Dietary Cholesterol Intake Is Not Associated with Risk of Type 2 Diabetes in the Framingham Offspring Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Assessment of Incident Type 2 Diabetes and Impaired Fasting Glucose
2.4. Potential Confounding Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2017; Centers for Disease Control and Prevention, U.S. Department of Health and Human Services: Atlanta, GA, USA, 2017.
- Levitzky, Y.S.; Pencina, M.J.; D’Agostino, R.B.; Meigs, J.B.; Murabito, J.M.; Vasan, R.S.; Fox, C.S. Impact of impaired fasting glucose on cardiovascular disease: The Framingham Heart Study. J. Am. Coll. Cardiol. 2008, 51, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Qazi, M.U.; Malik, S. Diabetes and Cardiovascular Disease: Original Insights from the Framingham Heart Study. Glob. Heart 2013, 8, 43–48. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 4. Lifestyle Management: Standards of Medical Care in Diabetes—2018. Diabetes Care 2018, 41, S38–S50. [Google Scholar] [CrossRef]
- Liu, E.; McKeown, N.M.; Newby, P.K.; Meigs, J.B.; Vasan, R.S.; Quatromoni, P.A.; D’Agostino, R.B.; Jacques, P.F. Cross-sectional association of dietary patterns with insulin-resistant phenotypes among adults without diabetes in the Framingham Offspring Study. Br. J. Nutr. 2009, 102, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.E.; Prevost, A.T.; Whichelow, M.J.; Cox, B.D.; Day, N.E.; Wareham, N.J. A cross-sectional study of dietary patterns with glucose intolerance and other features of the metabolic syndrome. Br. J. Nutr. 2000, 83, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Thanopoulou, A.C.; Karamanos, B.G.; Angelico, F.V.; Assaad-Khalil, S.H.; Barbato, A.F.; Ben, M.P.D.; Djordjevic, P.B.; Dimitrijevic-Sreckovic, V.S.; Gallotti, C.A.; Katsilambros, N.L.; et al. Dietary Fat Intake as Risk Factor for the Development of Diabetes: Multinational, multicenter study of the Mediterranean Group for the Study of Diabetes (MGSD). Diabetes Care 2003, 26, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.B.; Schulz, M.; Heidemann, C.; Schienkiewitz, A.; Hoffmann, K.; Boeing, H. Carbohydrate intake and incidence of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Br. J. Nutr. 2008, 99, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Xu, Q.; Jiang, R.; Han, T.; Sun, C.; Na, L. Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients 2017, 9, 982. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, R.M.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J.; Hu, F.B. Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care 2002, 25, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, J.K.; Mursu, J.; Tuomainen, T.-P.; Virtanen, H.E.; Voutilainen, S. Egg consumption and risk of incident type 2 diabetes in men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Am. J. Clin. Nutr. 2015, 101, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Yuan, B.; Zhang, C.; Zhou, M.; Holmboe-Ottesen, G. Egg consumption and the risk of diabetes in adults, Jiangsu, China. Nutrition 2011, 27, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, C.; Zhou, X.; Li, L. Egg consumption and risk of cardiovascular diseases and diabetes: A meta-analysis. Atherosclerosis 2013, 229, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Djoussé, L.; Gaziano, J.M.; Buring, J.E.; Lee, I.-M. Egg consumption and risk of type 2 diabetes in men and women. Diabetes Care 2009, 32, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 7th ed.; U.S. Government Printing Office: Washington, DC, USA, 2010.
- Kratz, M. Dietary cholesterol, atherosclerosis and coronary heart disease. Handb. Exp. Pharmacol. 2005, 170, 195–213. [Google Scholar]
- U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. Available online: https://health.gov/dietaryguidelines/2015/ (accessed on 10 February 2018).
- Lau, D.C.W. Dietary cholesterol and other nutritional considerations in people with diabetes. Int. J. Clin. Pract. Suppl. 2009, 15–21, 44–51. [Google Scholar] [CrossRef]
- Gylling, H.; Miettinen, T.A. Cholesterol absorption and lipoprotein metabolism in type II diabetes mellitus with and without coronary artery disease. Atherosclerosis 1996, 126, 325–332. [Google Scholar] [CrossRef]
- Meyer, K.A.; Kushi, L.H.; Jacobs, D.R.; Folsom, A.R. Dietary fat and incidence of type 2 diabetes in older Iowa women. Diabetes Care 2001, 24, 1528–1535. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; Feinleib, M.; McNamara, P.M.; Garrison, R.J.; Castelli, W.P. An investigation of coronary heart disease in families. The Framingham offspring study. Am. J. Epidemiol. 1979, 110, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Schakel, S.F.; Buzzard, I.M.; Gebhardt, S.E. Procedures for estimating nutrient values for food composition databases. J. Food Compos. Anal. 1997, 10, 102–114. [Google Scholar] [CrossRef]
- Djoussé, L.; Kamineni, A.; Nelson, T.L.; Carnethon, M.; Mozaffarian, D.; Siscovick, D.; Mukamal, K.J. Egg consumption and risk of type 2 diabetes in older adults. Am. J. Clin. Nutr. 2010, 92, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Lajous, M.; Bijon, A.; Fagherazzi, G.; Balkau, B.; Boutron-Ruault, M.-C.; Clavel-Chapelon, F. Egg and cholesterol intake and incident type 2 diabetes among French women. Br. J. Nutr. 2015, 114, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Hobbs, D.A.; Cockcroft, J.R.; Elwood, P.C.; Pickering, J.E.; Lovegrove, J.A.; Givens, D.I. Association between egg consumption and cardiovascular disease events, diabetes and all-cause mortality. Eur. J. Nutr. 2017. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.L.; Andersen, C.J. Effects of dietary cholesterol in diabetes and cardiovascular disease. Clin. Lipidol. 2014, 9, 607–616. [Google Scholar] [CrossRef]
- Geiker, N.R.W.; Larsen, M.L.; Dyerberg, J.; Stender, S.; Astrup, A. Egg consumption, cardiovascular diseases and type 2 diabetes. Eur. J. Clin. Nutr. 2018, 72, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Tamez, M.; Virtanen, J.K.; Lajous, M. Egg consumption and risk of incident type 2 diabetes: A dose-response meta-analysis of prospective cohort studies. Br. J. Nutr. 2016, 115, 2212–2218. [Google Scholar] [CrossRef] [PubMed]
- Wallin, A.; Forouhi, N.G.; Wolk, A.; Larsson, S.C. Egg consumption and risk of type 2 diabetes: A prospective study and dose–response meta-analysis. Diabetologia 2016, 59, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Djoussé, L.; Khawaja, O.A.; Gaziano, J.M. Egg consumption and risk of type 2 diabetes: A meta-analysis of prospective studies. Am. J. Clin. Nutr. 2016, 103, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Manson, J.E.; Buring, J.E.; Liu, S. A prospective study of red meat consumption and type 2 diabetes in middle-aged and elderly women: The women’s health study. Diabetes Care 2004, 27, 2108–2115. [Google Scholar] [CrossRef] [PubMed]
- Kurotani, K.; Nanri, A.; Goto, A.; Mizoue, T.; Noda, M.; Oba, S.; Sawada, N.; Tsugane, S. Japan Public Health Center-based Prospective Study Group Cholesterol and egg intakes and the risk of type 2 diabetes: The Japan Public Health Center-based Prospective Study. Br. J. Nutr. 2014, 112, 1636–1643. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Han, C.Y.; Chiba, T.; McMillen, T.S.; Wang, S.A.; Haw, A.; Kirk, E.A.; O’Brien, K.D.; Chait, A. Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Collino, M.; Aragno, M.; Castiglia, S.; Miglio, G.; Tomasinelli, C.; Boccuzzi, G.; Thiemermann, C.; Fantozzi, R. Pioglitazone improves lipid and insulin levels in overweight rats on a high cholesterol and fructose diet by decreasing hepatic inflammation. Br. J. Pharmacol. 2010, 160, 1892–1902. [Google Scholar] [CrossRef] [PubMed]
- Kruit, J.K.; Kremer, P.H.C.; Dai, L.; Tang, R.; Ruddle, P.; de Haan, W.; Brunham, L.R.; Verchere, C.B.; Hayden, M.R. Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the LDL receptor influences cholesterol-induced impairment of beta cell function in mice. Diabetologia 2010, 53, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | Dietary Cholesterol Intake/Day | p-Values 1 | ||
---|---|---|---|---|
<200 mg | 200–<300 mg | ≥300 mg | ||
(N = 762) | (N = 776) | (N = 654) | ||
mean (s.d.) | ||||
Age (years) | 50.0 (8.2) | 48.8 (8.3) | 47.6 (8.1) | <0.0001 |
Fasting glucose (mg/dL) | 90.7 (8.2) | 90.8 (8.1) | 91.0 (8.0) | 0.7518 |
BMI (kg/m2) | 25.4 (4.3) | 26.0 (4.3) | 26.7 (4.4) | <0.0001 |
Waist circumference (inches) | 33.3 (5.4) | 34.8 (5.5) | 36.3 (5.3) | <0.0001 |
Cigarettes (pack-years) | 12.3 (17.9) | 14.4 (19.3) | 15.9 (19.9) | 0.0010 |
Physical activity (hours/day) | 12.1 (7.5) | 12.3 (8.5) | 13.0 (8.7) | 0.0764 |
Energy intake (kilocalories/day) | 1586 (369.4) | 1908 (464.0) | 2288 (537.7) | <0.0001 |
Protein (% of energy) | 16.6 (3.3) | 17.0 (3.3) | 16.8 (3.0) | 0.0354 |
Carbohydrates (% of energy) | 50.0 (7.9) | 45.3 (7.2) | 42.4 (6.8) | <0.0001 |
Total fat (% of energy) | 32.5 (6.6) | 35.6 (5.9) | 38.1 (5.6) | <0.0001 |
Saturated fat (% of energy) | 10.6 (2.8) | 12.1 (2.7) | 13.6 (2.6) | <0.0001 |
Dietary fiber (grams/day) | 15.6 (6.7) | 15.9 (6.2) | 16.5 (5.9) | 0.0445 |
Fruits and vegetables (cups/day) | 3.1 (1.5) | 3.1 (1.4) | 3.1 (1.4) | 0.6954 |
Whole grains (oz eq/day) | 0.68 (0.8) | 0.59 (0.7) | 0.55 (0.6) | 0.0035 |
Lean meat, poultry, fish (oz eq/day) | 2.92 (1.6) | 3.66 (1.9) | 4.05 (2.2) | <0.0001 |
Eggs (oz eq/week) | 1.12 (1.3) | 2.3 (1.6) | 5.2 (2.8) | <0.0001 |
Alcohol (grams/day) | 7.85 (11.7) | 11.71 (17.5) | 13.8 (18.5) | <0.0001 |
Sex (% male) | 24.9 | 44.2 | 65.3 | <0.0001 |
Education (% college graduate) | 33.1 | 35.7 | 38.5 | 0.0325 |
All Subjects | ||||||
---|---|---|---|---|---|---|
Exposure Category | N | Person Years | Events 1 | Rate/1000PY | HR 2 | 95% Confidence |
DC <200 | 762 | 11739 | 177 | 15.08 | 1.00 | – |
DC 200–<300 | 776 | 11683 | 212 | 18.15 | 1.01 | 0.82–1.24 |
DC ≥300 | 654 | 9734 | 190 | 19.52 | 0.87 | 0.68–1.10 |
All Subjects | ||||||
---|---|---|---|---|---|---|
Combined Intakes | N | Person Years | Events 1 | Rate/1000PY | HR 2 | 95% CI |
DC <300, Fish ≥1 svg | 718 | 11,370 | 175 | 15.39 | 1.00 | – |
DC <300, Fish <1 svg | 820 | 12,053 | 214 | 17.76 | 1.25 | 1.03–1.53 |
DC ≥300, Fish ≥1 svg | 346 | 5230 | 98 | 18.74 | 0.96 | 0.74–1.25 |
DC ≥300, Fish <1 svg | 308 | 4504 | 92 | 20.43 | 0.98 | 0.75–1.28 |
DC <300, Fiber ≥15 g | 724 | 11,061 | 170 | 15.37 | 1.00 | – |
DC <300, Fiber <15 g | 814 | 12,362 | 219 | 17.72 | 1.23 | 0.98–1.53 |
DC ≥300, Fiber ≥15 g | 360 | 5597 | 104 | 18.58 | 0.93 | 0.71–1.20 |
DC ≥300, Fiber <15 g | 294 | 4137 | 86 | 20.79 | 1.03 | 0.77–1.39 |
DC <300, Whole Grain ≥0.5 svg | 682 | 10,668 | 152 | 14.25 | 1.00 | – |
DC <300, Whole Grain <0.5 svg | 856 | 12,755 | 237 | 18.58 | 1.34 | 1.08–1.65 |
DC ≥300, Whole Grain ≥0.5 svg | 267 | 4071 | 75 | 18.42 | 0.95 | 0.71–1.28 |
DC ≥300, Whole Grain <0.5 svg | 387 | 5663 | 115 | 20.31 | 1.09 | 0.84–1.42 |
DC <300, Fruits & Vegetables ≥3 svgs | 713 | 11,067 | 174 | 15.72 | 1.00 | – |
DC <300, Fruits & Vegetables <3 svgs | 825 | 12,355 | 215 | 17.40 | 1.09 | 0.88–1.34 |
DC ≥300, Fruits & Vegetables ≥3 svgs | 320 | 4888 | 93 | 19.03 | 0.91 | 0.70–1.20 |
DC ≥300, Fruits & Vegetables <3 svgs | 334 | 4846 | 97 | 20.02 | 0.91 | 0.68–1.20 |
Exposure Categories 1 | All Subjects | |||||
---|---|---|---|---|---|---|
N | Person Years | Events 2 | Rate/1000PY | HR 3 | 95% CI | |
DC <300, Activity (moderate/high) | 1005 | 15,273 | 252 | 16.50 | 1.00 | – |
DC <300, Activity (low) | 533 | 8150 | 137 | 16.81 | 1.10 | 0.89–1.35 |
DC ≥300, Activity (moderate/high) | 441 | 6547 | 124 | 18.94 | 0.87 | 0.69–1.10 |
DC ≥300, Activity (low) | 213 | 3188 | 66 | 20.70 | 0.93 | 0.70–1.24 |
DC <300, Non-drinker | 470 | 7140 | 126 | 17.65 | 1.00 | – |
DC <300, Light-moderate drinker | 762 | 11,728 | 168 | 14.33 | 0.78 | 0.61–0.99 |
DC <300, Heavier drinker | 306 | 4554 | 95 | 20.86 | 1.04 | 0.78–1.38 |
DC ≥300, Non-drinker | 166 | 2414 | 48 | 19.89 | 0.78 | 0.55–1.11 |
DC ≥300, Light-moderate drinker | 335 | 5030 | 93 | 18.49 | 0.75 | 0.56–1.01 |
DC ≥300, Heavier drinker | 153 | 2290 | 49 | 21.40 | 0.82 | 0.57–1.18 |
DC <300, Non-smoker | 1204 | 18,707 | 276 | 14.75 | 1.00 | – |
DC <300, Smoker | 334 | 4716 | 113 | 23.96 | 1.73 | 1.38–2.16 |
DC ≥300, Non-smoker | 482 | 7338 | 128 | 17.44 | 0.88 | 0.70–1.11 |
DC ≥300, Smoker | 172 | 2396 | 62 | 25.88 | 1.32 | 0.98–1.77 |
DC <300, BMI <25 | 744 | 12,174 | 108 | 8.87 | 1.00 | – |
DC <300, BMI 25–<30 | 574 | 8427 | 175 | 20.77 | 2.08 | 1.62–2.67 |
DC <300, BMI ≥30 | 220 | 2822 | 106 | 37.57 | 3.85 | 2.93–5.07 |
DC ≥300, BMI <25 | 238 | 3815 | 42 | 11.01 | 1.04 | 0.72–1.50 |
DC ≥300, BMI 25–<30 | 301 | 4421 | 99 | 22.39 | 1.92 | 1.42–2.59 |
DC ≥300, BMI ≥30 | 115 | 1498 | 49 | 32.72 | 2.81 | 1.96–4.83 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghdasarian, S.; Lin, H.-P.; Pickering, R.T.; Mott, M.M.; Singer, M.R.; Bradlee, M.L.; Moore, L.L. Dietary Cholesterol Intake Is Not Associated with Risk of Type 2 Diabetes in the Framingham Offspring Study. Nutrients 2018, 10, 665. https://doi.org/10.3390/nu10060665
Baghdasarian S, Lin H-P, Pickering RT, Mott MM, Singer MR, Bradlee ML, Moore LL. Dietary Cholesterol Intake Is Not Associated with Risk of Type 2 Diabetes in the Framingham Offspring Study. Nutrients. 2018; 10(6):665. https://doi.org/10.3390/nu10060665
Chicago/Turabian StyleBaghdasarian, Siyouneh, Hsuan-Ping Lin, Richard T. Pickering, Melanie M. Mott, Martha R. Singer, M. Loring Bradlee, and Lynn L. Moore. 2018. "Dietary Cholesterol Intake Is Not Associated with Risk of Type 2 Diabetes in the Framingham Offspring Study" Nutrients 10, no. 6: 665. https://doi.org/10.3390/nu10060665
APA StyleBaghdasarian, S., Lin, H.-P., Pickering, R. T., Mott, M. M., Singer, M. R., Bradlee, M. L., & Moore, L. L. (2018). Dietary Cholesterol Intake Is Not Associated with Risk of Type 2 Diabetes in the Framingham Offspring Study. Nutrients, 10(6), 665. https://doi.org/10.3390/nu10060665