Bioavailability of Vitamin B12 from Dairy Products Using a Pig Model
Abstract
1. Introduction
2. Methods
3. Initial Analysis and Selection of Dairy Products
4. Preliminary Animal Trial
5. Description of Treatments
6. Experimental Animals and Palatability Test
7. Surgery
8. Post-Operatory Procedures and Experimental Days
9. Sample Handling and Analyses
10. Calculations and Statistical Analysis
11. Results
12. Discussion
13. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, D.R.; Specker, B.L.; Ho, M.L.; Norman, E.J. Vitamin B12 status in a macrobiotic community. Am. J. Clin. Nutr. 1991, 53, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L.; Rich, S.; Rosenberg, I.H.; Jacques, P.; Dallal, G.; Wilson, P.W.; Selhub, J. Plasma vitamin B12 concentrations relate to intake source in the Framingham offspring study. Am. J. Clin. Nutr. 2000, 71, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzoglou, A.; Smith, A.D.; Nurk, E.; Berstad, P.; Drevon, C.A.; Ueland, P.M.; Vollset, S.E.; Tell, G.S.; Refsum, H. Dietary sources of vitamin B12 and their association with plasma vitamin B12 concentrations in the general population: The Hordaland Homocysteine Study. Am. J. Clin. Nutr. 2009, 89, 1078–1087. [Google Scholar] [CrossRef] [PubMed]
- Matte, J.J.; Guay, F.; Christiane, L. Bioavailability of vitamin B12 in cows’ milk. Brit. J. Nutr. 2012, 107, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Farquharson, J.; Adams, J.F. The forms of vitamin B12 in foods. Br. J. Nutr. 1976, 36, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Ball, G.F.M. Vitamins in Foods: Analysis, Bioavailability, and Stability; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Gardner, N.; Champagne, C.P. Production of Propionibacterium shermanii biomass and vitamin B12 on spent media. J. Appl. Microbiol. 2005, 99, 1236–1245. [Google Scholar] [CrossRef] [PubMed]
- Arkbage, K.; Witthoft, C.; Fondén, R.; Jägerstad, M. Retention of vitamin B12 during manufacture of six fermented dairy products using a validated radio protein-binding assay. Int. Dairy J. 2003, 13, 101–109. [Google Scholar] [CrossRef]
- Canadian Council on Animal Care. Guide to the Care and Use of Experimental Animals; Canadian Council on Animal Care: Ottawa, ON, Canada, 2009. [Google Scholar]
- National Farm Animal Care Council. Code of Practice for the Care and Handling of Pigs; Agriculture Canada: Ottawa, ON, Canada, 2014.
- Martens, J.-H.; Barg, H.; Warren, M.J.; Jahn, D. Microbial production of vitamin B12. Appl. Microbiol. Biotechnol. 2002, 58, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Matte, J.J.; Guay, F.; Le Floc’h, N.; Girard, C.L. Bioavailability of dietary cyanocobalamin (vitamin B12) in growing pigs. J. Anim. Sci. 2010, 88, 3936–3944. [Google Scholar] [CrossRef] [PubMed]
- Flohr, J.R.; DeRouchey, J.M.; Woodworth, J.C.; Tokach, M.D.; Goodband, R.D.; Dritz, S.S. A survey of current feeding regimens for vitamins and trace minerals in the US swine industry. J. Swine Health Prod. 2016, 24, 290–303. [Google Scholar]
- Hooda, S.; Matte, J.J.; Wilkinson, C.W.; Zijlstra, R.T. Technical note: An improved surgical model for the long-term studies of kinetics and quantification of nutrient absorption in swine. J. Anim. Sci. 2009, 87, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- Manet, L. Techniques usuelles de biologie clinique. In Hématologie; Editions Medicales Flammarion: Paris, France, 1969. [Google Scholar]
- Girard, C.L.; Lapierre, H.; Desrochers, A.; Benchaar, C.; Matte, J.J.; Rémond, D. Net flux of folates and vitamin B12 through the gastrointestinal tract and the liver of lactating dairy cows. Br. J. Nutr. 2001, 86, 707–715. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute. SAS/STAT User’s Guide; SAS Inst. Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Guilloteau, P.; Zabielski, R.; Hammon, H.M.; Metges, C.C. Nutritional programming of gastrointestinal tract development. Is pig a good model for man? Nutr. Res. Rev. 2010, 23, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Schneider, Z.; Stroinski, A. Comprehensive B12: Chemistry, Biochemistry, Nutrition, Ecology, Medicine; Walter de Gruyter: Berlin, Germany, 1987. [Google Scholar]
- Combs, G.F., Jr. The Vitamins: Fundamental Aspects in Nutrition and Health, 4th ed.; Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- Wardener, H.E.; He, F.; Macgregor, G.A. Plasma sodium and hypertension. Kidney Int. 2004, 66, 2454–2466. [Google Scholar] [CrossRef] [PubMed]
- Siregar, H.; Chou, C.C. Relative contribution of fat, protein, carbohydrate, and ethanol to intestinal hyperemia. Am. J. Physiol. 1982, 242, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.C.; Coatney, R.W. Nutrient-induced changes in intestinal blood flow in the dog. Br. Vet. J. 1994, 150, 423–437. [Google Scholar] [CrossRef]
- Greibe, E. Nutritional and biochemical aspects of cobalamin throughout life. In Vitamin B12: Advances and Insights; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Artegoitia, V.M.; De Veth, M.J.; Harte, F.; Ouellet, D.R.; Girard, C.L. Casein hydrolysate and whey proteins as excipients for cyancobalamin to increase intestinal absorption in the lactating dairy cow. J. Dairy Sci. 2015, 98, 8128–8132. [Google Scholar] [CrossRef] [PubMed]
- Burn-Murdoch, R.A.; Fisher, M.A.; Hunt, J.H. The slowing of gastric emptying by proteins in test meals. J. Physiol. 1978, 274, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Gizis, E.; Kim, Y.P.; Brunner, J.R.; Schweigert, B.S. Vitamin B12 content and binding capacity of cow’s milk proteins. J. Nutr. 1965, 87, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Dalziel, J.E.; Young, W.; McKenzie, C.M.; Haggarty, N.W.; Roy, N.C. Gastric emptying and gastrointestinal transit compared among native and hydrolyzed whey and casein milk proteins in an aged rat model. Nutrients 2017, 9, 1351. [Google Scholar] [CrossRef] [PubMed]
- Bender, D.A. Nutritional Biochemistry of the Vitamins; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Adams, J.F.; Ross, S.K.; Mervyn, L.; Boddy, K.; King, P. Absorption of cyanocobalamin, coenzyme B12, methylcobalamin, and hydroxocobalamin at different dose levels. Scand. J. Gastroenter. 1971, 6, 249–252. [Google Scholar] [CrossRef]
- Webb, B.H.; Johnson, A.H.; Alford, J.A. Fundamentals of Dairy Chemistry, 2nd ed.; Avi Publishing CO Inc.: Westport, MA, USA, 1974. [Google Scholar]
- Jalan, K.N.; Mahalanabis, D.; Maitra, T.K.; Agarwal, S.K. Gastric acid secretion rate and buffer content of the stomach after a rice and a wheat-based meal in normal subjects and patients with duodenal ulcer. Gut 1979, 20, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Fedosov, S.N.; Nexo, E.; Heegaard, C.W. Binding of aquocobalamin to bovine casein and its peptides via coordination to histidine residues. Int. Dairy J. 2018, 76, 30–39. [Google Scholar] [CrossRef]
- Rioux, L.E.; Turgeon, S.L. The ratio of casein to whey protein impacts yogurt digestion in vitro. Food Dig. 2012, 3, 25–35. [Google Scholar] [CrossRef]
- Richardson, B.C.; Pearce, K.N. The determination of plasmin in dairy products. J. Dairy Sci. Technol. 1981, 16, 209–220. [Google Scholar]
Item | Tofu | Swiss Cheese | Cheddar Cheese | Yogurt 2 |
---|---|---|---|---|
Composition | ||||
Dry matter, % | 34.60 | 62.40 | 52.90 | 12.70 (23.7) |
Protein, g/g | 0.17 | 0.27 | 0.23 | 0.06 (0.11) |
Fat, g/g | 0.05 | 0.27 | 0.33 | 0.02 (0.04) |
Sodium, mg/g | 0.10 | 5.33 | 5.00 | 0.49 (0.91) |
Vitamin B12, ng/g | 0.12 | 31.88 | 14.87 | 3.77 (6.79) |
Calculated provision per meal | ||||
Dry matter, g | 692.0 | 833.0 | 883.0 | 865.1 |
Protein, g | 340.0 | 380.6 | 384.1 | 401.5 |
Fat, g | 100.0 | 260.6 | 551.1 | 146.0 |
Sodium, g | 0.2 | 4.26 | 8.35 | 3.32 |
Vitamin B12, ng | 0.2 | 25.1 | 24.8 | 24.8 |
Item | Tofu | Swiss Cheese | Cheddar Cheese | Yogurt | Tofu + B12 | p Value |
---|---|---|---|---|---|---|
Arterial B12, ng/L | 173.2 ± 14.2 | 177.2 ± 13.0 | 145.4 ± 143.0 | 187.7 ± 15.2 | 194.6 ± 16.4 | 0.18 |
PDV plasma flow, L/min | 0.93 c ± 0.08 | 1.31 a ± 0.08 | 1.34 a ± 0.08 | 1.19 ab ± 0.09 | 1.06 bc ± 0.08 | 0.01 |
Porto-arterial difference, ng/L 1 | −1.36 b ± 1.56 | 1.58 ab ± 1.46 | 4.68 a ± 1.53 | −0.21 b ± 1.68 | 4.78 a ± 1.81 | 0.03 |
Net PDV flux of B12, ng/min 2,3 | −1.50 c ± 1.84 | 2.10 abc ± 1.73 | 5.99 a ± 1.81 | −0.31 bc ± 1.98 | 3.17 ab ± 2.14 | 0.06 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno Dalto, D.; Audet, I.; Girard, C.L.; Matte, J.-J. Bioavailability of Vitamin B12 from Dairy Products Using a Pig Model. Nutrients 2018, 10, 1134. https://doi.org/10.3390/nu10091134
Bueno Dalto D, Audet I, Girard CL, Matte J-J. Bioavailability of Vitamin B12 from Dairy Products Using a Pig Model. Nutrients. 2018; 10(9):1134. https://doi.org/10.3390/nu10091134
Chicago/Turabian StyleBueno Dalto, Danyel, Isabelle Audet, Christiane L. Girard, and Jean-Jacques Matte. 2018. "Bioavailability of Vitamin B12 from Dairy Products Using a Pig Model" Nutrients 10, no. 9: 1134. https://doi.org/10.3390/nu10091134
APA StyleBueno Dalto, D., Audet, I., Girard, C. L., & Matte, J.-J. (2018). Bioavailability of Vitamin B12 from Dairy Products Using a Pig Model. Nutrients, 10(9), 1134. https://doi.org/10.3390/nu10091134