 mL twice daily) 1.2 g of calcium + 800–1000 IU vitamin D | 500 kcal | 18–24 g protein | Started within 3 days after admission until discharge or 28 days AR = 77.7% | NA 1.2 g of calcium + 800–1000 IU vitamin D |
Anbar [17] 2014 Israel | Standard ONS (237 mL) or diabetic ONS (237 mL) Patients received the difference between intake and measured energy expenditure | 355 kcal 237 kcal | 13.5 g protein 9.9 g protein | Started 24 h after surgery AR = 100% | Usual hospital diet = 1800 kcal, 80 g protein |
Ekinci [55] 2016Turkey | Oral liquid nutritional supplement (220 mL twice daily) | NA | 36 g protein 3 g CaHMB 1000 IU vitamin D | 30 days | Usual hospital diet: 1900 kcal, 76 g protein, 63 g fat |
Malafarina [54] 2017 Spain | Oral liquid nutritional supplement (220 mL twice daily) | 660 kcal | 60 g protein 4.6 g CaHMB 1500 IU vitamin D | During hospital admission, until discharge Mean treatment duration: 42.3 ± 20.9 days AR = all of the subjects took more than 80% | Usual hospital diet: 1500 kcal, 87 g protein, 59 g fat |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malafarina, V.; Reginster, J.-Y.; Cabrerizo, S.; Bruyère, O.; Kanis, J.A.; Martinez, J.A.; Zulet, M.A. Nutritional Status and Nutritional Treatment Are Related to Outcomes and Mortality in Older Adults with Hip Fracture. Nutrients 2018, 10, 555. https://doi.org/10.3390/nu10050555
Malafarina V, Reginster J-Y, Cabrerizo S, Bruyère O, Kanis JA, Martinez JA, Zulet MA. Nutritional Status and Nutritional Treatment Are Related to Outcomes and Mortality in Older Adults with Hip Fracture. Nutrients. 2018; 10(5):555. https://doi.org/10.3390/nu10050555
Chicago/Turabian StyleMalafarina, Vincenzo, Jean-Yves Reginster, Sonia Cabrerizo, Olivier Bruyère, John A. Kanis, J. Alfredo Martinez, and M. Angeles Zulet. 2018. "Nutritional Status and Nutritional Treatment Are Related to Outcomes and Mortality in Older Adults with Hip Fracture" Nutrients 10, no. 5: 555. https://doi.org/10.3390/nu10050555
APA StyleMalafarina, V., Reginster, J. -Y., Cabrerizo, S., Bruyère, O., Kanis, J. A., Martinez, J. A., & Zulet, M. A. (2018). Nutritional Status and Nutritional Treatment Are Related to Outcomes and Mortality in Older Adults with Hip Fracture. Nutrients, 10(5), 555. https://doi.org/10.3390/nu10050555