Effect of Adherence to a Mediterranean Diet and Olive Oil Intake during Pregnancy on Risk of Small for Gestational Age Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cases
2.2. Controls
2.3. Data Collection
2.4. Dietary Assessment
2.5. Mediterranean Diet Pattern Adherence Indexes
- Predimed, which was developed in Spain [30]. This index considers: Vegetables, legumes, fruit, fish, red and processed meat, chicken or poultry, olive oil for cooking, consumption of olive oil, butter-margarine, carbonated and/or sweetened beverages, commercial pastries, nuts and meals with sofrito (traditional sauce of tomatoes, garlic, onion, or pepper in olive oil). The total score ranged from 0 (minimum adherence) to 14 (maximum adherence). The index is configured by 12 questions on food consumption frequency and 2 questions on food intake habits considered characteristic of the Spanish Mediterranean diet. Each question was scored as 0 or 1. One point was given for using olive oil as the principal source of fat for cooking, preferring white meat over red meat, or for consuming: (1) 4 or more tablespoons (1 tablespoon = 13.5 g) of olive oil/day (including that used in frying, salads, meals eaten away from home, etc.); (2) 2 or more servings of vegetables/day; (3) 3 or more pieces of fruit/day; (4) <1 serving of red meat or sausages/day; (5) <1 serving of animal fat/day; (6) <1 cup (1 cup = 100 ml) of sugar-sweetened beverages/day; (7) 7 or more servings of red wine/week; (8) 3 or more servings of pulses/week (some seeds which can be cooked and eaten are called pulses, for example peas, beans, and lentils.); (9) 3 or more servings of fish/week; (10) fewer than 2 commercial pastries/week; (11) 3 or more servings of nuts/week; or (12) 2 or more servings/week of a dish with a traditional sauce of tomatoes, garlic, onion, or leeks sautéed in olive oil. If the condition was not met, 0 points were recorded for the category.
- Mediterranean diet score, developed by Trichopoulou et al in Greece [31]. This index considers the following food groups: Vegetables, legumes, fruit, fish, cereals, meat, dairy products, and monounsaturated/saturated fats ratio. The median for each food group was estimated using the control group. For consumption of each typical Mediterranean food higher than the median of the consumption distribution in the control group, a person received 1 point; consumption lower received zero points. For consumption of non-Mediterranean foods lower than the median 1 point was awarded; consumption higher than the median received zero points. The total score ranged from 0 (minimum adherence to a traditional Mediterranean dietary pattern) to 8 (maximum adherence).
- Dietary score, developed by Panagiotakos et al in Greece [32]. To estimate this index the following groups of food are considered: vegetables, legumes, fruits, fish, whole grains, potatoes, olive oil, poultry, dairy products with fat, and red meat. The total score ranged from 0 (minimum adherence) to 55 (maximum adherence), with higher values indicating higher adherence to a Mediterranean diet. Vegetables, legumes (e.g., peas, beans), fruits, fish, whole grains, and potatoes were categorized on the basis of servings/month and specifically as: 0 = never; 1 point = 1–4 servings/month; 2 points = 5–8; 3 points = 9–12; 4 points = 13–18; and 5 points = ≥18 servings/month. Consumption of red meat, poultry, and full fat dairy products (e.g., milk cheese, yogurt) was categorized as: 0 = ≥18 servings/month; 1 point = 13–17 servings/month; 2 points = 9–12; 3 points = 5–8; 4 points = 1–4; and 5 points = never. Consumption of olive oil was categorized according to the number of times it was used in a week and specifically as: 0 = never; 1 = rare; 2 = ≤1 times/weekly; 3 = 2 times/weekly; 4 = 3–6 and 5 = daily.
2.6. Statistical Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- OECD. OECD Family Database. CO1.3: Low Birth Weight. Available online: http://www.oecd.org/els/family/CO_1_3_Low_birth_weight.pdf (accessed on 15 January 2018).
- Grisaru-Granovsky, S.; Reichman, B.; Lerner-Geva, L.; Boyko, V.; Hammerman, C.; Samueloff, A.; Schimmel, M.S.; Israel Neonatal Network. Mortality and morbidity in preterm small-for-gestational-age infants: A population-based study. Am. J. Obstet. Gynecol. 2012, 206, 150.e1–150.e7. [Google Scholar] [CrossRef] [PubMed]
- Chatzi, L.; Garcia, R.; Roumeliotaki, T.; Basterrechea, M.; Begiristain, H.; Iñiguez, C.; Vioque, J.; Kogevinas, M.; Sunyer, J.; INMA study group; et al. Mediterranean diet adherence during pregnancy and risk of wheeze and eczema in the first year of life: INMA (Spain) and RHEA (Greece) mother-child cohort studies. Br. J. Nutr. 2013, 110, 2058–2068. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, S.; Steegers-Theunissen, R.P.; Vujkovic, M.; den Breeijen, H.; Russcher, H.; Lindemans, J.; Mackenbach, J.; Hofman, A.; Lesaffre, E.E.; Jaddoe, V.V.; et al. The mediterranean diet and fetal size parameters: The Generation R Study. Br. J. Nutr. 2012, 108, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.M.; Faconti, L.; Taddei, S.; Ghiadoni, L. Birth weight and arterial hypertension. Curr. Opin. Cardiol. 2015, 30, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Werner, E.F.; Savitz, D.A.; Janevic, T.M.; Ehsanipoor, R.M.; Thung, S.F.; Funai, E.F.; Lipkind, H.S. Mode of delivery and neonatal outcomes in preterm, small-for-gestational-age newborns. Obstet. Gynecol. 2012, 120, 560–564. [Google Scholar] [CrossRef] [PubMed]
- McCowan, L.; Horgan, R.P. Risk factors for small for gestational age infants. Best Pract. Res. Clin. Obstet. Gynaecol. 2009, 23, 779–793. [Google Scholar] [CrossRef] [PubMed]
- Delnord, M.; Blondel, B.; Zeitlin, J. What contributes to disparities in the preterm birth rate in European countries? Curr. Opin. Obstet. Gynecol. 2015, 27, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.L.; Regnault, T.R. Nutrition in Pregnancy: Optimising Maternal Diet and Fetal Adaptations to Altered Nutrient Supply. Nutrients 2016, 8, 342. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.M.; Stettler, N.; Smith, K.M.; Reiss, R. Associations of consumption of fruits and vegetables during pregnancy with infant birth weight or small for gestational age births: A systematic review of the literature. Int. J. Womens Health 2014, 6, 899–912. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.F.; Chia, A.R.; Colega, M.; Tint, M.T.; Aris, I.M.; Chong, Y.S.; Gluckman, P.; Godfrey, K.M.; Kwek, K.; Saw, S.M.; et al. Maternal Protein Intake during Pregnancy Is Not Associated with Offspring Birth Weight in a Multiethnic Asian Population. J. Nutr. 2015, 145, 1303–1310. [Google Scholar] [PubMed] [Green Version]
- Grieger, J.A.; Grzeskowiak, L.E.; Clifton, V.L. Preconception dietary patterns in human pregnancies are associated with preterm delivery. J. Nutr. 2014, 144, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.S.; Chen, Q.Z.; He, J.R.; Wei, X.L.; Lu, J.H.; Li, S.H.; Wen, X.X.; Chan, F.F.; Chen, N.N.; Qiu, L.; et al. Maternal Dietary Patterns and Fetal Growth: A Large Prospective Cohort Study in China. Nutrients 2016, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- Okubo, H.; Miyake, Y.; Sasaki, S.; Tanaka, K.; Murakami, K.; Hirota, Y.; Osaka Maternal and Child Health Study Group; Kanzaki, H.; Kitada, M.; Horikoshi, Y.; et al. Maternal dietary patterns in pregnancy and fetal growth in Japan: The Osaka Maternal and Child Health Study. Br. J. Nutr. 2012, 107, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Bernal, C.L.; Rebagliato, M.; Iñiguez, C.; Vioque, J.; Navarrete-Muñoz, E.M.; Murcia, M.; Bolumar, F.; Marco, A.; Ballester, F. Diet quality in early pregnancy and its effects on fetal growth outcomes: The Infancia y Medio Ambiente (Childhood and Environment) Mother and Child Cohort Study in Spain. Am. J. Clin. Nutr. 2010, 91, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.M.; Wall, C.; Becroft, D.M.; Robinson, E.; Wild, C.J.; Mitchell, E.A. Maternal dietary patterns in pregnancy and the association with small-for-gestational-age infants. Br. J. Nutr. 2010, 103, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- Kourlaba, G.; Panagiotakos, D.B. Dietary quality indices and human health: A review. Maturitas 2009, 62, 1–8. [Google Scholar] [CrossRef] [PubMed]
- US Department of Agriculture; US Department of Health and Human Services. Dietary Nutrition and Your Health: Dietary Guidelines for Americans 2015–2020, 8th ed.; US Government Printing Office: Washington, DC, USA, 2015.
- Nnam, N.M. Improving maternal nutrition for better pregnancy outcomes. Proc. Nutr Soc. 2015, 74, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Gresham, E.; Byles, J.E.; Bisquera, A.; Hur, A.J. Effects of dietary interventions on neonatal and infant outcomes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 1298–1321. [Google Scholar] [CrossRef] [PubMed]
- Poon, A.K.; Yeung, E.; Boghossian, N.; Albert, P.S.; Zhang, C. Maternal Dietary Patterns during Third Trimester in Association with Birthweight Characteristics and Early Infant Growth. Scientifica (Cairo) 2013, 2013, 786409. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Beltrán, P.; Melchor Marcos, J.C.; Rodríguez-Alarcón Gómez, J.; Linares Uribe, A.; Fernández-Llebrez del Rey, L.; Barbazán Cortés, M.J.; Ocerin Bengoa, I.; Aranguren Dúo, G. The fetal development curves of newborn infants in the Hospital de Cruces (Vizcaya). I. Weight. An. Esp. Pediatr. 1996, 44, 50–54. [Google Scholar] [PubMed]
- Álvarez-Dardet, C.; Alonso, J.; Domingo, A.; Regidor, E. La Medición de la Clase Social en Ciencias de la Salud, Informe de un Grupo de Trabajo de la Sociedad Española de Epidemiología; SEG Editores: Barcelona, Spain, 1995. [Google Scholar]
- Townsend, P.; Davidson, N. Inequalities in Health, the Black Report; Penguin: London, UK, 1992. [Google Scholar]
- Kessner, D.; Singer, J.; Kalk, C.; Schlesinger, E. Infant Death: An Analysis by Maternal Risk and Health Care, Contrasts in Health Status; Institute of Medicine, National Academy of Sciences: Washington, DC, USA, 1973; pp. 1–59. [Google Scholar]
- Martin-Moreno, J.M.; Boyle, P.; Gorgojo, L.; Maisonneuve, P.; Fernandez-Rodriguez, J.C.; Salvini, S.; Willett, W.C. Development and validation of a food frequency questionnaire in Spain. Int. J. Epidemiol. 1993, 22, 512–519. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente-Arrillaga, C.; Ruiz, Z.V.; Bes-Rastrollo, M.; Sampson, L.; Martinez-Gonzalez, M.A. Reproducibility of an FFQ validated in Spain. Public Health Nutr. 2010, 13, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Mataix Verdú, J. Tabla de Composición de Alimentos Españoles (Spanish Food Composition Tables), 4th ed.; Universidad de Granada: Granada, Spain, 2003. [Google Scholar]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composición de Alimentos (Food Composition Tables), 7th ed.; Pirámide: Madrid, Spain, 2003. [Google Scholar]
- Martínez-González, M.A.; Fernández-Jarne, E.; Serrano-Martínez, M.; Wright, M.; Gomez-Gracia, E. Development of a short dietary intake questionnaire for the quantitative estimation of adherence to a cardioprotective Mediterranean diet. Eur. J. Clin. Nutr. 2004, 58, 1550–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.B.; Pitsavos, C.; Arvaniti, F.; Stefanadis, C. Adherence to the Mediterranean food pattern predicts the prevalence of hypertension, hypercholesterolemia, diabetes and obesity, among healthy adults; the accuracy of the MedDietScore. Prev. Med. 2007, 44, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Stampfer, M. Implications of total energy intake for epidemiologic analyses. In Nutritional Epidemiology, 2nd ed.; Willett, W., Ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Sun, G.W.; Shook, T.L.; Kay, G.L. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J. Clin. Epidemiol. 1996, 49, 907–916. [Google Scholar] [CrossRef]
- Maldonado, G.; Greenland, S. Simulation study of confounder-selection strategies. Am. J. Epidemiol. 1993, 138, 923–936. [Google Scholar] [CrossRef] [PubMed]
- Mickey, R.M.; Greenland, S. The impact of confounder selection criteria on effect estimation. Am. J. Epidemiol. 1989, 129, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Chango, A.; Pogribny, I.P. Considering maternal dietary modulators for epigenetic regulation and programming of the fetal epigenome. Nutrients 2015, 7, 2748–2770. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, V.K.; Orozova-Bekkevold, I.M.; Mikkelsen, T.B.; Wolff, S.; Olsen, S.F. Major dietary patterns in pregnancy and fetal growth. Eur. J. Clin. Nutr. 2008, 62, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Gómez Roig, M.D.; Mazarico, E.; Ferrero, S.; Montejo, R.; Ibáñez, L.; Grima, F.; Vela, A. Differences in dietary and lifestyle habits between pregnant women with small fetuses and appropriate-for-gestational-age fetuses. J. Obstet. Gynaecol. Res. 2017, 43, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Ricci, E.; Chiaffarino, F.; Cipriani, S.; Malvezzi, M.; Parazzini, F. Diet in pregnancy and risk of small for gestational agebirth: Results from a retrospective case-control study in Italy. Matern. Child Nutr. 2010, 6, 297–305. [Google Scholar] [CrossRef] [PubMed]
- US National Institutes of Health (NIH). Clinical Trials Registry. Available online: https://clinicaltrials.gov (accessed on 6 May 2018).
- Assaf-Balut, C.; García de la Torre, N.; Durán, A.; Fuentes, M.; Bordiú, E.; Del Valle, L.; Familiar, C.; Ortolá, A.; Jiménez, I.; Herraiz, M.A.; et al. A Mediterranean diet with additional extra virgin olive oil and pistachios reduces the incidence of gestational diabetes mellitus (GDM): A randomized controlled trial: The St. Carlos GDM prevention study. PLoS ONE 2017, 12, e0185873. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F. Retraction and Republication: Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N. Engl. J. Med. 2018, 378, 2441–2442. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.N.; Koohdani, F.; Shidfar, F.; Eslaminejad, M.B.; Izadi, P.; Eshraghian, M.; Shafieineek, L.; Tohidinik, H. Effects of Maternal Isocaloric Diet Containing Different Amounts of Soy Oil and Extra Virgin Olive Oil on Weight, Serum Glucose, and Lipid Profile of Female Mice Offspring. Iran. J. Med. Sci. 2017, 42, 161–169. [Google Scholar] [PubMed]
- Schwingshackl, L.; Christoph, M.; Hoffmann, G. Effects of Olive Oil on Markers of Inflammation and Endothelial Function—A Systematic Review and Meta-Analysis. Nutrients 2015, 7, 7651–7675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imamura, F.; Micha, R.; Wu, J.H.; de Oliveira Otto, M.C.; Otite, F.O.; Abioye, A.I.; Mozaffarian, D. Effects of Saturated Fat, Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Systematic Review and Meta-analysis of Randomised Controlled Feeding Trials. PLoS Med. 2016, 13, e1002087. [Google Scholar] [CrossRef] [PubMed]
- Crespo, M.C.; Tomé-Carneiro, J.; Dávalos, A.; Visioli, F. Pharma-Nutritional Properties of Olive Oil Phenols. Transfer of New Findings to Human Nutrition. Foods 2018, 7, e90. [Google Scholar] [CrossRef] [PubMed]
Variable | Cases (n = 518) n (%) | Controls (n = 518) n (%) | p-Value | ||
---|---|---|---|---|---|
Marital status | 0.036 | ||||
Single | 37 | (7.1) | 42 | (8.1) | |
Stable couple | 161 | (31.1) | 124 | (23.9) | |
Married | 320 | (61.8) | 352 | (68.0) | |
Education level | 0.084 | ||||
Primary | 112 | (21.6) | 93 | (17.9) | |
High school, not finished | 42 | (8.1) | 28 | (5.4) | |
High school | 185 | (35.7) | 190 | (36.7) | |
University | 179 | (34.6) | 207 | (40.0) | |
Income (Euros/month) | 0.009 | ||||
<1000 | 146 | (28.2) | 145 | (24.1) | |
1000–1999 | 245 | (47.3) | 218 | (42.1) | |
2000–2999 | 99 | (19.1) | 129 | (24.9) | |
≥3000 | 28 | (5.4) | 46 | (8.9) | |
Kessner index (prenatal care) | 0.737 | ||||
Adequate | 259 | (50.0) | 253 | (48.8) | |
Intermediate | 185 | (35.7) | 182 | (35.2) | |
Inadequate | 74 | (14.3) | 83 | (16.0) | |
Smoking during pregnancy | 149 | (28.8) | 80 | (15.4) | <0.001 |
Previous preterm/low birthweight Newborn | 64 | (12.4) | 46 | (5.0) | <0.001 |
Weight gain during pregnancy (g/week), mean (SD) | 278 | (121) | 310 | (114) | <0.001 |
Pre-pregnancy Body Mass Index (BMI), mean (SD) | 23.1 | (4.5) | 23.9 | (4.1) | <0.001 |
Total energy intake (kcal/day), mean (SD) | 2547 | (561) | 2493 | (538) | 0.118 |
Alcohol intake (g/week), mean (SD) | 4.2 | (18.5) | 3.1 | (15.2) | 0.312 |
Predimed Item | Cases (n = 518) n (%) | Controls (n = 518) n (%) | cOR (95% CI) | aOR (95% CI) |
---|---|---|---|---|
Olive oil used as the main fat for cooking | 502 (96.9) | 508 (98.1) | 0.60 (0.26–1.37) | 0.73 (0.30–1.74) |
Olive oil: 4+ tablespoons a day | 68 (13.3) | 57 (11.0) | 1.22 (0.84–1.77) | 1.12 (0.75–1.68) |
Vegetables: 2+ servings a day | 279 (53.9) | 275 (53.1) | 1.03 (0.81–1.81) | 1.05 (0.81–1.36) |
Fruit: 3+ servings a day | 78 (15.1) | 95 (18.3) | 0.79 (0.57–1.10) | 0.86 (0.61–1.22) |
Red meat/sausages: <1 a day | 103 (19.9) | 116 (22.4) | 0.85 (0.63–1.16) | 0.90 (0.65–1.27) |
Butter/margarine/cream: <1 serving a day | 429 (82.8) | 444 (85.7) | 0.81 (0.58–1.13) | 0.88 (0.61–1.27) |
Soft drinks (sweet, carbonated): <1 a day | 247 (47.7) | 262 (50.6) | 0.88 (0.69–1.14) | 0.92 (0.70–1.21) |
Legumes: 3+ servings a week | 264 (51.0) | 281 (54.3) | 0.88 (0.69–1.12) | 0.80 (0.61–1.04) |
Fish: 3+ servings a week | 409 (79.0) | 434 (83.8) | 0.72 (0.52–0.99) * | 0.75 (0.53–1.07) |
Cakes and pastries (not done at home): <2 units a week | 141 (27.2) | 170 (32.8) | 0.78 (0.60–1.01) | 0.88 (0.65–1.19) |
Nuts: 3+ servings a week | 123 (23.8) | 108 (20.9) | 1.20 (0.82–1.62) | 1.16 (0.83–1.61) |
White meat more frequently than red meat | 16 (3.1) | 17 (3.3) | 0.94 (0.46–1.90) | 1.01 (0.47–2.21) |
Predimed Score | Cases n (%) | Controls n (%) | cOR (95% CI) | aOR (95% CI) |
---|---|---|---|---|
All SGA | ||||
(n = 518) | (n = 518) | |||
≤3 | 86 (16.6) | 58 (11.2) | 1 (reference) | 1 (reference) |
4 | 85 (16.4) | 87 (16.8) | 0.66 (0.43–1.04) | 0.81 (0.50–1.31) |
5 | 139 (26.8) | 144 (27.8) | 0.67 (0.44–0.99) * | 0.75 (0.49–1.15) |
6 | 107 (20.7) | 119 (23) | 0.61 (0.40–0.93) * | 0.67 (0.43–1.05) |
>6 | 101 (19.5) | 110 (21.2) | 0.63 (0.41–0.96) * | 0.77 (0.49–1.21) |
p for trend | 0.152 | 0.482 | ||
≤3 vs. ≥4 | 0.65 (0.45–0.92) * | 0.74 (0.51–1.08) | ||
Moderate SGA, Percentiles 6–10 | ||||
(n = 323) | (n = 323) | |||
≤3 | 55 (17.0) | 35 (10.8) | 1 (reference) | 1 (reference) |
4 | 55 (17.0) | 54 (16.7) | 0.66 (0.37–1.18) | 0.72 (0.38–1.35) |
5 | 80 (24.8) | 95 (29.4) | 0.55 (0.33–0.92) * | 0.51 (0.29–0.90) * |
6 | 76 (23.5) | 75 (23.2) | 0.66 (0.38–1.12) | 0.61 (0.34–1.09) |
>6 | 57 (17.7) | 64 (19.8) | 0.59 (0.34–1.01) | 0.64 (0.35–1.17) |
p for trend | 0.212 | 0.446 | ||
≤3 vs. ≥4 | 0.60 (0.38–0.94) * | 0.59 (0.38–0.98) * | ||
Severe SGA, Percentiles ≤5 | ||||
(n = 195) | (n = 195) | |||
≤3 | 31 (15.9) | 23 (11.8) | 1 (reference) | 1 (reference) |
4 | 30 (15.4) | 33 (16.9) | 0.70 (0.34–1.42) | 0.93 (0.43–2.02) |
5 | 59 (30.3) | 49 (25.1) | 0.97 (0.50–1.87) | 1.21 (0.59–2.50) |
6 | 31 (15.9) | 44 (22.6) | 0.53 (0.26–1.06) | 0.64 (0.31–1.35) |
>6 | 44 (22.6) | 46 (23.6) | 0.70 (0.36–1.37) | 0.92 (0.44–1.95) |
p for trend | 0.810 | 0.461 | ||
≤3 vs. ≥4 | 0.72 (0.41–1.27) | 0.91 (0.49–1.68) |
Cases n (%) | Controls n (%) | cOR (95% CI) | aOR (95% CI) | |
---|---|---|---|---|
Trichopoulou Score | ||||
All SGA | ||||
(n = 518) | (n = 518) | |||
≤2 | 109 (21.0) | 74 (14.3) | 1 (reference) | 1 (reference) |
3–4 | 203 (39.2) | 228 (44.0) | 0.59 (0.41–0.85) * | 0.53 (0.36–0.78) * |
5–6 | 161 (31.1) | 180 (34.8) | 0.59 (0.40–0.86) * | 0.59 (0.39–0.88) * |
>6 | 45 (8.7) | 36 (7.0) | 0.84 (0.50–1.43) | 0.92 (0.51–1.64) |
p for trend | 0.289 | 0.612 | ||
≤2 vs. ≥3 | 0.62 (0.42–0.86) * | 0.58 (0.41–0.84) * | ||
Moderate SGA, Percentiles 6–10 | ||||
(n = 323) | (n = 323) | |||
≤2 | 71 (22.0) | 43 (13.3) | 1 (reference) | 1 (reference) |
3–4 | 135 (41.8) | 143 (44.3) | 0.52 (0.33–0.82) * | 0.55 (0.34–0.89) * |
5–6 | 95 (29.4) | 116 (35.9) | 0.43 (0.27–0.69) * | 0.47 (0.28–0.78) * |
>6 | 22 (6.8) | 21 (6.5) | 0.73 (0.37–1.46) | 0.73 (0.35–1.52) |
p for trend | 0.040 | 0.075 | ||
≤2 vs. ≥3 | 0.53 (0.34–0.82) * | 0.49 (0.31–0.79) * | ||
Severe SGA, Percentiles ≤5 | ||||
(n = 195) | (n = 195) | |||
≤ 2 | 38 (19.4) | 31 (15.9) | 1 (reference) | 1 (reference) |
3–4 | 68 (34.9) | 85 (43.6) | 0.62 (0.34–1.12) | 0.57 (0.29–1.10) |
5–6 | 66 (33.9) | 64 (32.8) | 0.84 (0.46–1.54) | 0.77 (0.40–1.51) |
>6 | 23 (11.8) | 15 (7.7) | 1.23 (0.57–2.68) | 1.44 (0.60–3.43) |
p for trend | 0.437 | 0.302 | ||
≤2 vs. ≥3 | 0.77 (0.45–1.32) | 0.74 (0.41–1.33) | ||
Panagiotakos Score | ||||
All SGA | ||||
(n = 518) | (n = 518) | |||
≤ 26 | 129 (24.9) | 116 (22.4) | 1 (reference) | 1 (reference) |
27–28 | 107 (20.7) | 103 (19.9) | 0.93 (0.63–1.35) | 0.93 (0.62–1.45) |
29–30 | 109 (21.0) | 120 (23.2) | 0.80 (0.56–1.16) | 0.77 (0.51–1.15) |
31–32 | 95 (18.3) | 77 (14.9) | 1.09 (0.73–1.63) | 1.05 (0.67–1.65) |
> 32 | 78 (15.1) | 102 (19.7) | 0.68 (0.46–1.02) | 0.67 (0.43–1.05) |
p for trend | 0.078 | 0.097 | ||
≤28 vs. ≥29 | 0.87 (0.68–1.12) | 0.84 (0.64–1.11) | ||
Moderate SGA, Percentiles 6–10 | ||||
(n = 323) | (n = 323) | |||
≤26 | 91 (28.2) | 69 (21.4) | 1 (reference) | 1 (reference) |
27–28 | 71 (22.0) | 58 (18.0) | 0.91 (0.56–1.48) | 1.00 (0.58–1.22) |
29–30 | 59 (18.3) | 83 (25.7) | 0.52 (0.32–0.84) * | 0.49 (0.29–0.85) * |
31–32 | 56 (17.3) | 45 (13.9) | 0.90 (0.53–1.52) | 0.85 (0.46–1.57) |
>32 | 46 (14.2) | 68 (21.0) | 0.48 (0.28–0.80) * | 0.47 (0.26–0.86) * |
p for trend | 0.008 * | 0.015 * | ||
≤28 vs. ≥29 | 0.62 (0.45–0.87) * | 0.57 (0.39–0.83) * | ||
Severe SGA, Percentiles ≤5 | ||||
(n = 195) | (n = 195) | |||
≤26 | 38 (19.5) | 47 (24.1) | 1 (reference) | 1 (reference) |
27–28 | 36 (18.5) | 45 (23.1) | 1.00 (0.54–1.87) | 0.79 (0.39–1.59) |
29–30 | 50 (25.6) | 37 (19.0) | 1.63 (0.89–2.98) | 1.53 (0.79–2.97) |
31–32 | 39 (20.0) | 32 (16.4) | 1.52 (0.80–2.90) | 1.42 (0.69–2.90) |
>32 | 32 (16.4) | 34 (17.4) | 1.22 (0.64–2.33) | 1.06 (0.51–2.23) |
p for trend | 0.610 | 0.770 | ||
≤28 vs. ≥29 | 1.33 (0.81–2.20) | 1.19 (0.69–2.07) |
OO Daily Intake (g/day) | Cases n (%) | Controls n (%) | cOR (95% CI) | aOR (95% CI) |
---|---|---|---|---|
All SGA | ||||
<5 | 71 (13.7) | 42 (8.1) | 1 (reference) | 1 (reference) |
5–9.9 | 60 (11.6) | 70 (13.5) | 0.48 (0.28–0.82) * | 0.52 (0.29–0.93) * |
10–19.9 | 150 (29.0) | 159 (30.7) | 0.53 (0.34–0.85) * | 0.55 (0.33–0.89) * |
20–29.9 | 149 (28.8) | 170 (32.8) | 0.49 (0.31–0.78) * | 0.49 (0.30–0.81) * |
≥30 | 88 (17.0) | 77 (14.9) | 0.64 (0.39–1.06) | 0.61 (0.51–1.05) |
p for trend | 0.735 | 0.961 | ||
<5 vs. ≥5 | 0.53 (0.35–0.81) * | 0.53 (0.34–0.85) * | ||
Moderate SGA Percentiles 6–10 | ||||
<5 | 45 (13.9) | 26 (8.1) | 1 (reference) | 1 (reference) |
5–9.9 | 42 (13.0) | 47 (14.5) | 0.48 (0.25–0.94) * | 0.55 (0.26–1.16) |
10–19.9 | 103 (31.9) | 95 (29.4) | 0.60 (0.34–1.07) | 0.59 (0.31–1.12) |
20–29.9 | 85 (26.3) | 114 (35.0) | 0.41 (0.23–0.74) * | 0.41 (0.21–0.78) * |
≥30 | 48 (14.9) | 42 (13.0) | 0.64 (0.34–1.22) | 0.62 (0.31–1.25) |
p for trend | 0.964 | 0.868 | ||
<5 vs. ≥5 | 0.53 (0.31–0.89) * | 0.53 (0.30–0.96) * | ||
Severe SGA, Percentiles ≤5 | ||||
<5 | 26 (13.3) | 16 (8.2) | 1 (reference) | 1 (reference) |
5–9.9 | 18 (9.2) | 23 (11.8) | 0.47 (0.19–1.16) | 0.46 (0.17–1.22) |
10–19.9 | 47 (24.1) | 64 (32.8) | 0.44 (0.20–0.94) * | 0.44 (0.19–0.99) * |
20–29.9 | 64 (32.8) | 57 (29.2) | 0.68 (0.32–1.46) | 0.61 (0.26–1.34) |
≥30 | 40 (20.5) | 35 (18.0) | 0.66 (0.29–1.50) | 0.59 (0.24–1.44) |
p for trend | 0.568 | 0.853 | ||
<5 vs. ≥5 | 0.55 (0.27–1.10) | 0.51 (0.24–1.07) |
Cases n (%) | Controls n (%) | cOR (95% CI) | aOR (95% CI) | |
---|---|---|---|---|
MUFA | ||||
Q1 (≤37.96 g/day) | 99 (19.1) | 104 (20.1) | 1 (reference) | 1 (reference) |
Q2 (37.97–43.09) | 102 (19.7) | 104 (20.1) | 1.04 (0.70–1.53) | 1.11 (0.73–1.69) |
Q3 (43.10–47.18) | 99 (19.1) | 103 (19.9) | 1.01 (0.69–1.49) | 1.14 (0.75–1.74) |
Q4 (47.19–53.98) | 110 (21.2) | 104 (20.1) | 1.11 (0.49–1.66) | 1.12 (0.72–1.73) |
Q5 (>53.98) | 108 (20.9) | 103 (19.9) | 1.10 (0.66–1.61) | 1.03 (0.69–1.55) |
p for trend | 0.710 | 0.731 | ||
PUFA | ||||
Q1 (≤13.32 g/day) | 91 (17.6) | 104 (20.1) | 1 (reference) | 1 (reference) |
Q2 (13.33–15.39) | 88 (17.0) | 104 (20.1) | 0.98 (0.65–1.49) | 1.03 (0.66–1.60) |
Q3 (15.40–17.30) | 106 (20.5) | 103 (19.9) | 1.19 (0.81–1.75) | 1.20 (0.79–1.82) |
Q4 (17.31–20.12) | 116 (21.2) | 104 (20.1) | 1.31 (0.87–1.96) | 1.25 (0.81–1.95) |
Q5 (>20.12) | 117 (22.6) | 103 (19.9) | 1.34 (0.88–2.01) | 1.19 (0.77–1.84) |
p for trend | 0.269 | 0.736 | ||
Saturated | ||||
Q1 (≤29.90 g/day) | 107 (20.7) | 104 (20.1) | 1 (reference) | 1 (reference) |
Q2 (29.91–33.80) | 99 (19.1) | 104 (20.1) | 0.91 (0.62–1.35) | 0.92 (0.61–1.39) |
Q3 (33.81–36.91) | 92 (17.8) | 103 (19.9) | 0.87 (0.59–1.29) | 0.91 (0.59–1.41) |
Q4 (36.92–40.79) | 93 (18.0) | 104 (20.1) | 0.88 (0.59–1.31) | 0.81 (0.53–1.25) |
Q5 (>40.79) | 127 (24.5) | 103 (19.9) | 1.21 (0.82–1.79) | 1.05 (0.69–1.59) |
p for trend | 0.067 | 0.372 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Galiano, J.M.; Olmedo-Requena, R.; Barrios-Rodríguez, R.; Amezcua-Prieto, C.; Bueno-Cavanillas, A.; Salcedo-Bellido, I.; Jimenez-Moleon, J.J.; Delgado-Rodríguez, M. Effect of Adherence to a Mediterranean Diet and Olive Oil Intake during Pregnancy on Risk of Small for Gestational Age Infants. Nutrients 2018, 10, 1234. https://doi.org/10.3390/nu10091234
Martínez-Galiano JM, Olmedo-Requena R, Barrios-Rodríguez R, Amezcua-Prieto C, Bueno-Cavanillas A, Salcedo-Bellido I, Jimenez-Moleon JJ, Delgado-Rodríguez M. Effect of Adherence to a Mediterranean Diet and Olive Oil Intake during Pregnancy on Risk of Small for Gestational Age Infants. Nutrients. 2018; 10(9):1234. https://doi.org/10.3390/nu10091234
Chicago/Turabian StyleMartínez-Galiano, Juan Miguel, Rocío Olmedo-Requena, Rocío Barrios-Rodríguez, Carmen Amezcua-Prieto, Aurora Bueno-Cavanillas, Inmaculada Salcedo-Bellido, Jose J. Jimenez-Moleon, and Miguel Delgado-Rodríguez. 2018. "Effect of Adherence to a Mediterranean Diet and Olive Oil Intake during Pregnancy on Risk of Small for Gestational Age Infants" Nutrients 10, no. 9: 1234. https://doi.org/10.3390/nu10091234
APA StyleMartínez-Galiano, J. M., Olmedo-Requena, R., Barrios-Rodríguez, R., Amezcua-Prieto, C., Bueno-Cavanillas, A., Salcedo-Bellido, I., Jimenez-Moleon, J. J., & Delgado-Rodríguez, M. (2018). Effect of Adherence to a Mediterranean Diet and Olive Oil Intake during Pregnancy on Risk of Small for Gestational Age Infants. Nutrients, 10(9), 1234. https://doi.org/10.3390/nu10091234