Association of Dairy Product Consumption with Metabolic and Inflammatory Biomarkers in Adolescents: A Cross-Sectional Analysis from the LabMed Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Anthropometric Measurements
2.3. Pubertal Stage
2.4. Blood Sampling
2.5. Cardiorespiratory Fitness
2.6. Socioeconomic Status
2.7. Smoking
2.8. Dietary Intake
2.9. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scrivo, R.; Vasile, M.; Bartosiewicz, I.; Valesini, G. Inflammation as common soil of the multifactorial diseases. Autoimmun. Rev. 2011, 10, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A. Obesity, metalic syndrome, and type 2 diabetes: Inflammatory basis of glucose metabolic disorders. Nutr. Rev. 2007, 65, S152–S156. [Google Scholar] [CrossRef] [PubMed]
- Germolec, D.R.; Shipkowski, K.A.; Frawley, R.P.; Evans, E. Markers of Inflammation. Methods Mol. Biol. 2018, 1803, 57–79. [Google Scholar] [CrossRef]
- Wilson, P.W.F.; Nam, B.H.; Pencina, M.; D’Agostino, R.B.; Benjamin, E.J.; O’Donnell, C.J. C-reactive protein and risk of cardiovascular disease in men and women from the Framingham Heart Study. Arch. Intern. Med. 2005, 165, 2473–2478. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Rifai, N.; Stampfer, M.J.; Hennekens, C.H. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000, 101, 1767–1772. [Google Scholar] [CrossRef] [PubMed]
- Poole, E.M.; Lee, I.M.; Ridker, P.M.; Buring, J.E.; Hankinson, S.E.; Tworoger, S.S. A Prospective Study of Circulating C-Reactive Protein, Interleukin-6, and Tumor Necrosis Factor Receptor 2 Levels and Risk of Ovarian Cancer. Am. J. Epidemiol. 2013, 178, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Tamakoshi, K.; Yatsuya, H.; Kondo, T.; Hori, Y.; Ishikawa, M.; Zhang, H.; Murata, C.; Otsuka, R.; Zhu, S.; Toyoshima, H. The metabolic syndrome is associated with elevated circulating C-reactive protein in healthy reference range, a systemic low-grade inflammatory state. Int. J. Obes. 2003, 27, 443–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, M.; Delvin, E.E.; Paradis, G.; O’Loughlin, J.; Hanley, J.A.; Levy, E. C-reactive protein and features of the metabolic syndrome in a population-based sample of children and adolescents. Clin. Chem. 2004, 50, 1762–1768. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, A.; van Hoek, M.; Sijbrands, E.J.G.; Stijnen, T.; Hofman, A.; Witteman, J.C.M. Risk of type 2 diabetes attributable to C-reactlve protein and other risk factors. Diabetes Care 2007, 30, 2695–2699. [Google Scholar] [CrossRef]
- Pradhan, A.D.; Manson, J.E.; Rifai, N.; Buring, J.E.; Ridker, P.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA J. Am. Med. Assoc. 2001, 286, 327–334. [Google Scholar] [CrossRef]
- Giugliano, D.; Ceriello, A.; Esposito, K. The effects of diet on inflammation—Emphasis on the metabolic syndrome. J. Am. Coll. Cardiol. 2006, 48, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Ahluwalia, N.; Brouns, F.; Buetler, T.; Clement, K.; Cunningham, K.; Esposito, K.; Jonsson, L.S.; Kolb, H.; Lansink, M.; et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br. J. Nutr. 2011, 106, S1–S78. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.S.; Rudkowska, I. Dairy nutrients and their effect on inflammatory profile in molecular studies. Mol. Nutr. Food Res. 2015, 59, 1249–1263. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, A.; Danesi, F.; Dardevet, D.; Dupont, D.; Fernandez, A.S.; Gille, D.; Nunes Dos Santos, C.; Pinto, P.; Re, R.; Remond, D.; et al. Dairy products and inflammation: A review of the clinical evidence. Crit. Rev. Food Sci. Nutr. 2017, 57, 2497–2525. [Google Scholar] [CrossRef] [PubMed]
- Ulven, S.M.; Holven, K.B.; Gil, A.; Rangel-Huerta, O.D. Milk and Dairy Product Consumption and Inflammatory Biomarkers: An Updated Systematic Review of Randomized Clinical Trials. Adv. Nutr. 2019, 10, S239–S250. [Google Scholar] [CrossRef] [PubMed]
- Saneei, P.; Hashemipour, M.; Kelishadi, R.; Esmaillzadeh, A. The Dietary Approaches to Stop Hypertension (DASH) Diet Affects Inflammation in Childhood Metabolic Syndrome: A Randomized Cross-Over Clinical Trial. Ann. Nutr. Metab. 2014, 64, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Healthy Eating Plate dishes out sound diet advice. More specific than MyPlate, it pinpoints the healthiest food choices. Harv. Heart Lett. 2011, 22, 6.
- Wang, H.; Steffen, L.M.; Vessby, B.; Basu, S.; Steinberger, J.; Moran, A.; Jacobs, D.R., Jr.; Hong, C.P.; Sinaiko, A.R. Obesity modifies the relations between serum markers of dairy fats and inflammation and oxidative stress among adolescents. Obesity 2011, 19, 2404–2410. [Google Scholar] [CrossRef]
- Unamuno, X.; Gomez-Ambrosi, J.; Rodriguez, A.; Becerril, S.; Fruhbeck, G.; Catalan, V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur. J. Clin. Investig. 2018, 48, e12997. [Google Scholar] [CrossRef] [Green Version]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Abdullah, A.R.; Hasan, H.A.; Raigangar, V.L. Analysis of the Relationship of Leptin, High-Sensitivity C-Reactive Protein, Adiponectin, Insulin, and Uric Acid to Metabolic Syndrome in Lean, Overweight, and Obese Young Females. Metab. Syndr. Relat. D 2009, 7, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Valle, M.; Martos, R.; Gascon, F.; Canete, R.; Zafra, M.A.; Morales, R. Low-grade systemic inflammation, hypoadiponectinemia and a high concentration of leptin are present in very young obese children, and correlate with metabolic syndrome. Diabetes Metab. 2005, 31, 55–62. [Google Scholar] [CrossRef]
- Agostinis-Sobrinho, C.; Ruiz, J.R.; Moreira, C.; Abreu, S.; Lopes, L.; Oliveira-Santos, J.; Mota, J.; Santos, R. Ability of Nontraditional Risk Factors and Inflammatory Biomarkers for Cardiovascular Disease to Identify High Cardiometabolic Risk in Adolescents: Results from the LabMed Physical Activity Study. J. Adolesc. Health 2018, 62, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.; McQuillan, B.M.; Thompson, P.L.; Beilby, J.P. Circulating adiponectin levels associate with inflammatory markers, insulin resistance and metabolic syndrome independent of obesity. Int. J. Obes. 2008, 32, 772–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, K.C.; Lue, B.H.; Yen, R.F.; Shen, C.G.; Ho, S.R.; Tai, T.Y.; Yang, W.S. Plasma adiponectin levels and metabolic factors in nondiabetic adolescents. Obes. Res. 2004, 12, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Pyrzak, B.; Ruminska, M.; Popko, K.; Demkow, U. Adiponectin as a Biomarker of the Metabolic Syndrome in Children and Adolescents. Eur. J. Med. Res. 2010, 15, 147–151. [Google Scholar] [PubMed]
- Agostinis-Sobrinho, C.; Santos, R.; Moreira, C.; Abreu, S.; Lopes, L.; Oliveira-Santos, J.; Rosario, R.; Povoas, S.; Mota, J. Association between serum adiponectin levels and muscular fitness in Portuguese adolescents: LabMed Physical Activity Study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Lohman, T.G.; Roche, A.F.R.M. Anthropometric Standardization Reference Manual; Human Kinetics Book: Champaign, IL, USA, 1998. [Google Scholar]
- World Health Organization. WHO AnthroPlus for Personal Computers Manual: Software for Assessing Growth of the World’s Children and Adolescents; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Org. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Tanner, J.M.; Whitehouse, R.H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef]
- Leger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 m shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Currie, C.; Molcho, M.; Boyce, W.; Holstein, B.; Torsheim, T.; Richter, M. Researching health inequalities in adolescents: The development of the Health Behaviour in School-Aged Children (HBSC) family affluence scale. Soc. Sci. Med. 2008, 66, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Controlling and Monitoring the Tobacco Epidemic; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- Lopes, C.; Aro, A.; Azevedo, A.; Ramos, E.; Barros, H. Intake and adipose tissue composition of fatty acids and risk of myocardial infarction in a male Portuguese community sample. J. Am. Diet. Assoc. 2007, 107, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Willet, W. Nutritional Epidemiology; Willett, W.C., Ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Silva, D.; Rego, C.; Guerra, A. Characterization of food habits and comparative study between two methods of food assessment in adolescents. Revista Alimentação Humana 2004, 10, 33–40. [Google Scholar]
- Instituto Nacional de Saúde Dr. Ricardo Jorge. Tabela da Composição de Alimentos; Instituto Nacional de Saúde Dr. Ricardo Jorge: Lisbon, Portugal, 2010. [Google Scholar]
- Hatloy, A.; Torheim, L.E.; Oshaug, A. Food variety—A good indicator of nutritional adequacy of the diet? A case study from an urban area in Mali, West Africa. Eur. J. Clin. Nutr. 1998, 52, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Steyn, N.P.; Nel, J.H.; Nantel, G.; Kennedy, G.; Labadarios, D. Food variety and dietary diversity scores in children: Are they good indicators of dietary adequacy? Public Health Nutr. 2006, 9, 644–650. [Google Scholar] [CrossRef]
- Steyn, N.P.; Nel, J.; Labadarios, D.; Maunder, E.M.; Kruger, H.S. Which dietary diversity indicator is best to assess micronutrient adequacy in children 1 to 9 y? Nutrition 2014, 30, 55–60. [Google Scholar] [CrossRef]
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar]
- Black, A.E. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1119–1130. [Google Scholar] [CrossRef] [Green Version]
- Almeida-de-Souza, J.; Santos, R.; Lopes, L.; Abreu, S.; Moreira, C.; Padrao, P.; Mota, J.; Moreira, P. Associations between fruit and vegetable variety and low-grade inflammation in Portuguese adolescents from LabMed Physical Activity Study. Eur. J. Nutr. 2018, 57, 2055–2068. [Google Scholar] [CrossRef]
- Lindsey, J.K.; Jones, B. Choosing among generalized linear models applied to medical data. Stat. Med. 1998, 17, 59–68. [Google Scholar] [CrossRef]
- Labonte, M.E.; Couture, P.; Richard, C.; Desroches, S.; Lamarche, B. Impact of dairy products on biomarkers of inflammation: A systematic review of randomized controlled nutritional intervention studies in overweight and obese adults. Am. J. Clin. Nutr. 2013, 97, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.B.; Pitsavos, C.H.; Zampelas, A.D.; Chrysohoou, C.A.; Stefanadis, C.I. Dairy products consumption is associated with decreased levels of inflammatory markers related to cardiovascular disease in apparently healthy adults: The ATTICA study. J. Am. Coll. Nutr. 2010, 29, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Moschonis, G.; van den Heuvel, E.G.; Mavrogianni, C.; Singh-Povel, C.M.; Leotsinidis, M.; Manios, Y. Associations of Milk Consumption and Vitamin B2 and Beta12 Derived from Milk with Fitness, Anthropometric and Biochemical Indices in Children. The Healthy Growth Study. Nutrients 2016, 8, 634. [Google Scholar] [CrossRef] [PubMed]
- Gadotti, T.N.; Norde, M.M.; Rogero, M.M.; Fisberg, M.; Fisberg, R.M.; Oki, E.; Martini, L.A. Dairy consumption and inflammatory profile: A cross-sectional population-based study, Sao Paulo, Brazil. Nutrition 2018, 48, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.; Fernandez-Navarro, T.; Arboleya, S.; de Los Reyes-Gavilan, C.G.; Salazar, N.; Gueimonde, M. Fermented Dairy Foods: Impact on Intestinal Microbiota and Health-Linked Biomarkers. Front. Microbiol. 2019, 10, 1046. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.S.; Rudkowska, I. Macro components in dairy and their effects on inflammation parameters: Preclinical studies. In Nutrients in Dairy and Their Implications for Health and Disease; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Cheng, X.; Gao, D.; Chen, B.; Mao, X. Endotoxin-Binding Peptides Derived from Casein Glycomacropeptide Inhibit Lipopolysaccharide-Stimulated Inflammatory Responses via Blockade of NF-kappaB activation in macrophages. Nutrients 2015, 7, 3119–3137. [Google Scholar] [CrossRef]
- Marcone, S.; Haughton, K.; Simpson, P.J.; Belton, O.; Fitzgerald, D.J. Milk-derived bioactive peptides inhibit human endothelial-monocyte interactions via PPAR-gamma dependent regulation of NF-kappaB. J. Inflamm. 2015, 12, 1. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Cheng, P.C.; Pan, T.M. The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl. Microbiol. Biotechnol. 2012, 96, 853–862. [Google Scholar] [CrossRef]
- Ramos, E. Health Determinants in Porto Adolescents—The Epiteen Cohort; University of Porto: Porto, Portugal, 2006. [Google Scholar]
- Martinez-Gomez, D.; Gomez-Martinez, S.; Ruiz, J.R.; Diaz, L.E.; Ortega, F.B.; Widhalm, K.; Cuenca-Garcia, M.; Manios, Y.; De Vriendt, T.; Molnar, D.; et al. Objectively-measured and self-reported physical activity and fitness in relation to inflammatory markers in European adolescents: The HELENA Study. Atherosclerosis 2012, 221, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Agostinis-Sobrinho, C.; Moreira, C.; Abreu, S.; Lopes, L.; Oliveira-Santos, J.; Steene-Johannessen, J.; Mota, J.; Santos, R. Serum Adiponectin Levels and Cardiorespiratory Fitness in Nonoverweight and Overweight Portuguese Adolescents: The LabMed Physical Activity Study. Pediatr. Exerc. Sci. 2017, 29, 237–244. [Google Scholar] [CrossRef] [Green Version]
Total (n = 412) | Non-Overweight (n = 277) | Overweight (n = 135) | p * | |
---|---|---|---|---|
Age, years | ||||
7th grade | 12.7 ± 0.72 | 12.8 ± 0.74 | 12.7 ± 0.70 | 0.536 |
10th grade | 15.8 ± 0.85 | 15.9 ± 0.89 | 15.6 ± 0.69 | 0.021 |
Sex, n (%) of girls | 216 (52.4) | 149 (53.8) | 67 (49.6) | 0.427 |
Socioeconomic status (FAS) | 6.4 ± 1.65 | 6.4 ± 1.71 | 6.5 ± 1.51 | 0.471 |
Smoking status, n (%) | ||||
Non-smoker | 369 (89.6) | 249 (89.9) | 120 (88.9) | 0.260 |
Former smoker | 32 (7.8) | 23 (5.6) | 9 (2.2) | |
Current smoker | 11 (2.7) | 5 (1.2) | 6 (1.5) | |
Pubertal stage A, n (%) | ||||
II | 30 (7.3) | 21 (7.6) | 9 (6.7) | 0.415 |
III | 136 (33.0) | 88 (31.8) | 48 (35.6) | |
IV | 194 (47.1) | 128 (46.2) | 66 (48.9) | |
V | 52 (12.6) | 40 (14.4) | 12 (8.9) | |
Pubertal stage B, n (%) | ||||
II | 29 (7.0) | 17 (6.1) | 12 (8.9) | 0.279 |
III | 85 (20.6) | 53 (19.1) | 32 (23.7) | |
IV | 207 (50.2) | 148 (53.4) | 59 (43.7) | |
V | 91 (22.1) | 59 (21.3) | 32 (23.7) | |
Body fat, % | 21.1 ± 8.50 | 17.7 ± 6.53 | 28.2 ± 7.68 | <0.001 |
VO2max (mL/kg/min) | 42.0 ± 6.74 | 43.2 ± 6.97 | 39.6 ± 5.49 | <0.001 |
Inflammatory biomarkers | ||||
CRP, mg/L | 0.20 (0.11; 0.77) | 0.13 (0.11; 0.51) | 0.46 (0.18; 1.60) | <0.001 |
IL-6, ng/L | 1.90 (1.90; 3.40) | 1.90 (1.90; 2.95) | 1.90 (1.90; 3.90) | 0.033 |
Adipokines | ||||
Adiponectin, mg/L | 10.4 (7.7; 14.5) | 10.8 (8.3; 15.1) | 9.1 (7.2; 13.4) | 0.002 |
Leptin, ng/mL | 2.80 (0.90; 5.90) | 1.60 (0.60; 4.15) | 5.90 (3.10; 10.70) | <0.001 |
Total energy intake, kcal/day | 2127.7 ± 680.98 | 2159.0 ± 692.06 | 2063.5 ± 655.51 | 0.182 |
Carbohydrate, % of energy | 49.9 ± 7.02 | 50.0 ± 7.08 | 49.6 ± 6.91 | 0.567 |
Protein, % of energy | 19.0 ± 3.60 | 18.6 ± 3.42 | 19.7 ± 3.87 | 0.004 |
Total fat, % of energy | 32.4 ± 4.67 | 32.7 ± 4.75 | 31.9 ± 4.48 | 0.124 |
MAR, % adequacy/day | 96.3 (92.4; 98.9) | 96.3 (92.7; 99.0) | 95.8 (91.7; 98.6) | 0.828 |
Total dairy products, g/day | 324.4 (244.0; 629.1) | 346.7 (244.0; 632.9) | 310.4 (244.0; 569.4) | 0.310 |
Milk, g/day | 244.0 (191.7; 610.0) | 244.0 (191.7; 610.0) | 244.0 (191.7; 261.3) | 0.414 |
Yogurt, g/day | 53.6 (17.9; 125.0) | 53.6 (17.9; 125.0) | 53.6 (17.9; 125.0) | 0.817 |
Cheese, g/day | 12.9 (2.0; 23.6) | 12.9 (2.0; 23.6) | 4.3 (2.0; 12.9) | 0.822 |
C-Reactive Protein a, b, c | ||||||||
---|---|---|---|---|---|---|---|---|
Non-Overweight | Overweight | |||||||
Model 1 | Model 2 | Model 1 | Model 2 | |||||
AMR (95% CI) | p-Value | AMR (95% CI) | p-Value | AMR (95% CI) | p-Value | AMR (95% CI) | p-Value | |
Tertiles of total dairy products intake | ||||||||
T1 | Reference * | Reference | Reference | Reference | ||||
T2 | 0.98 (0.67; 1.44) | 0.926 | 0.98 (0.66; 1.45) | 0.921 | 1.52 (0.95; 2.44) | 0.080 | 1.23 (0.73; 2.08) | 0.430 |
T3 | 0.51 (0.35; 0.74) | <0.001 | 0.80 (0.53; 1.20) | 0.284 | 1.30 (0.78; 2.17) | 0.306 | 1.30 (0.68; 2.51) | 0.427 |
Tertiles of milk intake | ||||||||
T1 | Reference | Reference | Reference | Reference | ||||
T2 | 1.18 (0.79; 1.76) | 0.414 | 1.16 (0.77; 1.75) | 0.480 | 1.50 (0.90; 2.50) | 0.117 | 1.19 (0.71; 2.00) | 0.507 |
T3 | 0.61 (0.40; 0.92) | 0.019 | 1.02 (0.65; 1.59) | 0.932 | 1.49 (0.83; 2.66) | 0.180 | 1.49 (0.74; 3.03) | 0.267 |
Tertiles of yogurt intake | ||||||||
T1 | Reference | Reference | Reference | Reference | ||||
T2 | 1.40 (0.99; 1.99) | 0.058 | 1.33 (0.96; 1.84) | 0.083 | 1.24 (0.77; 1.99) | 0.375 | 1.30 (0.80; 2.10) | 0.294 |
T3 | 0.53 (0.34; 1.01) | 0.055 | 0.96 (0.57; 1.65) | 0.910 | 1.49 (0.69; 3.20) | 0.308 | 1.39 (0.61; 3.19) | 0.432 |
Interleukin-6 a, b, c | ||||||||
---|---|---|---|---|---|---|---|---|
Non-Overweight | Overweight | |||||||
Model 1 | Model 2 | Model 1 | Model 2 | |||||
AMR (95% CI) | p-Value | AMR (95% CI) | p-Value | AMR (95% CI) | p-Value | AMR (95% CI) | p-Value | |
Tertiles of total dairy products intake | ||||||||
T1 | Reference * | Reference † | Reference | Reference | ||||
T2 | 0.60 (0.49; 0.75) | <0.001 | 0.64 (0.52; 0.80) | <0.001 | 0.91 (0.67; 1.24) | 0.542 | 1.05 (0.76; 1.45) | 0.774 |
T3 | 0.67 (0.54; 0.82) | <0.001 | 0.66 (0.53; 0.82) | <0.001 | 1.02 (0.73; 1.43) | 0.902 | 1.28 (0.91; 1.81) | 0.156 |
Tertiles of milk intake | ||||||||
T1 | Reference † | Reference ‡ | Reference | Reference | ||||
T2 | 0.60 (0.48; 0.75) | <0.001 | 0.63 (0.51; 0.78) | <0.001 | 0.96 (0.69; 1.33) | 0.792 | 0.94 (0.64; 1.31) | 0.719 |
T3 | 0.64 (0.51; 0.80) | <0.001 | 0.65 (0.51; 0.82) | <0.001 | 0.76 (0.52; 1.10) | 0.148 | 0.91 (0.62; 1.33) | 0.616 |
Tertiles of yogurt intake | ||||||||
T1 | Reference | Reference | Reference | Reference | ||||
T2 | 0.73 (0.65; 1.14) | 0.001 | 0.75 (0.61; 0.91) | 0.004 | 0.69 (0.51; 0.93) | 0.014 | 0.75 (0.54; 1.01) | 0.056 |
T3 | 0.84 (0.63; 1.14) | 0.278 | 0.87 (0.64; 1.19) | 0.377 | 1.41 (0.88; 2.29) | 0.156 | 1.50 (0.94; 2.39) | 0.0.86 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, S.; Agostinis-Sobrinho, C.; Santos, R.; Moreira, C.; Lopes, L.; Gonçalves, C.; Oliveira-Santos, J.; Sousa-Sá, E.; Rodrigues, B.; Mota, J.; et al. Association of Dairy Product Consumption with Metabolic and Inflammatory Biomarkers in Adolescents: A Cross-Sectional Analysis from the LabMed Study. Nutrients 2019, 11, 2268. https://doi.org/10.3390/nu11102268
Abreu S, Agostinis-Sobrinho C, Santos R, Moreira C, Lopes L, Gonçalves C, Oliveira-Santos J, Sousa-Sá E, Rodrigues B, Mota J, et al. Association of Dairy Product Consumption with Metabolic and Inflammatory Biomarkers in Adolescents: A Cross-Sectional Analysis from the LabMed Study. Nutrients. 2019; 11(10):2268. https://doi.org/10.3390/nu11102268
Chicago/Turabian StyleAbreu, Sandra, César Agostinis-Sobrinho, Rute Santos, Carla Moreira, Luís Lopes, Carla Gonçalves, José Oliveira-Santos, Eduarda Sousa-Sá, Bruno Rodrigues, Jorge Mota, and et al. 2019. "Association of Dairy Product Consumption with Metabolic and Inflammatory Biomarkers in Adolescents: A Cross-Sectional Analysis from the LabMed Study" Nutrients 11, no. 10: 2268. https://doi.org/10.3390/nu11102268
APA StyleAbreu, S., Agostinis-Sobrinho, C., Santos, R., Moreira, C., Lopes, L., Gonçalves, C., Oliveira-Santos, J., Sousa-Sá, E., Rodrigues, B., Mota, J., & Rosário, R. (2019). Association of Dairy Product Consumption with Metabolic and Inflammatory Biomarkers in Adolescents: A Cross-Sectional Analysis from the LabMed Study. Nutrients, 11(10), 2268. https://doi.org/10.3390/nu11102268