Long Sleep Duration and Social Jetlag Are Associated Inversely with a Healthy Dietary Pattern in Adults: Results from the UK National Diet and Nutrition Survey Rolling Programme Y1–4
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Sleep
2.4. Additional Measures and Covariates
2.5. Statistical Methods
2.5.1. Principal Component Analysis
2.5.2. Multiple Regression
3. Results
3.1. Sleep Duration and Social Jetlag
3.2. Diet and Dietary Patterns
3.3. Sleep and Relationship with Dietary Patterns
4. Discussion
4.1. Main Findings
4.2. Strengths and Weaknesses of the Study
5. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kant, A.K.; Graubard, B.I. Association of self-reported sleep duration with eating behaviors of American adults: NHANES 2005–2010. Am. J. Clin. Nutr. 2014, 100, 938–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pot, G.K.; Al Khatib, H.K.; Perowicz, M.; Hall, W.L.; Harding, S.V.; Darzi, J. Sleep duration, nutrient intake and nutritional status in UK adults. Proc. Nutr. Soc. 2016, 75, E180. [Google Scholar] [CrossRef]
- Knutson, K.L. Impact of sleep and sleep loss on glucose homeostasis and appetite regulation. Sleep Med. Clin. 2007, 2, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Al Khatib, H.K.; Harding, S.V.; Darzi, J.; Pot, G.K. The effects of partial sleep deprivation on energy balance: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2016, 71, 614–624. [Google Scholar]
- Copinschi, G.; Leproult, R.; Spiegel, K. The important role of sleep in metabolism. Front. Horm. Res. 2014, 42, 59–72. [Google Scholar] [PubMed]
- Kelly, N.R.; Shomaker, L.B.; Radin, R.M.; Thompson, K.A.; Cassidy, O.L.; Brady, S.; Mehari, R.; Courville, A.B.; Chen, K.Y.; Galescu, O.A.; et al. Associations of Sleep Duration and Quality with Disinhibited Eating Behaviors in Adolescent Girls At-Risk for Type 2 Diabetes. Eat. Behav. 2016, 22, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Dashti, H.S.; Scheer, F.A.; Jacques, P.F.; Lamon-Fava, S.; Ordovás, J.M. Short Sleep Duration and Dietary Intake: Epidemiologic Evidence, Mechanisms, and Health Implications. Adv. Nutr. 2015, 6, 648–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noorwali, E.; Cade, J.E.; Burley, V.J.; Hardie, L.J. The relationship between sleep duration and fruit/vegetable intake in UK adults: A cross-sectional study from The National Diet and Nutrition Survey. BMJ Open 2018, in press. [Google Scholar]
- Potter, G.D.M.; Cade, J.E.; Hardie, L.J. Longer sleep is associated with lower BMI and favorable metabolic profiles in UK adults: Findings from the National Diet and Nutrition Survey. PLoS ONE 2017, 12, e0182195. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Cespedes, E.M.; Hu, F.B. Dietary patterns: From nutritional epidemiologic analysis to national guidelines. Am. J. Clin. Nutr. 2015, 101, 899–900. [Google Scholar] [CrossRef] [PubMed]
- Rosi, A.; Calestani, M.V.; Parrino, L.; Milioli, G.; Palla, L.; Volta, E.; Brighenti, F.; Scazzina, F. Weight Status Is Related with Gender and Sleep Duration but Not with Dietary Habits and Physical Activity in Primary School Italian Children. Nutrients 2017, 9, 579. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T. Chronobiology: The human sleep project. Nature 2013, 498, 427. [Google Scholar] [CrossRef] [PubMed]
- Wing, Y.K.; Li, S.X.; Li, A.M.; Zhang, J.; Kong, A.P. The effect of weekend and holiday sleep compensation on childhood overweight and obesity. Pediatrics 2009, 124, e994–e1000. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.W.; Choi, M.K.; Im, H.J.; Kim, O.H.; Lee, H.J.; Song, J.; Kang, J.H.; Park, K.H. Weekend catch-up sleep is associated with decreased risk of being overweight among fifth-grade students with short sleep duration. J. Sleep Res. 2012, 21, 546–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social Jetlag: Misalignment of Biological and Social Time. Chronobiol. Int. 2006, 23, 497–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, B.; Lennox, A.; Prentice, A. National Diet and Nutrition Survey (NDNS)–results from years 1–4 (combined) of the rolling programme (2008/2009–2011/2012). Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/594361/NDNS_Y1_to_4_UK_report_full_text_revised_February_2017.pdf (accessed on 2 June 2018).
- Public Health England and Food Standards Agency. Appendix D Interviewer (stage 1) overview of elements and documents. Available online: https://www.food.gov.uk/sites/default/files/ndns-appendix-d.pdf (accessed on 2 June 2018).
- Marshall, N.S.; Glozier, N.; Grunstein, R.R. Is sleep duration related to obesity? A critical review of the epidemiological evidence. Sleep Med. Rev. 2008, 12, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Afeiche, M.C.; Taillie, L.S.; Hopkins, S.; Eldridge, A.L.; Popkin, B.M. Breakfast Dietary Patterns among Mexican Children Are Related to Total-Day Diet Quality. J. Nutr. 2017, 147, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.; Cade, J.; Dawson, J.; Holdsworth, M. Empirically Derived Dietary Patterns in UK Adults Are Associated with Sociodemographic Characteristics, Lifestyle, and Diet Quality. Nutrients 2018, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Food Standard Agency & Public Health England. National Diet and Nutrition Survey Years 1–4 2008/09-2011/12 User Guide for UK Data (core & country boost data). Available online: http://doc.ukdataservice.ac.uk/doc/6533/mrdoc/pdf/6533_ndns_yrs1-4_uk_user_guide.pdf (accessed on 1 March 2018).
- Galati, C.; Royston, P.; Carlin, J. MIM: Stata module to analyse and manipulate multiply imputed datasets. Stat. Softw. Compon. 2007, S456825. [Google Scholar]
- Dashti, H.S.; Follis, J.L.; Smith, C.E.; Tanaka, T.; Cade, B.E.; Gottlieb, D.J.; Hruby, A.; Jacques, P.F.; Lamon-Fava, S.; Richardson, K.; et al. Habitual sleep duration is associated with BMI and macronutrient intake and may be modified by CLOCK genetic variants. Am. J. Clin. Nutr. 2015, 101, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Mossavar-Rahmani, Y.; Jung, M.; Patel, S.R.; Sotres-Alvarez, D.; Arens, R.; Ramos, A.; Redline, S.; Rock, C.L. Eating behavior by sleep duration in the Hispanic Community Health Study/Study of Latinos. Appetite 2015, 95, 275–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandner, M.A.; Jackson, N.; Gerstner, J.R.; Knutson, K.L. Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample. Appetite 2013, 64, 71–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, K.A.; Brownson, R.C. Sleep duration and obesity-related risk factors in the rural Midwest. Prev. Med. 2008, 46, 439–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghighatdoost, F.; Karimi, G.; Esmaillzadeh, A.; Azadbakht, L. Sleep deprivation is associated with lower diet quality indices and higher rate of general and central obesity among young female students in Iran. Nutrition 2012, 28, 1146–1150. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Cai, H.; Gao, Y.T.; Wu, X.; Ji, B.T.; Yang, G.; Li, H.; Zheng, W.; Shu, X.O. Sleep duration and its correlates in middle-aged and elderly Chinese women: The Shanghai Women′s Health Study. Sleep Med. 2012, 13, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Leproult, R.; Holmbäck, U.; Van Cauter, E. Circadian Misalignment Augments Markers of Insulin Resistance and Inflammation, Independently of Sleep Loss. Diabetes 2014, 63, 1860–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juda, M.; Vetter, C.; Roenneberg, T. Chronotype modulates sleep duration, sleep quality, and social jet lag in shift-workers. J. Biol. Rhythms 2013, 28, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Lucassen, E.A.; Zhao, X.; Rother, K.I.; Mattingly, M.S.; Courville, A.B.; de Jonge, L.; Csako, G.; Cizza, G.; Sleep Extension Study Group. Evening chronotype is associated with changes in eating behavior, more sleep apnea, and increased stress hormones in short sleeping obese individuals. PLoS ONE 2013, 8, e56519. [Google Scholar] [CrossRef] [PubMed]
- Nedeltcheva, A.V.; Kilkus, J.M.; Imperial, J.; Kasza, K.; Schoeller, D.A.; Penev, P.D. Sleep curtailment is accompanied by increased intake of calories from snacks. Am. J. Clin. Nutr. 2009, 89, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Heath, G.; Roach, G.D.; Dorrian, J.; Ferguson, S.A.; Darwent, D.; Sargent, C. The effect of sleep restriction on snacking behaviour during a week of simulated shiftwork. Accid. Anal. Prev. 2012, 45, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Markwald, R.R.; Melanson, E.L.; Smith, M.R.; Higgins, J.; Perreault, L.; Eckel, R.H.; Wright, K.P., Jr. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc. Natl. Acad. Sci. USA 2013, 110, 5695–5700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; DeRoo, L.A.; Sandler, D.P. Eating patterns and nutritional characteristics associated with sleep duration. Public Health Nutr. 2011, 14, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.N.; Beh, E.J.; Palla, L. Application of Correspondence Analysis to Graphically Investigate Associations Between Foods and Eating Locations. Stud. Health Technol. Inform. 2017, 235, 166–170. [Google Scholar] [PubMed]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation′s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Cox, N.J. Speaking Stata: Matrices as look-up tables. Stata J. 2012, 12, 748–758. [Google Scholar]
- Sterne, J.A.C.; White, I.R.; Carlin, J.B.; Spratt, M.; Royston, P.; Kenward, M.G.; Wood, A.M.; Carpenter, J.R. Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ 2009, 338, b2393. [Google Scholar] [CrossRef] [PubMed]
- Pot, G.K. Sleep and dietary habits in the urban environment: The role of chrono-nutrition. Proc. Nutr. Soc. 2018, 77, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Whitton, C.; Nicholson, S.K.; Roberts, C.; Prynne, C.J.; Pot, G.; Olson, A.; Fitt, E.; Cole, D.; Teucher, B.; Bates, B. National Diet and Nutrition Survey: UK food consumption and nutrient intakes from the first year of the rolling programme and comparisons with previous surveys. Br. J. Nutr. 2011, 106, 1899–1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Factor | Level | Sleep Duration Tertile | p-Value * | ||
---|---|---|---|---|---|
T1 (Short ≤ 7 h) | T2 (Normal > 7 and ≤ 8 h) | T3 (Long > 8 h) | |||
N unweighted † | 1350 | 798 | 285 | ||
Sleep duration on weekdays (hours) | 6.3 (0.9) | 7.8 (0.2) | 9.2 (0.7) | <0.001 | |
Sleep duration on weekends (hours) | 6.9 (1.5) | 8.1 (1.1) | 9.0 (1.3) | <0.001 | |
Social jetlag (hours) | 0.6 (1.2) | 0.2 (1.1) | −0.2 (1.2) | <0.001 | |
Sleep duration on weekends | T1 (short) | 911 (67.5%) | 87 (10.9%) | 27 (9.5%) | <0.001 |
T2 (normal) | 261 (19.3%) | 490 (61.4%) | 33 (11.6%) | ||
T3 (long) | 178 (13.2%) | 221 (27.7%) | 225 (78.9%) | ||
Healthy dietary pattern | 0.0 (1.6) | 0.1 (1.7) | −0.4 (1.5) | 0.060 | |
Sugar, milk & bread dietary pattern | 0.1 (1.4) | −0.1 (1.3) | 0.0 (1.3) | 0.055 | |
Snacks dietary pattern | 0.0 (1.4) | 0.0 (1.3) | −0.1 (1.3) | 0.102 | |
Total energy (MJ) diet only | 7.7 (2.5) | 7.6 (2.4) | 7.1 (2.3) | 0.011 | |
Age (years) | 43.9 (11.9) | 41.5 (12.4) | 38.7 (13.1) | <0.001 | |
BMI (kg/m2) | 28.2 (5.5) | 27.2 (5.4) | 26.6 (5.3) | <0.001 | |
Sex | Male | 610 (45%) | 322 (40%) | 87 (30%) | 0.017 |
Female | 740 (55%) | 476 (60%) | 198 (70%) | ||
Ethnic group | White | 1262 (94%) | 731 (92%) | 267 (94%) | 0.742 |
Non-white | 88 (6%) | 67 (8%) | 18 (6%) | ||
Cigarette Smoking Status | Current cigarette smoker | 378 (28%) | 186 (23%) | 89 (31%) | 0.307 |
Ex-regular cigarette smoker | 274 (20%) | 163 (21%) | 51 (18%) | ||
Never regular cigarette smoker | 698 (52%) | 449 (56%) | 145 (51%) | ||
Socioeconomic Status | Managerial & professional occupations | 564 (42%) | 343 (43%) | 92 (32%) | 0.094 |
Intermediate occupations | 127 (9%) | 76 (10%) | 25 (9%) | ||
Small employers & own account workers | 128 (9%) | 88 (11%) | 38 (13%) | ||
Lower supervisory & technical occupations | 148 (11%) | 52 (6%) | 26 (9%) | ||
Semi-routine & routine occupations | 360 (27%) | 218 (27%) | 98 (35%) | ||
Never worked & long-term unemployed | 23 (2%) | 21 (3%) | 6 (2%) | ||
Mental Illness | No | 432 (93%) | 195 (91%) | 93 (88%) | 0.159 |
Yes | 31 (7%) | 19 (9%) | 13 (12%) |
Food Group | Sleep Duration on Weekdays Tertile | p-Value * | ||
---|---|---|---|---|
T1 | T2 | T3 | ||
n (%) | n (%) | n (%) | ||
Bacon & ham | 832 (61.6%) | 483 (60.5%) | 175 (61.4%) | 0.610 |
Beef, veal, &, dishes | 692 (51.3%) | 399 (50%) | 141 (49.5%) | 0.823 |
Beer, lager, cider, perry | 445 (33%) | 238 (29.8%) | 63 (22.1%) | 0.003 |
Biscuits | 858 (63.6%) | 504 (63.2%) | 169 (59.3%) | 0.276 |
Brown granary & wheatgerm bread | 481 (35.6%) | 263 (33%) | 80 (28.1%) | 0.020 |
Buns, cakes, pastries, fruit, pies | 698 (51.7%) | 388 (48.6%) | 125 (43.9%) | 0.260 |
Burgers & kebabs | 175 (13%) | 111 (13.9%) | 40 (14%) | 0.546 |
Butter | 454 (33.6%) | 268 (33.6%) | 104 (36.5%) | 0.865 |
Cheese | 822 (60.9%) | 500 (62.7%) | 163 (57.2%) | 0.897 |
Chicken & turkey dishes | 884 (65.5%) | 548 (68.7%) | 198 (69.5%) | 0.695 |
Chips, fried, roast, potatoes, &, potato | 858 (63.6%) | 497 (62.3%) | 192 (67.4%) | 0.140 |
Chocolate confectionery | 605 (44.8%) | 365 (45.7%) | 122 (42.8%) | 0.300 |
Coated chicken | 221 (16.4%) | 125 (15.7%) | 48 (16.8%) | 0.587 |
Crisps | 659 (48.8%) | 404 (50.6%) | 129 (45.3%) | 0.386 |
Dry weight beverages | 181 (13.4%) | 96 (12%) | 28 (9.8%) | 0.026 |
Eggs & egg dishes | 681 (50.4%) | 395 (49.5%) | 158 (55.4%) | 0.185 |
Fruit | 1021 (75.6%) | 633 (79.3%) | 196 (68.8%) | 0.040 |
Fruit juice | 483 (35.8%) | 314 (39.3%) | 94 (33%) | 0.222 |
High fibre breakfast cereals | 584 (43.3%) | 376 (47.1%) | 114 (40%) | 0.492 |
Ice-cream | 247 (18.3%) | 145 (18.2%) | 43 (15.1%) | 0.656 |
Lamb & dishes | 168 (12.4%) | 113 (14.2%) | 37 (13%) | 0.422 |
Liver dishes | 61 (4.5%) | 33 (4.1%) | 9 (3.2%) | 0.834 |
Low fat spread | 239 (17.7%) | 142 (17.8%) | 49 (17.2%) | 0.233 |
Low fat spread not PUFA † | 75 (5.6%) | 42 (5.3%) | 11 (3.9%) | 0.903 |
Meat pies & pastries | 316 (23.4%) | 183 (22.9%) | 71 (24.9%) | 0.735 |
Nuts & seeds | 241 (17.9%) | 153 (19.2%) | 38 (13.3%) | 0.019 |
Oily fish | 279 (20.7%) | 188 (23.6%) | 40 (14%) | 0.018 |
One percent milk | 28 (2.1%) | 14 (1.8%) | 9 (3.2%) | 0.125 |
Other bread | 127 (9.4%) | 88 (11%) | 24 (8.4%) | 0.898 |
Other breakfast cereals | 389 (28.8%) | 262 (32.8%) | 97 (34%) | 0.629 |
Other margarine fats & oils | 110 (8.1%) | 93 (11.7%) | 25 (8.8%) | 0.103 |
Other meat & meat products | 189 (14%) | 108 (13.5%) | 41 (14.4%) | 0.635 |
Other potatoes, potato, salads, dishes | 252 (18.7%) | 144 (18%) | 45 (15.8%) | 0.547 |
Other milk & cream | 910 (67.4%) | 543 (68%) | 195 (68.4%) | 0.942 |
Other white, fish, shellfish, fish, dishes | 442 (32.7%) | 292 (36.6%) | 96 (33.7%) | 0.457 |
Pasta, rice & other cereals | 1021 (75.6%) | 617 (77.3%) | 216 (75.8%) | 0.303 |
Pork & dishes | 259 (19.2%) | 151 (18.9%) | 61 (21.4%) | 0.201 |
Puddings | 301 (22.3%) | 170 (21.3%) | 51 (17.9%) | 0.091 |
PUFA margarine oils | 34 (2.5%) | 26 (3.3%) | 6 (2.1%) | 0.635 |
Reduced fat spread not PUFA | 606 (44.9%) | 361 (45.2%) | 131 (46%) | 0.671 |
Reduced fat spread PUFA | 190 (14.1%) | 103 (12.9%) | 37 (13%) | 0.643 |
Salad & other raw vegetables | 957 (70.9%) | 595 (74.6%) | 199 (69.8%) | 0.376 |
Sausages | 469 (34.7%) | 254 (31.8%) | 103 (36.1%) | 0.900 |
Savoury sauces, pickles & condiments | 1076 (79.7%) | 656 (82.2%) | 229 (80.4%) | 0.629 |
Semi skimmed milk | 970 (71.9%) | 604 (75.7%) | 196 (68.8%) | 0.435 |
Skimmed milk | 212 (15.7%) | 107 (13.4%) | 36 (12.6%) | 0.623 |
Soft drinks low calorie | 489 (36.2%) | 319 (40%) | 113 (39.6%) | 0.650 |
Soft drinks not low calorie | 659 (48.8%) | 396 (49.6%) | 150 (52.6%) | 0.657 |
Soup homemade & retail | 421 (31.2%) | 269 (33.7%) | 112 (39.3%) | 0.064 |
Spirits & liqueurs | 201 (14.9%) | 105 (13.2%) | 27 (9.5%) | 0.063 |
Sugar confectionery | 196 (14.5%) | 123 (15.4%) | 33 (11.6%) | 0.813 |
Sugars, preserves & sweet spreads | 839 (62.1%) | 512 (64.2%) | 169 (59.3%) | 0.313 |
Tea, coffee & water | 1325 (98.1%) | 786 (98.5%) | 280 (98.2%) | 0.529 |
Vegetables not raw | 1200 (88.9%) | 719 (90.1%) | 248 (87%) | 0.226 |
White bread | 1069 (79.2%) | 632 (79.2%) | 230 (80.7%) | 0.328 |
White fish, coated or fried | 276 (20.4%) | 177 (22.2%) | 71 (24.9%) | 0.027 |
Wholemeal bread | 478 (35.4%) | 301 (37.7%) | 97 (34%) | 0.094 |
Whole milk | 268 (19.9%) | 144 (18%) | 76 (26.7%) | 0.329 |
Wine | 431 (31.9%) | 274 (34.3%) | 80 (28.1%) | 0.161 |
Yogurt, fromage frais & dairy dessert | 504 (37.3%) | 321 (40.2%) | 98 (34.4%) | 0.354 |
Model | Parameter | Coefficient | Lower CI | Upper CI | p-Value * | |
---|---|---|---|---|---|---|
Crude | Sleep Weekday | T1 | −0.07 | −0.33 | 0.19 | 0.595 |
R2 = 0.012 | Sleep Weekday | T2 (Reference) | 0.00 | |||
Sleep Weekday | T3 | −0.60 | −0.95 | −0.26 | 0.001 | |
Sleep Weekend | T1 | −0.17 | −0.42 | 0.09 | 0.207 | |
Sleep Weekend | T2 (Reference) | 0.00 | ||||
Sleep Weekend | T3 | −0.09 | −0.38 | 0.21 | 0.553 | |
Intercept | 0.29 | 0.10 | 0.49 | 0.004 | ||
Model 1 † | Sleep Weekday | T1 | −0.12 | −0.36 | 0.12 | 0.325 |
R2 = 0.18 | Sleep Weekday | T2 (Reference) | 0.00 | |||
Sleep Weekday | T3 | −0.48 | −0.82 | −0.15 | 0.005 | |
Sleep Weekend | T1 | −0.10 | −0.33 | 0.13 | 0.395 | |
Sleep Weekend | T2 (Reference) | 0.00 | ||||
Sleep Weekend | T3 | 0.10 | −0.18 | 0.38 | 0.473 | |
Sex | women vs. men | 0.63 | 0.46 | 0.80 | <0.001 | |
Ethnicity | non-white vs. white | 0.40 | 0.15 | 0.64 | 0.002 | |
Age | (years) | 0.04 | 0.04 | 0.05 | <0.001 | |
Total Energy Intake | (MJ) | 0.19 | 0.15 | 0.24 | <0.001 | |
Intercept | −3.42 | −3.93 | −2.91 | <0.001 | ||
Model 2 ‡ | Sleep Weekday | T1 | −0.12 | −0.35 | 0.11 | 0.301 |
R2 = 0.28 | Sleep Weekday | T2 (Reference) | 0.00 | |||
Sleep Weekday | T3 | −0.45 | −0.78 | −0.12 | 0.007 | |
Sleep Weekend | T1 | −0.04 | −0.26 | 0.18 | 0.729 | |
Sleep Weekend | T2 (Reference) | 0.00 | ||||
Sleep Weekend | T3 | 0.17 | −0.10 | 0.44 | 0.215 | |
Sex | women vs. men | 0.57 | 0.40 | 0.73 | <0.001 | |
Ethnicity | non-white vs. white | 0.34 | 0.10 | 0.59 | 0.006 | |
Smoking status | Ex-regular cigarette smoker | 0.71 | 0.47 | 0.95 | <0.001 | |
Never smoker | 0.81 | 0.61 | 1.01 | <0.001 | ||
Socioeconomic Status | Q1 | 0.00 | ||||
Q2 | −0.34 | −0.60 | −0.08 | 0.010 | ||
Q3 | −0.38 | −0.65 | −0.10 | 0.007 | ||
Q4 | −0.24 | −0.52 | 0.04 | 0.093 | ||
Q5 | −0.64 | −0.84 | −0.44 | <0.001 | ||
Q6 | 0.17 | −0.42 | 0.75 | 0.579 | ||
Age | (years) | 0.04 | 0.04 | 0.05 | <0.001 | |
BMI | (kg/m2) | −0.02 | −0.04 | −0.01 | 0.001 | |
Total Energy Intake | (MJ) | 0.17 | 0.13 | 0.22 | <0.001 | |
Intercept | −2.94 | −3.59 | −2.28 | <0.001 | ||
Complete-cases model § | Sleep Weekday | T1 | −0.12 | −0.35 | 0.11 | 0.304 |
Sleep Weekday | T2 (Reference) | |||||
R2 = 0.29 | Sleep Weekday | T3 | −0.41 | −0.77 | −0.06 | 0.021 |
Sleep Weekend | T1 | −0.04 | −0.26 | 0.18 | 0.742 | |
Sleep Weekend | T2 (Reference) | |||||
Sleep Weekend | T3 | 0.18 | −0.10 | 0.45 | 0.199 | |
Sex | women vs. men | 0.52 | 0.35 | 0.69 | 0 | |
Ethnicity | non-white vs. white | 0.33 | 0.13 | 0.54 | 0.001 | |
Smoking status | Ex-regular cigarette smoker | 0.68 | 0.42 | 0.94 | <0.001 | |
Never smoker | 0.77 | 0.55 | 0.99 | <0.001 | ||
Socioeconomic Status (NS-SEC) | Q1 | |||||
Q2 | −0.34 | −0.62 | −0.07 | 0.014 | ||
Q3 | −0.39 | −0.67 | −0.11 | 0.007 | ||
Q4 | −0.21 | −0.52 | 0.09 | 0.175 | ||
Q5 | −0.69 | −0.90 | −0.49 | <0.001 | ||
Q6 | 0.09 | −0.54 | 0.71 | 0.785 | ||
Age (years) | 0.04 | 0.04 | 0.05 | <0.001 | ||
BMI | (kg/m2) | −0.02 | −0.04 | −0.01 | <0.001 | |
Total Energy Intake | (MJ) | 0.18 | 0.13 | 0.22 | <0.001 | |
Intercept | −2.91 | −3.58 | −2.24 | <0.001 |
Model | Parameter | Coefficient | Lower CI | Upper CI | p-Value * | |
---|---|---|---|---|---|---|
Crude Model | Social jetlag | 0.12 | 0.04 | 0.20 | 0.002 | |
R2 = 0.01 | Social jetlag squared | −0.04 | −0.06 | −0.01 | 0.002 | |
Intercept | 0.11 | 0.01 | 0.21 | 0.036 | ||
Model 1 † | Social jetlag | 0.12 | 0.04 | 0.19 | 0.003 | |
R2 = 0.19 | Social jetlag squared | −0.04 | −0.05 | −0.02 | <0.001 | |
Sex | women vs. men | 0.64 | 0.46 | 0.81 | <0.001 | |
Ethnicity | non-white vs. white | 0.37 | 0.12 | 0.63 | 0.004 | |
Age | (years) | 0.04 | 0.03 | 0.05 | <0.001 | |
Total Energy Intake | (MJ) | 0.21 | 0.16 | 0.25 | <0.001 | |
Constant | −3.59 | −4.07 | −3.11 | <0.001 | ||
Model 2 ‡ | Social jetlag | 0.11 | 0.03 | 0.18 | 0.005 | |
R2 = 0.29 | Social jetlag squared | −0.03 | −0.04 | −0.01 | 0.005 | |
Sex | women vs. men | 0.57 | 0.41 | 0.73 | <0.001 | |
Ethnicity | non-white vs. white | 0.32 | 0.08 | 0.57 | 0.011 | |
Smoking status | Ex-regular cigarette smoker | 0.73 | 0.48 | 0.97 | <0.001 | |
Never smoker | 0.81 | 0.60 | 1.01 | <0.001 | ||
Socioeconomic Status | Q1 | 0.00 | ||||
(NS-SEC) | Q2 | −0.35 | −0.61 | −0.08 | 0.011 | |
Q3 | −0.37 | −0.64 | −0.11 | 0.006 | ||
Q4 | −0.28 | −0.55 | 0.00 | 0.050 | ||
Q5 | −0.61 | −0.81 | −0.42 | <0.001 | ||
Q6 | 0.17 | −0.42 | 0.77 | 0.564 | ||
Age | (years) | 0.04 | 0.03 | 0.05 | <0.001 | |
BMI | (kg/m2) | −0.02 | −0.04 | −0.01 | 0.001 | |
Total Energy Intake | (MJ) | 0.18 | 0.14 | 0.22 | <0.001 | |
Intercept | −3.05 | −3.67 | −2.43 | <0.001 | ||
Complete-cases § | Social jetlag | 0.11 | 0.03 | 0.19 | 0.005 | |
R2 = 0.29 | Social jetlag squared | −0.03 | −0.05 | −0.01 | 0.002 | |
Sex | women vs. men | 0.52 | 0.35 | 0.69 | <0.001 | |
Ethnicity | non-white vs. white | 0.31 | 0.10 | 0.52 | 0.004 | |
Smoking status | Ex-regular cigarette smoker | 0.70 | 0.44 | 0.95 | <0.001 | |
Never smoker | 0.76 | 0.55 | 0.98 | <0.001 | ||
Socioeconomic Status | Q1 | |||||
Q2 | −0.34 | −0.63 | −0.06 | 0.017 | ||
Q3 | −0.39 | −0.66 | −0.11 | 0.006 | ||
Q4 | −0.25 | −0.55 | 0.05 | 0.103 | ||
Q5 | −0.65 | −0.86 | −0.45 | <0.001 | ||
Q6 | 0.09 | −0.55 | 0.72 | 0.787 | ||
Age | (years) | 0.04 | 0.03 | 0.05 | <0.001 | |
BMI | (kg/m2) | −0.02 | −0.04 | −0.01 | <0.001 | |
Total Energy Intake | (MJ) | 0.19 | 0.14 | 0.23 | <0.001 | |
Intercept | −3.01 | −3.66 | −2.36 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almoosawi, S.; Palla, L.; Walshe, I.; Vingeliene, S.; Ellis, J.G. Long Sleep Duration and Social Jetlag Are Associated Inversely with a Healthy Dietary Pattern in Adults: Results from the UK National Diet and Nutrition Survey Rolling Programme Y1–4. Nutrients 2018, 10, 1131. https://doi.org/10.3390/nu10091131
Almoosawi S, Palla L, Walshe I, Vingeliene S, Ellis JG. Long Sleep Duration and Social Jetlag Are Associated Inversely with a Healthy Dietary Pattern in Adults: Results from the UK National Diet and Nutrition Survey Rolling Programme Y1–4. Nutrients. 2018; 10(9):1131. https://doi.org/10.3390/nu10091131
Chicago/Turabian StyleAlmoosawi, Suzana, Luigi Palla, Ian Walshe, Snieguole Vingeliene, and Jason G. Ellis. 2018. "Long Sleep Duration and Social Jetlag Are Associated Inversely with a Healthy Dietary Pattern in Adults: Results from the UK National Diet and Nutrition Survey Rolling Programme Y1–4" Nutrients 10, no. 9: 1131. https://doi.org/10.3390/nu10091131
APA StyleAlmoosawi, S., Palla, L., Walshe, I., Vingeliene, S., & Ellis, J. G. (2018). Long Sleep Duration and Social Jetlag Are Associated Inversely with a Healthy Dietary Pattern in Adults: Results from the UK National Diet and Nutrition Survey Rolling Programme Y1–4. Nutrients, 10(9), 1131. https://doi.org/10.3390/nu10091131