Behavioral Correlates of Empirically-Derived Dietary Patterns among University Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Procedures
2.2. Measures
2.3. Data Analysis
3. Results
3.1. Sample Characteristics
3.2. Dietary Patterns
3.3. Behavioral Factors and Dietary Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brumberg, A. Food for Thought: The Subtle Forces That Affect Your Appetite; NPR: Washington, DC, USA, 2016. [Google Scholar]
- Köster, E.P. Diversity in the determinants of food choice: A psychological perspective. Food Qual. Preference 2009, 20, 70–82. [Google Scholar] [CrossRef]
- Symmank, C.; Mai, R.; Hoffmann, S.; Stok, F.M.; Renner, B.; Lien, N.; Rohm, H. Predictors of food decision making: A systematic interdisciplinary mapping (SIM) review. Appetite 2017, 110, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Leng, G.; Adan, R.A.H.; Belot, M.; Brunstrom, J.M.; de Graaf, K.; Dickson, S.L.; Hare, T.; Maier, S.; Menzies, J.; Preissl, H.; et al. The determinants of food choice. Proc. Nutr. Soc. 2017, 76, 316–327. [Google Scholar] [CrossRef] [PubMed]
- van Meer, F.; van der Laan, L.N.; Charbonnier, L.; Viergever, M.A.; Adan, R.A.; Smeets, P.A.; Family Consortium, I. Developmental differences in the brain response to unhealthy food cues: An fMRI study of children and adults. Am. J. Clin. Nutr. 2016, 104, 1515–1522. [Google Scholar] [PubMed]
- Monteleone, E.; Spinelli, S.; Dinnella, C.; Endrizzi, I.; Laureati, M.; Pagliarini, E.; Sinesio, F.; Gasperi, F.; Torri, L.; Aprea, E.; et al. Exploring influences on food choice in a large population sample: The Italian Taste project. Food Qual. Preference 2017, 59, 123–140. [Google Scholar] [CrossRef]
- Hodge, A.M.; Bassett, J.K.; Shivappa, N.; Hébert, J.R.; English, D.R.; Giles, G.G.; Severi, G. Dietary inflammatory index, Mediterranean diet score, and lung cancer: A prospective study. Cancer Causes Control 2016, 27, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Newby, P.K.; Muller, D.; Hallfrisch, J.; Andres, R.; Tucker, K.L. Food patterns measured by factor analysis and anthropometric changes in adults. Am. J. Clin. Nutr. 2004, 80, 504–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B.; Willett, W.C. Optimal diets for prevention of coronary heart disease. JAMA 2002, 288, 2569–2578. [Google Scholar] [CrossRef] [PubMed]
- Köster, E.P.; Mojet, J. Theories of Food Choice Development; Elsevier: New York, NY, USA, 2007. [Google Scholar]
- Sobal, J.; Bisogni, C.A.; Jastran, M. Food choice is multifaceted, contextual, dynamic, multilevel, integrated, and diverse. Mind Brain Educ. 2014, 8, 6–12. [Google Scholar] [CrossRef]
- VanKim, N.A.; Larson, N.; Laska, M.N. Emerging adulthood: A critical age for preventing excess weight gain? Adolesc. Med. State Art Rev. 2012, 23, 571–588. [Google Scholar] [PubMed]
- Zheng, Y.; Manson, J.E.; Yuan, C.; Liang, M.H.; Grodstein, F.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Associations of weight gain from early to middle adulthood with major health outcomes later in life. JAMA 2017, 318, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.C.; Story, M.; Larson, N.I.; Neumark-Sztainer, D.; Lytle, L.A. Emerging adulthood and college-aged youth: An overlooked age for weight-related behavior change. Obesity 2008, 16, 2205–2211. [Google Scholar] [CrossRef] [PubMed]
- Rosinger, A.; Herrick, K.; Gahche, J.; Park, S. Sugar-sweetened beverage consumption among U.S. adults, 2011–2014. NCHS Data Brief. 2017, 270, 1–8. [Google Scholar]
- Rosinger, A.; Herrick, K.; Gahche, J.; Park, S. Sugar-sweetened beverage consumption among U.S. youth, 2011–2014. NCHS Data Brief. 2017, 271, 1–8. [Google Scholar]
- Kimmons, J.; Gillespie, C.; Seymour, J.; Serdula, M.; Blanck, H.M. Fruit and vegetable intake among adolescents and adults in the United States: Percentage meeting individualized recommendations. Medscape J. Med. 2009, 11, 26. [Google Scholar]
- Demory-Luce, D.; Morales, M.; Nicklas, T.; Baranowski, T.; Zakeri, I.; Berenson, G. Changes in food group consumption patterns from childhood to young adulthood: The Bogalusa Heart Study. JADA 2004, 104, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Larson, N.I.; Neumark-Sztainer, D.; Hannan, P.J.; Story, M. Trends in adolescent fruit and vegetable consumption, 1999–2004: Project EAT. Am. J. Prev. Med. 2007, 32, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Lytle, L.A.; Himes, J.H.; Feldman, H.; Zive, M. Nutrient intake over time in a multi-ethnic sample of youth. Public Health 2002. [CrossRef] [PubMed]
- Vikraman, S.; Fryar, C.D.; Ogden, C.L. Caloric intake from fast food among children and adolescents in the United States, 2011–2012. NCHS Data Brief. 2015, 213, 1–8. [Google Scholar]
- Cutler, G.J.; Flood, A.; Hannan, P.J.; Neumark-Sztainer, D. Multiple sociodemographic and socioenvironmental characteristics are correlated with major patterns of dietary intake in adolescents. J. Am. Diet. Assoc. 2011, 111, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Newark, S.M.; August, D.S.M.R. How America Pays for College 2015: Sallie Mae’s National Study of College Students and Parents; Salliemae: Newark, DE, USA, 2015; Available online: https://www.salliemae.com/research/how-america-pays-for-college/ (accessed on 29 January 2018).
- Blondin, S.A.; Mueller, M.P.; Bakun, P.J.; Choumenkovitch, S.F.; Tucker, K.L.; Economos, C.D. Cross-sectional associations between empirically-derived dietary patterns and indicators of disease risk among university students. Nutrients 2015, 8. [Google Scholar] [CrossRef] [PubMed]
- University of Minnesota. Nutrition Coordinating Center Food and Nutrition Database; University of Minnesota: Minneapolis, MN, USA, 1992. [Google Scholar]
- Hu, F.B.; Rimm, E.B.; Stampfer, M.J.; Ascherio, A.; Spiegelman, D.; Willett, W.C. Prospective study of major dietary patterns and risk of coronary heart disease in men. Am. J. Clin. Nutr. 2000, 72, 912–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikolajczyk, R.T.; Ansari El, W.; Maxwell, A.E. Food consumption frequency and perceived stress and depressive symptoms among students in three European countries. Nutr. J. 2009, 8. [Google Scholar] [CrossRef] [PubMed]
- Cluskey, M.; Grobe, D. College weight gain and behavior transitions: Male and female differences. JADA 2009, 109, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, J.E.; Laska, M.N. Campus food and beverage purchases are associated with indicators of diet quality in college students living off campus. Am. J. Health Promot. 2013, 28, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Racette, S.B.; Deusinger, S.S.; Strube, M.J.; Highstein, G.R.; Deusinger, R.H. Changes in weight and health behaviors from freshman through senior year of college. J. Nutr. Educ. Behav. 2008, 40, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Quintiliani, L.M.; Bishop, H.L.; Greaney, M.L.; Whiteley, J.A. Factors across home, work, and school domains influence nutrition and physical activity behaviors of nontraditional college students. Nutr. Res. 2012, 32, 757–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, M.R.; Annunziato, R.A.; Markowitz, J.T.; Didie, E.; Bellace, D.L.; Riddell, L.; Maille, C.; McKinney, S.; Stice, E. Multiple types of dieting prospectively predict weight gain during the freshman year of college. Appetite 2006, 47, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Harmon, B.E.; Forthofer, M.; Bantum, E.O.; Nigg, C.R. Perceived influence and college students’ diet and physical activity behaviors: An examination of ego-centric social networks. BMC Public Health 2016, 16. [Google Scholar] [CrossRef] [PubMed]
- Lowry, R.; Galuska, D.A.; Fulton, J.E.; Wechsler, H. Physical activity, food choice, and weight management goals and practices among US college students. Am. J. Prev. Med. 2000, 18, 18–27. [Google Scholar] [CrossRef]
- Hendricks, K.M.; Herbold, N.H. Diet, activity, and other health-related behaviors in college-age women. Nutr. Rev. 1998, 56, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.L.; Lee, R.E.; Kaur, H.; Harris, K.J.; Strother, M.L.; Huang, T.T.-K. Smoking, weight loss intention and obesity-promoting behaviors in college students. J. Am. Coll. Nutr. 2006, 25, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, H.; Holub, S.C.; Dolan, E.A. The reasoned/reactive model: A new approach to examining eating decisions among female college dieters and nondieters. Eat. Behav. 2016, 23, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Nelson Laska, M.; Larson, N.I.; Neumark-Sztainer, D.; Story, M. Dietary patterns and home food availability during emerging adulthood: Do they differ by living situation? Public Health Nutr. 2010, 13, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Larson, N.I.; Neumark-Sztainer, D.; Harnack, L.J.; Wall, M.M.; Story, M.T.; Eisenberg, M.E. Fruit and vegetable intake correlates during the transition to young adulthood. Am. J. Prev. Med. 2008, 35, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Deliens, T.; Clarys, P.; De Bourdeaudhuij, I.; Deforche, B. Determinants of eating behaviour in university students: A qualitative study using focus group discussions. BMC Public Health 2014, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, R.; Yassa, B.; Parker, H.; O’Connor, H.; Allman-Farinelli, M. University students’ on-campus food purchasing behaviors, preferences, and opinions on food availability. Nutrition 2017, 37, 7–13. [Google Scholar] [CrossRef] [PubMed]
- García-Meseguer, M.J.; Burriel, F.C.; García, C.V.; Serrano-Urrea, R. Adherence to Mediterranean diet in a Spanish university population. Appetite 2014, 78, 156–164. [Google Scholar]
- Eisenmann, J.C.; Wickel, E.E.; Welk, G.J.; Blair, S.N. Relationship between adolescent fitness and fatness and cardiovascular disease risk factors in adulthood: The Aerobics Center Longitudinal Study (ACLS). Am. Heart J. 2005, 149, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Stofan, J.R.; DiPietro, L.; Davis, D.; Kohl, H.W., 3rd; Blair, S.N. Physical activity patterns associated with cardiorespiratory fitness and reduced mortality: The Aerobics Center Longitudinal Study. Am. J. Public Health 1998, 88, 1807–1813. [Google Scholar] [CrossRef] [PubMed]
- Finley, C.E.; LaMonte, M.J.; Waslien, C.I.; Barlow, C.E.; Blair, S.N.; Nichaman, M.Z. Cardiorespiratory fitness, macronutrient intake, and the metabolic syndrome: The Aerobics Center Longitudinal Study. J. Am. Diet. Assoc. 2006, 106, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Hoerr, S.L.; Bokram, R.; Lugo, B.; Bivins, T.; Keast, D.R. Risk for disordered eating relates to both gender and ethnicity for college students. J. Am. Coll. Nutr. 2002, 21, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Hiza, H.A.B.; Casavale, K.O.; Guenther, P.M.; Davis, C.A. Diet quality of Americans differs by age, sex, race/ethnicity, income, and education level. J. Acad. Nutr. Diet. 2013, 113, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Krueger, P.M.; Reither, E.N. Mind the gap: Race/ethnic and socioeconomic disparities in obesity. Curr. Diab. Rep. 2015, 15. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (US). Critical Perspectives on Racial and Ethnic Differences in Health in Late Life; Panel on Race, Ethnicity, and Health in Later Life; Anderson, N.B., Bulatao, R.A., Cohen, B., Eds.; National Research Council (US): Washington, DC, USA, 2004. [Google Scholar]
- National Academies of Science, Engineering, and Medicine. Framing the Dialogue on Race and Ethnicity to Advance Health Equity: Proceedings of a Workshop; National Academies Press (US): Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Olson, J.S.; Hummer, R.A.; Harris, K.M. Gender and health behavior clustering among U.S. young adults. Biodemogr. Soc. Biol. 2017, 63, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Barry, A.E.; Whiteman, S.; Piazza-Gardner, A.K.; Jensen, A.C. Gender differences in the associations among body mass index, weight loss, exercise, and drinking among college students. J. Am. Coll. Health 2013, 61, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Beck, J.; Lande, J.; Pan, Z.; Cardel, M.; Ayoob, K.; Hill, J. Using healthy defaults in walt disney world restaurants to improve nutritional choices. J. Assoc. Consum. Res. 2016, 1, 92–103. [Google Scholar] [CrossRef]
- Schwartz, M.B.; Just, D.R.; Chriqui, J.F.; Ammerman, A.S. Appetite self-regulation: Environmental and policy influences on eating behaviors. Obesity 2017, 25 (Suppl. 1), S26–S38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, M.B. Optimal defaults in the prevention of pediatric obesity: From platform to practice. J. Food Nutr. Disor. 2013. [CrossRef] [PubMed]
- Downs, J.S.; Loewenstein, G.; Wisdom, J. Strategies for promoting healthier food choices. Am. Econ. Rev. 2009, 99, 159–164. [Google Scholar] [CrossRef] [PubMed]
- French, S.A.; Story, M.; Jeffery, R.W. Environmental influences on eating and physical activity. Annu. Rev. Public Health 2001, 22, 309–335. [Google Scholar] [CrossRef] [PubMed]
- Brownson, R.C.; Haire-Joshu, D.; Luke, D.A. Shaping the context of health: A review of environmental and policy approaches in the prevention of chronic diseases. Annu. Rev. Public Health 2006, 27, 341–370. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.; Nicklett, E.J.; Roeder, K.; Kirz, N.E. Eating disorder symptoms among college students: Prevalence, Persistence, correlates, and treatment-seeking. J. Am. Coll. Health 2011, 59, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Economos, C.D.; Hildebrandt, M.L.; Hyatt, R.R. College freshman stress and weight change: Differences by gender. Am. J. Health Behav. 2008, 32, 16–25. [Google Scholar] [CrossRef] [PubMed]
- White, M.C.; Shoemaker, M.L.; Park, S.; Neff, L.J.; Carlson, S.A.; Brown, D.R.; Kanny, D. Prevalence of modifiable cancer risk factors among U.S. adults aged 18–44 Years. Am. J. Prev. Med. 2017, 53 (Suppl. 1), S14–S20. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.C.; Lust, K.; Story, M. Alcohol use, eating patterns, and weight behaviors in a university population. Am. J. Health Behav. 2009, 33. [Google Scholar] [CrossRef]
- Powell, L.M.; Nguyen, B.T. Fast-food and full-service restaurant consumption among children and adolescents: Effect on energy, beverage, and nutrient intake. JAMA Pediatr. 2013, 167, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.T.; Powell, L.M. The impact of restaurant consumption among US adults: Effects on energy and nutrient intakes. Public Health Nutr. 2014, 17, 2445–2452. [Google Scholar] [CrossRef] [PubMed]
- Laska, M.N.; Hearst, M.O.; Lust, K.; Lytle, L.A.; Story, M. How we eat what we eat: Identifying meal routines and practices most strongly associated with healthy and unhealthy dietary factors among young adults. Public Health Nutr. 2015, 18, 2135–2145. [Google Scholar] [CrossRef] [PubMed]
- Harker, D.; Sharma, B.; Harker, M.; Reinhard, K. Leaving home: Food choice behavior of young German adults. J. Bus. Res. 2010, 63, 111–115. [Google Scholar] [CrossRef]
- Kidd, T.; Peters, P.K. Decisional balance for health and weight is associated with whole-fruit intake in low-income young adults. Nutr. Res. 2010, 30, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Munt, A.E.; Partridge, S.R.; Allman-Farinelli, M. The barriers and enablers of healthy eating among young adults: A missing piece of the obesity puzzle: A scoping review. Obes. Rev. 2017, 18, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Antin, T.M.J.; Paschall, M.J. Weight perception, weight change intentions, and alcohol use among young adults. Body Image 2011, 8, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Kelly-Weeder, S.; Phillips, K.; Leonard, K.; Veroneau, M. Binge eating and weight loss behaviors of overweight and obese college students. J. Am. Assoc. Nurse Pract. 2014, 26, 445–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanselow, M.S.; Pereira, M.A.; Neumark-Sztainer, D.; Raatz, S.K. Adolescent beverage habits and changes in weight over time: Findings from Project EAT. Am. J. Clin. Nutr. 2009, 90, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, S.J.; Harrop, B.J.; Campbell, K.; Campbell, T.C.; Cole, M. Dietary Intake among grade 7 students from southwestern ontario attempting to gain weight. Can. J. Diet. Pract. Res. 2016, 77, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-T.J.; Gao, Z.; Lee, J.-Y. Associations between self-reported weight management methods with diet quality as measured by the Healthy Eating Index-2005. Prev. Med. 2013, 57, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Yager, Z.; O’Dea, J.A. Prevention programs for body image and eating disorders on University campuses: A review of large, controlled interventions. Health Promot. Int. 2008, 23, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Tanton, J.; Dodd, L.J.; Woodfield, L.; Mabhala, M. Eating behaviours of british university students: A cluster analysis on a neglected issue. Adv. Prev. Med. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.J.; Pelletier, J.E.; Neumark-Sztainer, D.; Lust, K.; Laska, M.N. Perceived social-ecological factors associated with fruit and vegetable purchasing, preparation, and consumption among young adults. J. Acad. Nutr. Diet. 2013, 113, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Dickens, E.; Ogden, J. The role of parental control and modelling in predicting a child’s diet and relationship with food after they leave home. A prospective study. Appetite 2014, 76, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Hartman, H.; Wadsworth, D.P.; Penny, S.; van Assema, P.; Page, R. Psychosocial determinants of fruit and vegetable consumption among students in a New Zealand university. Results of focus group interviews. Appetite 2013, 65, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Land, M.-A.; Webster, J.; Christoforou, A.; Johnson, C.; Trevena, H.; Hodgins, F.; Chalmers, J.; Woodward, M.; Barzi, F.; Smith, W.; et al. The association of knowledge, attitudes and behaviours related to salt with 24-hour urinary sodium excretion. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Merrill, J.E.; Carey, K.B. Drinking over the lifespan: focus on college ages. Alcohol Res. Curr. Rev. 2016, 38, 103–114. [Google Scholar]
- Ansari, W.; Stock, C.; Mikolajczk, T. Relationship between food consumption and living arrangements among university students in four European countries: a cross sectional study. Nutr. J. 2012, 11, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prouty, A.M.; Protinsky, H.O.; Canady, D. College women: Eating behaviors and help-seeking preferences. Adolescence 2002, 37, 353–363. [Google Scholar] [PubMed]
- Hudson, J.I.; Hiripi, E.; Pope, H.G.; Kessler, R.C. The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol. Psychiatr. 2007, 61, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Neumark-Sztainer, D.; Wall, M.M.; Haines, J.I.; Story, M.T.; Sherwood, N.E.; van den Berg, P.A. Shared risk and protective factors for overweight and disordered eating in adolescents. Am. J. Prev. Med. 2007, 33, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Hebert, J.R.; Clemow, L.; Pbert, L.; Ockene, I.S.; Ockene, J.K. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int. J. Epidemiol. 1995, 24, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.A.; Matthews, C.E.; Ebbeling, C.B.; Moore, C.G.; Cunningham, J.E.; Fulton, J.; Hebert, J.R. The effect of social desirability and social approval on self-reports of physical activity. Am. J. Epidemiol. 2005, 161, 389–398. [Google Scholar] [CrossRef] [PubMed]
- van de Mortel, T.F. Faking it: Social desirability response bias in self-report research. Aust. J. Adv. Nurs. 2008, 25, 40–48. [Google Scholar]
- Moreno-Gómez, C.; Romaguera-Bosch, D.; Tauler-Riera, P.; Bennasar-Veny, M.; Pericas-Beltran, J.; Martinez-Andreu, S.; Aguilo-Pons, A. Clustering of lifestyle factors in Spanish university students: The relationship between smoking, alcohol consumption, physical activity and diet quality. Public Health Nutr. 2012, 15, 2131–2139. [Google Scholar] [CrossRef] [PubMed]
- Pliner, P.; Saunders, T. Vulnerability to freshman weight gain as a function of dietary restraint and residence. Physiol. Behav. 2008, 93, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Finlayson, G.; Cecil, J.; Higgs, S.; Hill, A.; Hetherington, M. Susceptibility to weight gain. Eating behaviour traits and physical activity as predictors of weight gain during the first year of university. Appetite 2012, 58, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. CDC Health Disparities and Inequalities Report—United States, 2013. MMWR 2013, 62, 1–186. [Google Scholar]
- Kumanyika, S.K. Getting to Equity in Obesity Prevention: A New Framework. Available online: https://nam.edu/getting-to-equity-in-obesity-prevention-a-new-framework/ (accessed on 21 February 2017).
- Ellis, B.J.; Boyce, W.T.; Belsky, J.; Bakermans-Kranenburg, M.J.; van Ijzendoorn, M.H. Differential susceptibility to the environment: An evolutionary—Neurodevelopmental theory. Dev. Psychopathol. 2011, 23, 7–28. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Freeland-Graves, J.H.; Nitzke, S. Academy of Nutrition and Dietetics. Position of the academy of nutrition and dietetics: Total diet approach to healthy eating. J. Acad. Nutr. Diet. 2013, 113, 307–317. [Google Scholar] [CrossRef] [PubMed]
Female (%) | 65.9 |
Age, years | 18.5 ± 0.5 |
Race/Ethnicity | |
Non-Hispanic White (%) | 75.4 |
African American (%) | 3.2 |
Hispanic (%) | 3.6 |
Other (%) | 17.8 |
Live on campus (%) | 100.0 |
Non-smoker (%) | 97.5 |
Physically active a (%) | 83.8 |
Adequate sleep b (%) | 42.0 |
BMI (kg/m2) c | 22.8 ± 3.0 |
Intention to lose weight (%) | 52.9 |
Intention to gain weight (%) | 11.8 |
Watched less than 1 h of TV/day (%) | 64.5 |
Food choice negatively or strongly negatively affected by: | |
Friends (%) | 21.4 |
Family (%) | 9.5 |
Living situation (%) | 55.2 |
Food availability/convenience (%) | 60.9 |
Religion/culture (%) | 5.4 |
Nutrition (%) | 1.0 |
Cost (%) | 30.6 |
Sometimes or often ate: | |
In the dining hall (%) | 99.7 |
Self-prepared meals (%) | 14.4 |
Out at restaurants/take out d (%) | 41.4 |
Prudent Dietary Pattern | Western Dietary Pattern | Alcohol Dietary Pattern | |||||||
---|---|---|---|---|---|---|---|---|---|
Predictors | β | se | p | β | se | p | β | se | p |
Eating out | |||||||||
Never | 0.54 | 0.26 | 0.037 * | −0.91 | 0.23 | <0.000 * | −0.85 | 0.26 | 0.001 * |
Rarely | 0.31 | 0.21 | 0.137 | −0.69 | 0.18 | <0.001 * | −0.54 | 0.21 | 0.009 * |
Sometimes | 0.15 | 0.21 | 0.467 | −0.63 | 0.19 | 0.001 * | −0.32 | 0.21 | 0.118 |
Frequently | — | — | — | — | — | — | — | — | — |
Friends effect food choice | |||||||||
Strongly positive/Positive | −0.08 | 0.10 | 0.430 | 0.08 | 0.09 | 0.370 | 0.15 | 0.10 | 0.130 |
Strongly negative/Negative | 0.00 | 0.11 | 0.979 | −0.08 | 0.10 | 0.410 | 0.26 | 0.11 | 0.017 * |
No effect | — | — | — | — | — | — | — | — | — |
Family effects food choice | |||||||||
Strongly positive/Positive | 0.07 | 0.10 | 0.492 | −0.01 | 0.09 | 0.940 | 0.02 | 0.10 | 0.872 |
Strongly negative/Negative | −0.06 | 0.16 | 0.684 | −0.33 | 0.14 | 0.021 * | −0.19 | 0.16 | 0.224 |
No effect | — | — | — | — | — | — | — | — | — |
Nutrition effects food choice | |||||||||
Strongly positive/Positive | 0.49 | 0.11 | <0.000 * | −0.17 | 0.10 | 0.096 | 0.04 | 0.11 | 0.737 |
Strongly negative/Negative | 0.81 | 0.40 | 0.046 * | 0.42 | 0.36 | 0.244 | −0.23 | 0.40 | 0.572 |
No effect | — | — | — | — | — | — | — | — | — |
Hours per day of TV | |||||||||
0 h | 0.61 | 0.44 | 0.162 | −0.39 | 0.39 | 0.325 | (p-interaction = 0.0317) † | ||
<1 h | 0.52 | 0.44 | 0.237 | −0.28 | 0.39 | 0.471 | |||
1 h | 0.43 | 0.44 | 0.329 | −0.35 | 0.40 | 0.374 | |||
2 h | 0.42 | 0.45 | 0.357 | −0.03 | 0.40 | 0.931 | |||
3 h | 0.17 | 0.47 | 0.720 | −0.11 | 0.42 | 0.789 | |||
4 h | 0.63 | 0.62 | 0.311 | −0.21 | 0.56 | 0.711 | |||
5 or more hours | — | — | — | — | — | — | |||
Tried to lose weight | |||||||||
Yes | 0.14 | 0.08 | 0.103 | −0.20 | 0.08 | 0.007 * | 0.26 | 0.08 | 0.003 * |
No | — | — | — | — | — | — | — | — | — |
Tried to gain weight | |||||||||
Yes | 0.25 | 0.13 | 0.046 * | 0.23 | 0.11 | 0.042 * | 0.40 | 0.13 | 0.002 * |
No | — | — | — | — | — | — | — | — | — |
Physical Activity (MET minutes) | 0.00 | 0.00 | 0.004 * | −0.00 | 0.00 | 0.637 | 0.00 | 0.00 | 0.095 |
Race | |||||||||
Non-Hispanic Black | −0.30 | 0.22 | 0.190 | 0.52 | 0.20 | 0.011 * | −0.44 | 0.22 | 0.049 * |
Hispanic, Latin American | −0.07 | 0.21 | 0.738 | −0.18 | 0.19 | 0.332 | 0.10 | 0.21 | 0.643 |
Other | −0.19 | 0.10 | 0.066 | −0.01 | 0.09 | 0.873 | 0.03 | 0.10 | 0.777 |
Non-Hispanic White | — | — | — | — | — | — | — | — | — |
Gender | |||||||||
Female | 0.22 | 0.09 | 0.017 * | −0.59 | 0.08 | <0.000 * | 0.08 | 0.09 | 0.383 |
Male | — | — | — | — | — | — | — | — | — |
Current smoker | |||||||||
Yes | 0.14 | 0.24 | 0.561 | −0.13 | 0.22 | 0.556 | 0.92 | 0.25 | <0.001 * |
No | — | — | — | — | — | — | — | — | — |
Age | 0.13 | 0.07 | 0.064 | −0.07 | 0.06 | 0.277 | 0.12 | 0.07 | 0.092 |
Alcohol Dietary Pattern | ||||||
---|---|---|---|---|---|---|
Non-Hispanic White (n = 475) | All Other Races/Ethnicities (n = 155) | |||||
Predictors | β | se | p | β | se | p |
Hours per day of TV | ||||||
0 h | −0.57 | 0.56 | 0.309 | 0.30 | 0.78 | 0.969 |
<1 h | −0.32 | 0.56 | 0.568 | −0.29 | 0.78 | 0.708 |
1 h | −0.28 | 0.56 | 0.620 | −0.50 | 0.79 | 0.528 |
2 h | −0.36 | 0.57 | 0.535 | −0.12 | 0.81 | 0.884 |
3 h | −0.34 | 0.59 | 0.565 | 0.66 | 0.94 | 0.483 |
4 h | −1.23 | 0.87 | 0.160 | −0.90 | 1.00 | 0.371 |
5 or more hours | — | — | — | — | — | — |
Gender | ||||||
Female | 0.04 | 0.09 | 0.686 | 0.07 | 0.19 | 0.734 |
Male | — | — | — | — | — | — |
Age | 0.11 | 0.08 | 0.189 | 0.08 | 0.15 | 0.573 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mueller, M.P.; Blondin, S.A.; Korn, A.R.; Bakun, P.J.; Tucker, K.L.; Economos, C.D. Behavioral Correlates of Empirically-Derived Dietary Patterns among University Students. Nutrients 2018, 10, 716. https://doi.org/10.3390/nu10060716
Mueller MP, Blondin SA, Korn AR, Bakun PJ, Tucker KL, Economos CD. Behavioral Correlates of Empirically-Derived Dietary Patterns among University Students. Nutrients. 2018; 10(6):716. https://doi.org/10.3390/nu10060716
Chicago/Turabian StyleMueller, Megan P., Stacy A. Blondin, Ariella R. Korn, Peter J. Bakun, Katherine L. Tucker, and Christina D. Economos. 2018. "Behavioral Correlates of Empirically-Derived Dietary Patterns among University Students" Nutrients 10, no. 6: 716. https://doi.org/10.3390/nu10060716
APA StyleMueller, M. P., Blondin, S. A., Korn, A. R., Bakun, P. J., Tucker, K. L., & Economos, C. D. (2018). Behavioral Correlates of Empirically-Derived Dietary Patterns among University Students. Nutrients, 10(6), 716. https://doi.org/10.3390/nu10060716