A Phosphatidylserine Source of Docosahexanoic Acid Improves Neurodevelopment and Survival of Preterm Pigs
Abstract
:1. Introduction
2. Methods
2.1. Collection of Preterm and Term Pigs
2.2. Diets and Feeding
2.3. Growth, Health Status, and Survival
2.4. Brain and Cerebellum Weight
2.5. Magnetic Resonance Imaging of the Brain
2.6. Novel Object Recognition (NOR)
2.7. Event-Related Brain Potentials
3. Results
3.1. Survival
3.2. Growth
3.3. Brain and Cerebellum Weights
3.4. Blood Metabolic and Hematology Panels
3.5. Magnetic Resonance Imaging of the Brain
3.6. Novel Object Recognition
3.7. Event-Related Brain Potentials
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Pampanini, V.; Boiani, A.; De Marchis, C.; Giacomozzi, C.; Navas, R.; Agostino, R.; Dini, F.; Ghirri, P.; Cianfarani, S. Preterm infants with severe extrauterine growth retardation (EUGR) are at high risk of growth impairment during childhood. Eur. J. Pediatr. 2015, 174, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Belfort, M.B.; Ehrenkranz, R.A. Neurodevelopmental outcomes and nutritional strategies in very low birth weight infants. Semin. Fetal Neonatal Med. 2017, 22, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Duerden, E.G.; Taylor, M.J.; Miller, S.P. Brain development in infants born preterm: Looking beyond injury. Semin. Pediatr. Neurol. 2013, 20, 65–74. [Google Scholar] [CrossRef] [PubMed]
- SanGiovanni, J.P.; Parra-Cabrera, S.; Colditz, G.A.; Berkey, C.S.; Dwyer, J.T. Meta-analysis of dietary essential fatty acids and long-chain polyunsaturated fatty acids as they relate to visual resolution acuity in healthy preterm infants. Pediatrics 2000, 105, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, J.P.; Huss, M.; Stauss-Grabo, M.; Hahn, A. Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children. Eur. J. Pediatr. 2010, 169, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.K.; Valentine, C.J.; Keim, S.A. DHA supplementation: Current implications in pregnancy and childhood. Pharmacol. Res. 2013, 70, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.L.; Rouse, C.A. Docosahexaenoic acid and the preterm infant. Matern. Health Neonatol. Perinatol. 2017, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Jasani, B.; Simmer, K.; Patole, S.K.; Rao, S.C. Long chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst. Rev. 2017, 3, CD000376. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.; Rao, S.C.; Schulzke, S.M.; Patole, S.K.; Simmer, K. Longchain polyunsaturated fatty acid supplementation in preterm infants. Cochrane Database Syst. Rev. 2016, 12, CD000375. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.T.; Gibson, R.A.; Anderson, P.J.; McPhee, A.J.; Sullivan, T.R.; Gould, J.F.; Ryan, P.; Doyle, L.W.; Davis, P.G.; McMichael, J.E.; et al. Neurodevelopmental outcomes at 7 years’ corrected age in preterm infants who were fed high-dose docosahexaenoic acid to term equivalent: A follow-up of a randomised controlled trial. BMJ Open 2015, 5, e007314. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral nutrient supply for preterm infants: Commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Mozzi, R.; Buratta, S.; Goracci, G. Metabolism and functions of phosphatidylserine in mammalian brain. Neurochem. Res. 2003, 28, 195–214. [Google Scholar] [CrossRef] [PubMed]
- Vance, J.E.; Steenbergen, R. Metabolism and functions of phosphatidylserine. Prog. Lipid Res. 2005, 44, 207–234. [Google Scholar] [CrossRef] [PubMed]
- Vaisman, N.; Pelled, D. n-3 phosphatidylserine attenuated scopolamine-induced amnesia in middle-aged rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shimizu, Y.; Kaneko, S.; Hanaka, S.; Abe, T.; Shimasaki, H.; Hisaki, H.; Nakajima, H. Comparison of the fatty acid composition of total lipids and phospholipids in breast milk from Japanese women. Pediatr. Int. 2000, 42, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Bitman, J.; Wood, D.L.; Mehta, N.R.; Hamosh, P.; Hamosh, M. Comparison of the phospholipid composition of breast milk from mothers of term and preterm infants during lactation. Am. J. Clin. Nutr. 1984, 40, 1103–1119. [Google Scholar] [CrossRef] [PubMed]
- Choudhri, A.F.; Sable, H.J.; Chizhikov, V.V.; Buddington, K.K.; Buddington, R.K. Parenteral nutrition compromises neurodevelopment of preterm pigs. J. Nutr. 2014, 144, 1920–1927. [Google Scholar] [CrossRef] [PubMed]
- Jasper, H.H. The ten twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 1958, 10, 71–375. [Google Scholar]
- Antunes, M.; Biala, G. The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cogn. Process. 2012, 13, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Ennaceur, A.; Delacour, J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 1988, 31, 47–59. [Google Scholar] [CrossRef]
- Fleming, S.A.; Dilger, R.N. Young pigs exhibit differential exploratory behavior during novelty preference tasks in response to age, sex, and delay. Behav. Brain Res. 2017, 321, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Ennaceur, A. One-trial object recognition in rats and mice: Methodological and theoretical issues. Behav. Brain Res. 2010, 215, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.C.; Didoné, D.D.; Sleifer, P. Longitudinal Comparison of Auditory Steady-State Evoked Potentials in Preterm and Term Infants: The Maturation Process. Int. Arch. Otorhinolaryngol. 2017, 21, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Gould, J.F.; Treyvaud, K.; Yelland, L.N.; Anderson, P.J.; Smithers, L.G.; McPhee, A.J.; Makrides, M. Seven-Year Follow-up of Children Born to Women in a Randomized Trial of Prenatal DHA Supplementation. JAMA 2017, 317, 1173–1175. [Google Scholar] [CrossRef] [PubMed]
- McPherson, R.L.; Ji, F.; Wu, G.; Blanton, J.R., Jr.; Kim, S.W. Growth and compositional changes of fetal tissues in pigs. J. Anim. Sci. 2004, 82, 2534–2540. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.; Workman, M.; Bedrick, E.; Frey, M.A.; Hurtado, M.; Pearson, O. Brains versus brawn: An empirical test of Barker’s brain sparing model. Am. J. Hum. Biol. 2010, 22, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Näätänen, R.; Picton, T. The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology 1987, 24, 375–425. [Google Scholar] [CrossRef] [PubMed]
- Lapillonne, A.; Moltu, S.J. Long-Chain Polyunsaturated Fatty Acids and Clinical Outcomes of Preterm Infants. Ann. Nutr. Metab. 2016, 69, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Baack, M.L. Beyond building better brains: Bridging the docosahexaenoic acid (DHA) gap of prematurity. J. Perinatol. 2015, 35, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Granot, E.; Jakobovich, E.; Rabinowitz, R.; Levy, P.; Schlesinger, M. DHA supplementation during pregnancy and lactation affects infants’ cellular but not humoral immune response. Mediat. Inflamm. 2011, 2011, 493925. [Google Scholar] [CrossRef] [PubMed]
- Valentine, C.J. Maternal dietary DHA supplementation to improve inflammatory outcomes in the preterm infant. Adv. Nutr. 2012, 3, 370–376. [Google Scholar] [CrossRef] [PubMed]
Weight (g) | Placebo | PS-DHA | Term |
---|---|---|---|
Body weight at gestation day105 | 961 ± 42 | 983 ± 40 | |
Body weight at term equivalent age | 1304 ± 49 | 1345 ± 57 | 1450 ± 60 * |
Brain | 30.0 ± 0.5 a | 31.4 ± 0.5 ab | 32.8 ± 0.4 b |
Cerebellum | 4.37 ± 0.12 a | 4.85 ± 0.10 b | 5.07 ± 0.42 b |
Region | PS-DHA | Placebo | p Value |
---|---|---|---|
Left Frontal Cortex | 52.23 ± 1.31 | 42.89 ± 0.94 | 0.054 |
Right Frontal Cortex | 51.67 ± 1.22 | 37.69 ± 0.76 | 0.011 |
Left Hippocampus | 59.50 ± 2.93 | 39.74 ± 2.53 | 0.016 |
Right Hippocampus | 55.91 ± 2.81 | 38.37 ± 2.22 | 0.008 |
Globus Pallidus | 46.44 ± 0.35 | 34.13 ± 0.26 | 0.001 |
Hypothalamus | 66.27 ± 3.26 | 52.09 ± 0.43 | 0.013 |
Thalamus | 47.24 ± 0.58 | 36.25 ± 0.07 | 0.004 |
Corpus Callosum | 49.34 ± 0.79 | 31.23 ± 0.27 | 0.059 |
Left Internal Capsule | 43.77 ± 0.64 | 30.60 ± 0.38 | 0.052 |
Right Internal Capsule | 42.70 ± 0.34 | 30.46 ± 0.29 | 0.032 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buddington, R.K.; Chizhikov, V.V.; Iskusnykh, I.Y.; Sable, H.J.; Sable, J.J.; Holloway, Z.R.; Blumenfeld Katzir, T.; Van der Merwe, M.; Yakimkova, T.; Buddington, K.K.; et al. A Phosphatidylserine Source of Docosahexanoic Acid Improves Neurodevelopment and Survival of Preterm Pigs. Nutrients 2018, 10, 637. https://doi.org/10.3390/nu10050637
Buddington RK, Chizhikov VV, Iskusnykh IY, Sable HJ, Sable JJ, Holloway ZR, Blumenfeld Katzir T, Van der Merwe M, Yakimkova T, Buddington KK, et al. A Phosphatidylserine Source of Docosahexanoic Acid Improves Neurodevelopment and Survival of Preterm Pigs. Nutrients. 2018; 10(5):637. https://doi.org/10.3390/nu10050637
Chicago/Turabian StyleBuddington, Randal K., Victor V. Chizhikov, Igor Y. Iskusnykh, Helen J. Sable, Jeffrey J. Sable, Zade R. Holloway, Tamar Blumenfeld Katzir, Marie Van der Merwe, Taisiya Yakimkova, Karyl K. Buddington, and et al. 2018. "A Phosphatidylserine Source of Docosahexanoic Acid Improves Neurodevelopment and Survival of Preterm Pigs" Nutrients 10, no. 5: 637. https://doi.org/10.3390/nu10050637
APA StyleBuddington, R. K., Chizhikov, V. V., Iskusnykh, I. Y., Sable, H. J., Sable, J. J., Holloway, Z. R., Blumenfeld Katzir, T., Van der Merwe, M., Yakimkova, T., Buddington, K. K., Lifshitz, Y., Tessler, S., & Gilbert, A. (2018). A Phosphatidylserine Source of Docosahexanoic Acid Improves Neurodevelopment and Survival of Preterm Pigs. Nutrients, 10(5), 637. https://doi.org/10.3390/nu10050637