Production, Absorption, and Blood Flow Dynamics of Short-Chain Fatty Acids Produced by Fermentation in Piglet Hindgut during the Suckling–Weaning Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Dissection and Sampling
2.3. Short Chain Fatty Acid Analysis by Ion-Exclusion High-Perfornance Liquid Chromatography
2.4. High-Sensitivity Detection of Short Chain Fatty Acid by Gas Chromatography-Mass Spectrometry
2.5. Gene Expression Analyses Using Real-Time Polymerase Chain Reaction
2.6. Statistical Analyses
3. Results
3.1. Concentrations of Short-Chain Fatty Acids in the Cecal Digesta
3.2. Concentrations of Short-Chain Fatty Acids in the Cecal Vein
3.3. Concentrations of Short-Chain Fatty Acids in the Portal Vein
3.4. Concentrations of Short-Chain Fatty Acids in the Abdominal Vein
3.5. Gene Expressions of SCFA Transporters and Occludin in the Cecal Mucosa
3.6. Correlation Analysis of Short-Chain Fatty Acids Concentration in the Cecal Vein
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Macfarlane, G.T.; Gibson, G.R. Microbiological aspects of the production of short-chain fatty acids in the large bowel. In Physiological and Clinical Aspects of Short-Chain Fatty Acids; Cummings, J.H., Rombeau, J.L., Sakata, T., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 87–105. ISBN 0521616131. [Google Scholar]
- Hume, I.D. Flow dynamics of digesta and colonic fermentation. In Physiological and Clinical Aspects of Short-Chain Fatty Acids; Cummings, J.H., Rombeau, J.L., Sakata, T., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 119–132. ISBN 0521616131. [Google Scholar]
- Engelhardt, W.V. Absorption of short-chain fatty acids from the large intestine. In Physiological and Clinical Aspects of Short-Chain Fatty Acids; Cummings, J.H., Rombeau, J.L., Sakata, T., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 149–170. ISBN 0521616131. [Google Scholar]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef] [PubMed]
- Scheppach, W. Effects of short-chain fatty acids on gut morphology and function. Gut 1994, 35, S35–S38. [Google Scholar] [CrossRef] [PubMed]
- Tsukahara, T.; Iwasaki, Y.; Nakayama, K.; Ushida, K. Stimulation of butyrate production in the large intestine of weaning piglets by dietary fructooligosaccharides and its influence on the histological variables of the large intestinal mucosa. J. Nutr. Sci. Vitaminol. 2003, 49, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.S.; Chambers, E.S.; Morrison, D.J.; Frost, G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int. J. Obes. 2015, 39, 1131–1338. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; de los Reyes-Gavilán, C.G.; Salazar, N. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Bode, L. Recent advances on structure, metabolism, and function of human milk oligosaccharides. J. Nutr. 2006, 136, 2127–2130. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.J. Composition of porcine milk. In The Neonatal Pig, Gastrointestinal Physiology and Nutrition; Xu, R.-J., Cranwell, P., Eds.; Nottingham University Press: Nottingham, UK, 2003; pp. 213–246. ISBN 1897676174. [Google Scholar]
- Lifschitz, C.H. Colonic short-chain fatty acids in infants and children. In Physiological and Clinical Aspects of Short-Chain Fatty Acids; Cummings, J.H., Rombeau, J.L., Sakata, T., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 525–535. ISBN 0521616131. [Google Scholar]
- Inoue, R.; Tsukahara, T.; Nakatani, M.; Okutani, M.; Nishibayashi, R.; Ogawa, S.; Harayama, T.; Nagino, T.; Hatanaka, H.; Fukuta, K.; et al. Weaning markedly affects transcriptome profiles and Peyer’s patch formation in piglet ileum. Front. Immunol. 2015, 6, 630. [Google Scholar] [CrossRef] [PubMed]
- Tsukahara, T.; Inoue, R.; Nakatani, M.; Fukuta, K.; Kishino, E.; Ito, T.; Ushida, K. Influence of weaning age on the villous height and disaccharidase activities in the porcine small intestine. Anim. Sci. J. 2016, 87, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.G.; Franklin, M.A.; Upchurch, W.G.; Chattin, S.E. Effect of weaning on ileal short-chain fatty acid concentrations in pigs. Nutr. Res. 1996, 16, 1689–1698. [Google Scholar] [CrossRef]
- Franklin, M.A.; Mathew, A.G.; Vickers, J.R.; Clift, R.A. Characterization of microbial populations and volatile fatty acid concentrations in the jejunum, ileum, and cecum of pigs weaned at 17 vs. 24 days of age. J. Anim. Sci. 2002, 80, 2904–2910. [Google Scholar] [CrossRef] [PubMed]
- Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Beers-Schreurs, H.M.G.; Nabuurs, M.J.A.; Vellenga, L.; Kalsbeek-van der Valk, H.J.; Wensing, T.; Breukink, H.J. Weaning and the weanling diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short-chain fatty acids in the large intestine and blood. J. Nutr. 1998, 128, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Tsukahara, T.; Matsukawa, N.; Tomonaga, S.; Inoue, R.; Ushida, K.; Ochiai, K. High-sensitivity detection of short-chain fatty acids in porcine ileal, cecal, portal and abdominal blood by gas chromatography-mass spectrometry. Anim. Sci. J. 2014, 85, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Ushida, K.; Yoshida, Y.; Tsukahara, T.; Watanabe, T.; Inoue, R. Oral administration of Enterococcus faecalis cell preparation improves villous atrophy after weaning through enhancement of growth factor expression in mice. Biomed. Res. 2010, 31, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Inoue, R.; Tsuruta, T.; Nojima, I.; Nakayama, K.; Tsukahara, T.; Yajima, T. Postnatal changes in the expression of genes for cryptdins1-6 and the role of luminal bacteria in cryptdin gene expression in mouse small intestine. FEMS Immunol. Med. Microbiol. 2008, 52, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Okutani, M.; Tsukahara, T.; Nakanishi, N.; Kato, Y.; Fukuta, K.; Romero-Perez, G.A.; Ushida, K.; Inoue, R. Gene expression profiles of porcine T cells are characteristically distinct in colostrum compared with blood. Am. J. Vet. Res. 2016, 77, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Breves, G.; Stück, K. Short-chain fatty acids in the hindgut. In Physiological and Clinical Aspects of Short-Chain Fatty Acids; Cummings, J.H., Rombeau, J.L., Sakata, T., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 73–85. ISBN 0521616131. [Google Scholar]
- Noblet, J.; Etienne, M. Effect of energy level in lactating sows on yield and composition of milk and nutrient balance of piglets. J. Anim. Sci. 1986, 63, 1888–1896. [Google Scholar] [CrossRef] [PubMed]
- Inoue, R.; Tsukahara, T.; Nakanishi, N.; Ushida, K. Development of the intestinal microbiota in the piglet. J. Gen. Appl. Microbiol. 2005, 51, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Castillo, M.; Martin-Orue, S.M.; Nofrarias, M.; Manzanilla, E.G.; Gasa, J. Changes in caecal microbiota and mucosal morphology of weaned pigs. Vet. Microbiol. 2007, 124, 239–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livesey, G.; Elia, M. Short-chain fatty acids as an energy source in the colon: Metabolism and clinical implications. In Physiological and Clinical Aspects of Short-Chain Fatty Acids; Cummings, J.H., Rombeau, J.L., Sakata, T., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 427–481. ISBN 0521616131. [Google Scholar]
- Young, G.P.; Gibson, P.R. Butyrate and the human cancer cell. In Physiological and Clinical Aspects of Short-Chain Fatty Acids; Cummings, J.H., Rombeau, J.L., Sakata, T., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 319–335. ISBN 0521616131. [Google Scholar]
- Bloemen, J.G.; Venema, K.; van de Poll, M.C.; Olde Damink, S.W.; Buurman, W.A.; Dejong, C.H. Short chain fatty acids exchange across the gut and the liver in humans measured at surgery. Clin. Nutr. 2009, 28, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Guo, Y. Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. Br. J. Nutr. 2009, 102, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.H.; Xiao, K.; Luan, Z.S.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, T.; Takebe, K.; Kato, I.; Karaki, S.; Kuwahara, A. Cellular expression of monocarboxylate transporters (MCT) in the digestive tract of the mouse, rat, and humans, with special reference to slc5a8. Biomed. Res. 2006, 27, 243–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remesy, C.; Demigne, C.; Morand, C. Metabolism of short-chain fatty acid in the liver. In Physiological and Clinical Aspects of Short-Chain Fatty Acids; Cummings, J.H., Rombeau, J.L., Sakata, T., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 171–190. ISBN 0521616131. [Google Scholar]
Age (Days) | Nutrition Period | Mean Body Weight (kg) | Age at Weaning (Days) | Identification Code |
---|---|---|---|---|
7 | Suckling | 3.7 | – | S7 |
14 | Suckling | 5.3 | – | S14 |
21 | Suckling | 7.0 | – | S21 |
28 | Suckling | 10.4 | – | S28 |
28 | Weaned | 9.0 | 21 | W21p7 |
35 | Weaned | 13.1 | 21 | W21p14 |
35 | Weaned | 12.4 | 28 | W28p7 |
42 | Weaned | 15.9 | 28 | W28p14 |
Gene | Sequences (5′-3′) | Accession No. | Probe Number 1 |
---|---|---|---|
Solute carrier family 16 member 1 (SLC16A1; MCT1) | F: tttgacactctaggcaatcagg R: gatgagagagaacagttatcggaag | NM_001128445 | 14 |
Solute carrier family 5 member 8 (SLC5A8; SMCT1) | F: tgtttgctttggggattttg R: caattccgacccacaaagaa | NM_001291414 | 20 |
Occludin | F: ggctaggggtctaaactgagc R: ctcagtgggttgaaggatctg | NM_001163647 | 5 |
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) | F: gtgacactcactcttctacctttga R: tgacaaagtggtcgttgagg | AF017079 | 45 |
SCFA in the Cecal Vein | Other Variables | Correlation Coefficient | Probability 1 |
---|---|---|---|
Acetate | Cecal digesta | 0.56 | <0.001 |
Portal vein | 0.46 | 0.002 | |
Abdominal vein | 0.13 | 0.39 | |
mct1 | 0.44 | 0.003 | |
smct1 | −0.02 | 0.88 | |
occludin | −0.43 | 0.003 | |
Propionate | Cecal digesta | 0.40 | 0.01 |
Portal vein | 0.15 | 0.31 | |
Abdominal vein | −0.01 | 0.96 | |
mct1 | 0.48 | 0.001 | |
smct1 | 0.26 | 0.08 | |
occludin | −0.40 | 0.01 | |
n-Butyrate | Cecal digesta | 0.20 | 0.19 |
Portal vein | −0.02 | 0.88 | |
Abdominal vein | −0.01 | 0.96 | |
mct1 | 0.40 | 0.01 | |
smct1 | 0.16 | 0.28 | |
occludin | −0.38 | 0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakatani, M.; Inoue, R.; Tomonaga, S.; Fukuta, K.; Tsukahara, T. Production, Absorption, and Blood Flow Dynamics of Short-Chain Fatty Acids Produced by Fermentation in Piglet Hindgut during the Suckling–Weaning Period. Nutrients 2018, 10, 1220. https://doi.org/10.3390/nu10091220
Nakatani M, Inoue R, Tomonaga S, Fukuta K, Tsukahara T. Production, Absorption, and Blood Flow Dynamics of Short-Chain Fatty Acids Produced by Fermentation in Piglet Hindgut during the Suckling–Weaning Period. Nutrients. 2018; 10(9):1220. https://doi.org/10.3390/nu10091220
Chicago/Turabian StyleNakatani, Masako, Ryo Inoue, Shozo Tomonaga, Kikuto Fukuta, and Takamitsu Tsukahara. 2018. "Production, Absorption, and Blood Flow Dynamics of Short-Chain Fatty Acids Produced by Fermentation in Piglet Hindgut during the Suckling–Weaning Period" Nutrients 10, no. 9: 1220. https://doi.org/10.3390/nu10091220
APA StyleNakatani, M., Inoue, R., Tomonaga, S., Fukuta, K., & Tsukahara, T. (2018). Production, Absorption, and Blood Flow Dynamics of Short-Chain Fatty Acids Produced by Fermentation in Piglet Hindgut during the Suckling–Weaning Period. Nutrients, 10(9), 1220. https://doi.org/10.3390/nu10091220